
Maple
David J. Scott

d.scott@auckland.ac.nz

Department of Statistics, University of Auckland

Maple – p. 1/56

Outline

Introduction

A sample session

Practicalities

Basic operations

Calculus

Procedures

Maple – p. 2/56

Resources

The Maple website is the major resource:
http://www.maplesoft.com/

There are downloadable manuals on the website. You need to
register, but can then download the manuals without cost:
http://www.maplesoft.com/documentation%5Fcenter/

Yong Wang has some Maple examples on his website:
http://www.stat.auckland.ac.nz/~yongwang/782/week10.html and
http://www.stat.auckland.ac.nz/~yongwang/782/week11.html

This website has a number of useful-looking tutorials:
http://www.gmi.edu/acad/scimath/appmath/maple/

Maple – p. 3/56

http://www.maplesoft.com/
http://www.maplesoft.com/documentation%5Fcenter/
http://www.stat.auckland.ac.nz/~yongwang/782/week10.html
http://www.stat.auckland.ac.nz/~yongwang/782/week11.html
http://www.gmi.edu/acad/scimath/appmath/maple/

Introduction

Maple – p. 4/56

What is Maple?

It is a computer algebra system

Various names are used for this sort of computation: symbolic
computation, symbolic manipulation, formula manipulation,
computer algebra

Symbolic computation differs from numeric computation in that
it manipulates symbols representing mathematical objects

The mathematical objects may represent number such as
integers, real numbers and complex numbers, but may also be
such things as polynomials, functions, algebraic structures
such as groups, rings and fields

The manipulations are carried out exactly using the rules of
algebra

Maple – p. 5/56

Examples of Computations

The sort of manipulations carried out are:
factorisation of polynomials
differentiation and integration
series expansions
determination of limits
simplification of expressions
analytic solution of differential equations
exact solution of systems of equations

Most computer algebra systems do also allow the numerical
evaluation of expressions

Sometimes computer algebra systems will produce code in a
language such as Fortran to numerically evaluate a symbolic
expression

Maple – p. 6/56

A Sample Session

Maple – p. 7/56

Numerical Calculation

Maple uses exact arithmetic, not floating point approximations

> 105/25;

21/5

> interface(screenwidth=60);

79

> 100!;

93326215443944152681699238856266700490715968264381621468\

5929638952175999932299156089414639761565182862536979\

20827223758251185210916864000000000000000000000000

> interface(screenwidth=79);

60

Maple – p. 8/56

Built-in Constants and Functions

Standard mathematical constants are built-in, likewise
standard functions such as the trigonometric functions

> sin(Pi/2);

1

Numerical evaluation to any accuracy is possible

> evalf(Pi,25);

3.141592653589793238462643

Maple – p. 9/56

Algebraic Manipulation

Common manipulations of algebraic expressions are included

> expand((1+x)^2);

2

1 + 2 x + x

> factor(%);

2

(1 + x)

This includes trigonometric identities

> expand(sin(a+b));

sin(a) cos(b) + cos(a) sin(b)

> simplify((1+sin(x)+cos(x))/(1+sin(x)-cos(x)));

1 + cos(x)

sin(x)
Maple – p. 10/56

Solution of Equations

Single equations can be solved

> solve(x^2-x=1,x);

1/2 1/2

5 5

1/2 + ----, 1/2 - ----

2 2

Sets of equations can likewise be solved

Maple – p. 11/56

Plotting

Functions can be plotted

3-d plots are possible, including animation of plots

plot(sin(x),x=-Pi..2*Pi);

expr:=Int(x^2*sin(x-a),x);

answer:=value(expr);

plot3d(answer,x=-Pi..Pi,a=0..1);

with(plots):

animate(answer,x=-Pi..Pi,a=0..1);

Maple – p. 12/56

Limits

Limits can be evaluated

> limit((x^2-4)/(x-2),x=2);

4

> limit(tan(x),x=Pi/2);

undefined

Limits can be taken from a particular side

> limit(tan(x),x=Pi/2,`left`);

infinity

Maple – p. 13/56

Differentiation

Differentiation is a mechanical process, ideal for a computer

> Diff(exp(-x^2),x);

d 2

--- exp(-x~)

dx~

> value(%);

2

-2 x~ exp(-x~)

Maple – p. 14/56

Integration

Integration is much more difficult

Maple knows all the rules you were taught in calculus classes

> Int(x^2*sin(x),x);

/

| 2

| x~ sin(x~) dx~

|

/

> value(%);

2

-x~ cos(x~) + 2 cos(x~) + 2 x~ sin(x~)

The integration constant is omitted

Maple – p. 15/56

Integration

Definite integrals may be evaluated

> Int(x^2*sin(x),x=0..1);

1

/

| 2

| x~ sin(x~) dx~

|

/

0

> value(%);

cos(1) + 2 sin(1) - 2

> evalf(%%,10);

0.223244276

Maple – p. 16/56

Practicalities

Maple – p. 17/56

Starting, Stopping etc

Start the gui version of maple on unix using xmaple

The text version is started simply with maple

Terminate a session with quit or in the gui version by using a
menu, or a keyboard shortcut

Obtain help using help or ?

For help on a particular topic, help(topic) or ?topic

Help is available from menus in the gui version

Maple – p. 18/56

Input and Output

Different input and output displays are possible in the gui
version

Inputs may be either ascii (similar to TEX) or in Maple input
format

Output may be in Maple notation, as character, or in LATEX
format

The worksheet can include text so that the commands used
can be documented

The text can be formatted with titles, headings, different fonts
etc

The command latex will write a single expression in LATEX

Maple – p. 19/56

Use of latex Command

Here is a Maple command which produces an integral

> expr:=int(exp(-x^2)*ln(x),x);

/

| 2

expr := | exp(-x) ln(x) dx

|

/

> latex(expr);

\int \!{e^{-{x}^{2}}}\ln \left(x \right) {dx}

Which produces ∫
e−x

2

ln (x) dx

Maple – p. 20/56

Output

Maple output as LATEX requires style files

Different versions of Maple require different style files

It appears now a Maple class is available

The required style files ship with Maple

On stat12, the files are in /usr/local/maple9.5/etc

Copy the files to your TEXINPUTS directory

Maple will create .eps files for any plots in the output, and will
include LATEXcode to include any plots in the typeset document

Maple – p. 21/56

Batch Processing

You can use redirection in unix to read Maple commands from
a file and save the output in a file

When in Maple, you can read a file of Maple commands in with

> read `filename `

To ensure that commands are included along with the files, set
the interface variable echo to 2, using

interface(echo=2)

Maple – p. 22/56

Maple Syntax

Arguments are given in parentheses (. . .)

Square brackets [. . .] are reserved for grouping
operations: vectors, matrices and lists

Commands must end with a semicolon (;) or colon (:)

The result is displayed if the command is ended with a
semicolon, but not if ended with a colon

Multiplication is represented by an asterisk (*): enter 2*x*y to
evaluate 2xy, not 2xy

Powers are entered with ^

Use brackets to ensure the correct order of operations

Maple – p. 23/56

Basic Operations

Maple – p. 24/56

Exact Calculations

Basic calculations are fairly obvious

> 12315/35;

2463/7

> (22431)*(832748)*(387281);

7234165243235028

> sqrt(27);

1/2

3 3

Expressions are not routinely simplified, but simplification can
be explicitly requested

> 8^(2/3);

(2/3)

8

> simplify(%);

4
Maple – p. 25/56

Determining Roots

Care is needed with the order of operations

> (-27/64)^2/3;

243

4096

> (-27/64)^(2/3);

2/3 1/3

(-27) 64

64

Maple – p. 26/56

Determining Roots

simplify doesn’t always behave as expected, surd is useful
in calculating roots

> simplify((-27/64)^(2/3));

1/2 2

9 (1 + 3 I)

64

> surd((-27/64),3);

-3/4

> surd((-27/64),3)^2;

9/16

I here represents
√
−1

Maple – p. 27/56

Built-in Constants

Besides
√
−1, denoted by I, Maple has

e ≈ 2.71828 denoted by exp(1)

π ≈ 3.14159 denoted by Pi

∞ denoted by infinity

Euler’s constant γ ≈ 0.577216 denoted by gamma

Maple – p. 28/56

Built-in Functions

Built-in functions include
the exponential function exp(x)

the natural logarithm ln(x)

the absolute value function abs(x)

trigonometric functions sin(x), cos(x), tan(x),
sec(x), csc(x), cot(x)

inverse trigonometric functions arcsin(x), arccos(x),
arctan(x), arcsec(x), arccsc(x), arccot(x)

hyperbolic trigonometric functions and their inverses
special functions such as Bessel functions (including
BesselI(v,x), BesselJ(v,x), BesselK(v,x))

Maple – p. 29/56

Algebraic Operations on Expressions

factor(expression)

expand(expression)

simplify(expression)

normal(expression) provides a basic simplification of rational
functions. The numerator and denominator are relatively
prime polynomials with integer coefficients

convert(expression,parfrac,variable) computes the
partial fraction decomposition of expression in terms of the
variable variable

convert(expression,exp) converts a trigonometric
expression to an exponential expression

Many other conversions are possible—see ?convert

Maple – p. 30/56

Algebraic Operations

> factor(12*x^2+27*x*y-84*y^2);

3 (x + 4 y) (4 x - 7 y)

> expand((x+y)^2*(3*x-y)^3);

5 4 3 2 2 3 4 5

27 x + 27 x y - 18 x y - 10 x y + 7 x y - y

> simplify(cos(x)^5+sin(x)^4+2*cos(x)^2);

5 4

cos(x) + 1 + cos(x)

Maple – p. 31/56

Algebraic Operations

> normal((x^2-y^2)/(x-y)^3);

x + y

2

(x - y)

> normal((x^2-y^2)/(x-y)^3,`expanded`);

x + y

2 2

x - 2 x y + y

Maple – p. 32/56

Algebraic Operations

> convert(1/((x-3)*(x-1)),parfrac);

1 1

- --------- + ---------

2 (x - 1) 2 (x - 3)

> convert(sin(x),exp);

/ 1 \

-1/2 I |exp(x I) - --------|

\ exp(x I)/

Maple – p. 33/56

Naming and Evaluating Expressions

Objects can be named

Syntax is name:=expression

Reduces typing, expressions can be referenced throughout
your Maple session

Expressions can be evaluated using subs or eval

Numerical evaluation uses evalf

Maple – p. 34/56

Evaluating Expressions

> exp1:=x^2;

2

exp1 := x

> exp1:=x^3;

3

exp1 := x

> exp:=x^2;

Error, attempting to assign to `exp` which is protected

> f:=(x^3+2*x^2)/(x^3+x^2-4*x-4);

3 2

x + 2 x

f := -----------------

3 2

x + x - 4 x - 4

> subs(x=4,f);

8/5

Maple – p. 35/56

Expressions

expression1:=expression2; causes expression1 to be set to
expression2 and evaluated

expression1:=’expression2’; causes expression1 to be set
to expression2, overwriting any previous assignment

An assignment can also be annulled using
unassign(’expression’)

restart clears Maple’s internal memory of all previously
defined symbols

Maple – p. 36/56

Evaluating Expressions

> x:=2;

x := 2

> exp1:=x^2;

exp1 := 4

> exp1:='x^3';

3

exp1 := x

> exp1;

8

> unassign('exp1');

> exp1;

exp1

Maple – p. 37/56

Defining and Evaluating Functions

Functions, expressions and graphics can be given any name
that is not a built-in function or command

An elementary function of a single variable y = f(x) is
typically defined using the form

f:=x->expression in x

Then f(x) evaluates the function f at x

subs can also be used to evaluate a function

The function can be evaluated at some set of values using a
list

A list takes the form [a1,a2,...,an]

Maple – p. 38/56

Defining and Evaluating Functions

> f:=x->x/(x^2+1);

x

f := x -> ------

2

x + 1

> f(3);

3/10

> f(3+h);

3 + h

2

(3 + h) + 1

Maple – p. 39/56

Defining and Evaluating Functions

> n1:=simplify((f(3+h)-f(3))/h);

8 + 3 h

n1 := - ------------------

2

10 (10 + 6 h + h)

> subs(h=0,n1);

-2

--

25

> map(f,[0,1,2,3]);

[0, 1/2, 2/5, 3/10]

> [seq(f(n),n=0..3)];

[0, 1/2, 2/5, 3/10]

Maple – p. 40/56

Solving Equations

solve(equation) can be used to solve an equation with a
single unknown

solve(equation,variable) can be used to make variable

the subject of the equation

These extend to systems of equations

A system of equations is specified using a set

A set takes the form {a1,a2,...,an}

Maple – p. 41/56

Solving Equations

> solve(x^3+x^2+x+1=0);

-1, I, -I

> solve(y=(x-5)^3/8,x);

(1/3) (1/3) 1/2 (1/3)

2 y + 5, -y + 3 y I + 5,

(1/3) 1/2 (1/3)

-y - 3 y I + 5

> solve(y=(x-5)^3/8,x)[1];

(1/3)

2 y + 5

> sys:={3*x-y=4,x+y=2};

sys := {3 x - y = 4, x + y = 2}

> sols:=solve(sys);

sols := {x = 3/2, y = 1/2}

> subs(sols,sys);

{4 = 4, 2 = 2} Maple – p. 42/56

Calculus

Maple – p. 43/56

Limits

Syntax is limit(expression,variable=value,direction)

> limit(sin(x)/x,x=0);

1

> limit((1+a/x)^x,x=infinity);

exp(a)

Maple – p. 44/56

Differentiation

D and Diff are used to differentiate functions

diff(f(x),x) computes and returns f ′(x) = df/dx

D(f)(x) computes and returns f ′(x) = df/dx

diff(f(x),x$n) computes and returns f (n)(x) = dnf/dxn

(D@@n)(f)(x) computes and returns f (n)(x) = dnf/dxn

Maple knows all the usual differentiation rules: the product
rule, the quotient rule, the chain rule

Maple – p. 45/56

Differentiation

> diff(x^4+4/3*x^3-3*x^2,x);

3 2

4 x + 4 x - 6 x

> diff(x^4+4/3*x^3-3*x^2,x$2);

2

12 x + 8 x - 6

Maple – p. 46/56

Integration

Syntax is int(expression,variable) for an indefinite integral
or int(expression,variable,a..b) for a definite integral

The abitrary integration constant is omitted when displaying
the indefinite integral

> int(1/x^2*exp(1/x),x);

-exp(1/x)

Maple – p. 47/56

Integration

If the integral is a known mathematical function with no closed
form, the function will be given

Otherwise the integral will be returned unevaluated

> int(sin(x)/x,x);

Si(x)

> int(exp(-x^2)*ln(x), x);

/

| 2

| exp(-x) ln(x) dx

|

/

Maple – p. 48/56

Integration

Maple doesn’t know the normal distribution function, but does
know the error function which is very closely related

> int(1/sqrt(2*Pi)*exp(-(1/2)*x^2),x=-infinity..a);

1/2

2 a

1/2 erf(------) + 1/2

2

> int(1/sqrt(2*Pi)*exp(-(1/2)*x^2),x=-infinity..1.96);

0.9750021049

Maple – p. 49/56

Procedures

Maple – p. 50/56

Procedures

The Maple equivalent of an R function is called a procedure

Procedures can have local and global variables

They can be defined recursively

Maple has a full set of control structures: if . . else,
for, while

The type of a variable can be specified

Syntax of control structures appears to vary from version to
version

Maple can produce Fortran, C and Matlab code, which can be
stored in a file

Maple – p. 51/56

Example

> fib:= proc(n::nonnegint)

> if n<2 then

> n

> else

> fib(n-1)+fib(n-2)

> end if

> end proc:

>

> seq(fib(n),n=0..10);

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Maple – p. 52/56

Code Generation Example

> polyeqn:=x^3-a*x-1;

3

polyeqn := x - a x - 1

> sols:=solve(polyeqn,x);

1/3

%1 2 a

sols := ----- + -----,

6 1/3

%1

1/3 / 1/3 \

%1 a 1/2 |%1 2 a |

- ----- - ----- + 1/2 I 3 |----- - -----|,

12 1/3 | 6 1/3|

%1 \ %1 /

Maple – p. 53/56

Code Generation Example

1/3 / 1/3 \

%1 a 1/2 |%1 2 a |

- ----- - ----- - 1/2 I 3 |----- - -----|

12 1/3 | 6 1/3|

%1 \ %1 /

3 1/2

%1 := 108 + 12 (-12 a + 81)

Maple – p. 54/56

Code Generation Example

> sol1:=sols[1];

3 1/2 1/3

(108 + 12 (-12 a + 81))

sol1 := ------------------------------

6

2 a

+ ------------------------------

3 1/2 1/3

(108 + 12 (-12 a + 81))

> with(CodeGeneration);

[C, Fortran, IntermediateCode, Java, LanguageDefinition,

Matlab, Names, Save, Translate, VisualBasic]

Maple – p. 55/56

Code Generation Example

> C(sol1,optimize=true,declare=[a::float]);

t1 = a * a;

t5 = sqrt(-0.12e2 * t1 * a + 0.81e2);

t8 = pow(0.108e3 + 0.12e2 * t5, 0.1e1 / 0.3e1);

t13 = t8 / 0.6e1 + 0.2e1 / t8 * a;

Maple – p. 56/56

	Outline
	Resources
	Introduction
	What is Maple?
	Examples of Computations
	A Sample Session
	Numerical Calculation
	Built-in Constants and Functions
	Algebraic Manipulation
	Solution of Equations
	Plotting
	Limits
	Differentiation
	Integration
	Integration
	Practicalities
	Starting, Stopping etc
	Input and Output
	Use of 	exttt {latex} Command
	Output
	Batch Processing
	Maple Syntax
	Basic Operations
	Exact Calculations
	Determining Roots
	Determining Roots
	Built-in Constants
	Built-in Functions
	Algebraic Operations on Expressions
	Algebraic Operations
	Algebraic Operations
	Algebraic Operations
	Naming and Evaluating Expressions
	Evaluating Expressions
	Expressions
	Evaluating Expressions
	Defining and Evaluating Functions
	Defining and Evaluating Functions
	Defining and Evaluating Functions
	Solving Equations
	Solving Equations
	Calculus
	Limits
	Differentiation
	Differentiation
	Integration
	Integration
	Integration
	Procedures
	Procedures
	Example
	Code Generation Example
	Code Generation Example
	Code Generation Example
	Code Generation Example

