
Programming in S

Control Flow

• S is extensible because it is a full-blown computer
language.

• Like most computer languages, S has a number of
control-flow features designed to make it possible to
carry out interesting calculations.

• These features fall into two general categories —
iteration and alternation. We will look at examples of
each of these features.

Compound Statements

Compound expressions give a way of treating a sequence of
expressions as a single expression. The general form of a
compound expression is:

{ expression1 ; ... ; expressionn }

A compound expression is evaluated by evaluating each of its
component expressions in turn and taking the value of the last
one as the value of the compound. (Note that the statements
here are separated by semi-colons, but newlines will also
serve as separators.)

For-Loop Statements

For loops give a way of repeatedly repeatedly carrying out a
computation, perhaps with some slight variation. For
example, the effect of the code fragment:

> sum <- 0
> for(i in 1:length(x))
+ sum <- sum + x[i]

is to set the variable i successively equal to each of the values
1, 2, . . ., length(x), and for each of the successive values to
evaluate the expression sum <- sum + x[i].

For-Loop Statements

The general form of a for-loop is

for(variable in vector) expression

where expression is either a simple or compound expression.

The loop is evaluated by successively setting the value of the
variable to each element of the vector and then evaluating the
expression. The value of the loop is the value of the last
expression computed during evaluation of the loop.

For-Loop Statements

S for-loops are not restricted to just incrementing a simple
integer index. The following code fragments are equivalent
(but the second is more efficient).

> sum <- 0
> for(i in 1:length(x))
+ sum <- sum + x[i]

> sum <- 0
> for(elt in x)
+ sum <- sum + elt

This illustrates that you should not just translate idioms from
other languages into S.

If-Then-Else and If-Then Statements

In many programs it may be desirable to perform one
computation if a particular condition is true, and to otherwise
perform some alternative computation. This is made possible
through the use of an if-then-else statement.

if (condition) expression1 else expression2

where condition is an expression which results in a logical
(true/false) value, and expression1 and expression2 are simple
or compound expressions.

If condition is true, then expression1 is evaluated, otherwise
expression2 is evaluated. The value of an if-then-else
statement is the value of whichever of expression1 or
expression2 which was computed.

Examples

The expression

> if (x > 0) y <- sqrt(x) else y <- -sqrt(-x)

provides an example of an if-then-else statement which will
look familiar to Pascal, Java, C, or C++ programmers.

The statement can however be written more succinctly in S as

> y <- if (x > 0) sqrt(x) else -sqrt(-x)

which will look familiar to Lisp or Algol programmers.

If Statements

There is a simplified form of if-then-else statement which is
available when there is no expression2 to evaluate. This
statement has the general form

if (condition) expression

and is completely equivalent to the statement

if (condition) expression else NULL

Here NULL is a special null object which acts as a placeholder.

Functions

New functionality is added to S by defining new functions. As
a very simple example, let’s define a function which squares
its argument. We can create this function as follows.

> square <- function(x) x * x

The expression function(x) x * x creates a function
which is assigned as the value of the variable square. The
function has a single argument x and the value is multiplied
by itself to provide the value of the function. We can use this
function in exactly the same way as any other S function.

> square(10)
[1] 100

Vectorisation

Because the operation * acts element-wise on vectors, the
new square function will also.

> square(1:10)
[1] 1 4 9 16 25 36 49 64 81
[10] 100

Using this fact we can write a simple sum-of-squares function.

> sumsq <- function(x) sum(square(x))
> sumsq(1:10)
[1] 385

General Functions

In general, an S function has the form:

function (arglist) body

where arglist is a (comma separated) list of variable names
known as the formal arguments of the function, and body is a
simple or compound expression known as the body of the
function.

The general rule for evaluating a call to a function is to
temporarily create a set of variables by associating the
arguments passed to the function with the variable names in
arglist, and then to use these variable definitions to evaluate
the function body.

Example

Consider the function defined by:

> hypot <- function(a, b) sqrt(aˆ2 + bˆ2)

and suppose we make a call to this function by typing:

> hypot(3, 4)
[1] 5

This function call is evaluated as follows:

• Temporary variables, a and b, are created with the
values 3 and 4.

• These variable definitions are used to evaluate the
expression sqrt(aˆ2 + bˆ2) to obtain the value 5.

• When the evaluation is complete the temporary
definitions of a and b are removed.

Optional Arguments

S has a notion of default argument values which makes it
possible for the writer of a function to specify reasonable
default values for arguments, while still providing the
flexibility users the option of overriding these defaults. As an
example, consider the following sum-of-squares function.

> sumsq <-
+ function(x, about = 0)
+ sum((x - about)ˆ2)

The function definition provides a default definition for the
about argument.

Example

When invoked with just a single argument the function returns
the sum of the squared values in that argument.

> sumsq(1:10)
[1] 385

When provided with a value for the about argument, the
function computes the sum of squared deviations about the
specified value.

> sumsq(1:10, mean(1:10))
[1] 82.5

Argument Matching

Because it is not necessary to specify all the arguments to S
functions, it is important to be clear about which argument
corresponds to which formal parameter of the function. This
can be done by providing a name for the argument explicitly.

> sumsq(1:10, about=mean(1:10))
[1] 82.5

When names are provided for arguments, they are used in
preference to position which matching up formal arguments
and arguments. For example,

> sumsq(about=mean(1:10), 1:10)
[1] 82.5

returns the same answer as the function call above.

The Argument Matching Process

The general rule for matching formal and actual arguments is
as follows.

1. Use any names provided with the actual arguments to
determine the formal arguments associated with the
named arguments. Partial matches are acceptable,
unless there is an ambiguity.

2. Match the unused actual arguments, in the order given,
to any unmatched formal arguments, in the order they
appear in the function declaration.

Argument Matching Example

If sumsq is defined by

> sumsq <-
+ function(x, about = 0)
+ sum((x - about)ˆ2)

then all the following calls to sumsq are equivalent.

> sumsq(1:10, mean(1:10))
> sumsq(1:10, about=mean(1:10))
> sumsq(1:10, a=mean(1:10))
> sumsq(x=1:10, mean(1:10))
> sumsq(mean(1:10), x=1:10)

The Roots of a Quadratic Equation

The formula
−b±

√
b2 −4ac

2a
gives the values of x for which the function

f (x) = ax2 +bx+ c

takes on the value 0.

Let’s consider how to turn this into an S function.

The Roots of a Quadratic Equation – Version 1

The following function computes both roots of a quadratic
equation.

> roots <-
+ function(a, b, c)
+ c((-b + sqrt(bˆ2 - 4 * a * c))/(2 * a),
+ (-b - sqrt(bˆ2 - 4 * a * c))/(2 * a))

> roots(1,2,1)
[1] -1 -1

This function computes each root separately and then uses c
to combine the two results into a vector.

The Roots of a Quadratic Equation – Version 2

The following function computes both roots of a quadratic
equation.

> roots <-
+ function(a, b, c)
+ (-b + c(1, -1) *
+ sqrt(bˆ2 - 4 * a * c))/(2 * a)

> roots(1, 2, 1)
[1] -1 -1

This version of the function uses vector arithmetic to compute
both roots simultaneously.

Complex Roots

If the quantity ∆ defined by

∆ = b2 −4ac

is negative, then the roots of the quadratic equation are
complex.

Versions 1 and 2 of the roots function do not address the
problem of complex roots.

> roots(1, 0, 1)
[1] NaN NaN
Warning message:
NaNs produced in: sqrt(bˆ2 - 4 * a * c)

The Roots of a Quadratic Equation – Version 3

The following function version will deal with complex roots.

> roots <-
+ function(a, b, c)
+ {
+ delta <- bˆ2 - 4*a*c
+ if (delta < 0) delta <- delta+0i
+ (-b + c(1, -1) * sqrt(delta))/(2 * a)
+ }

> roots(1,0,-1)
[1] 1 -1

> roots(1,0,1)

[1] 0+1i 0-1i

The Roots of a Quadratic Equation – Version 4

To provide a final clean up the roots function we can use
default values of the arguments.

> roots <-
+ function(a = 0, b = 0, c = 0)
+ {
+ delta <- bˆ2 - 4*a*c
+ if (delta < 0) delta <- as.complex(delta)
+ (-b + c(1, -1) * sqrt(delta))/(2 * a)
+ }

> roots(a = 1, c = 1)
[1] 0+1i 0-1i

This may or may not prove useful.

Computational Strategies

There are a two common ways of going about solving
computational problems: iteration and recursion.

Examples of both follow.

Normal Probabilities

Recall that for z > 0,

Φ(z) =
1
2

+
1√
2π

∞

∑
n=0

(−1)nz2n+1

n!2n(2n+1)

We can use this as the basis for creating a computational
procedure for computing normal probabilities.

The procedure works by iteratively summing the terms of the
series.

Obviously, we can’t sum all the way to infinity, but since the
terms decrease in magnitude we can get a good approximation
by summing a fixed number of them.

Computing Normal Probabilities

Here is a direct implementation of summing the power series.

> Phi1 <-
+ function(z)
+ {
+ sum <- z
+ nfac <- 1
+ for (n in 1:30) {
+ nfac <- n * nfac
+ sum <- sum + (-1)ˆn * z ˆ (2 * n + 1) /
+ (nfac * 2ˆn * (2 * n + 1))
+ }
+ 0.5 + sum / sqrt(2 * pi)
+ }

Computing Normal Probabilities

The function can be tested by comparing it with the built-in S
function pnorm.

> Phi1(1.96)
[1] 0.9750021

> pnorm(1.96)
[1] 0.9750021

Efficiency Considerations

The initial implementation of Phi1 is very inefficient. Here is
a more efficient version.

> Phi2 <-
+ function(z)
+ {
+ n2p1 <- 1; mult <- -zˆ2/2
+ term <- z; sum <- term
+ for (n in 1:30) {
+ n2p1 <- n2p1 + 2;
+ term <- term * mult / n
+ sum <- sum + term / n2p1
+ }
+ 0.5 + sum / sqrt(2 * pi)

+ }

Measuring Efficiency

We can measure the difference in performance of these two
functions using the unix.time function. We time 1000 calls
because each call takes only a small amount of time.

> unix.time(for(i in 1:1000) Phi1(1))
[1] 0.44 0.00 0.47 0.00 0.00

> unix.time(for(i in 1:1000) Phi2(1))
[1] 0.14 0.00 0.14 0.00 0.00

The first number is the time taken in seconds.

The timing loop adds essentially nothing to the times, so the
changes have more than tripled the performance.

Euclid’s GCD Algorithm

As an illustration of recursion, we will look at Euclid’s
algorithm for determining the greatest common divisor of two
integers.

The algorithm is based on the observations:

1. If k divides m and k divides n, then k must also divide
m mod n (the remainder when m is divided by n).

2. If m mod n = 0, then n is the greatest common divisor
of m and n.

[To see 1: Suppose that m = d ×n+ r. Then r = m−d ×n
and so r must be divisible by k if m and n are.]

Euclid’s GCD Algorithm

Here is an S function for the GCD.

> gcd <-
+ function(m, n)
+ if (n == 0) m else gcd(n, m %% n)

> gcd(100,12)
[1] 4

Note that gcd is defined in terms of itself. Such a function is
said to be recursive.

recursion: n., see recursion.
– The Devil’s D.P. Dictionary

