
The S Language

The S Language

S is a language and computational environment designed
specifically for carrying out “statistical” computations.

• It was designed by statisticians so that they could easily
develop and deploy new statistical methodology.

• It brings good ideas on numerical methods, graphics and
language design together in a single useful package.

• It represents a philosophy of turning ideas into programs
quickly and easily.

History

• The S language was developed at AT&T/Lucent Bell
Laboratories by John Chambers, with the assistance of
Rick Becker, Allan Wilks and Duncan Temple Lang.

• The development of the language was aided by
collaboration of the AT&T researchers with a much wide
group of academics and practitioners.

• The developers of S language recognise a number of
distinct versions of S which came about during the
development of the language.

S Version 1

• Released in 1980.

• The first version of S released outside of Bell Labs.

• Used primarily in North American universities.

• It is described in the book

S : A Language And Environment For
Data Analysis And Graphics

(also known as the “brown” book).

S Version 2

• Released in 1987.

• Based initial experiences developing S, Chambers
developed a new environment called QPE.

• This added the ability for users to define their own
extensions to the language. This version of S is described
in the book

The NEW S Language

(also known as the “blue” book).

S Version 3

• Released in 1990.

• Added some basic object-oriented facilities, which were
seen as essential for providing good modelling facilities.

• Included “State of the Art” modelling software.

• These extensions are described in the book

Models in S

also known as the “white” book.

S Version 4

• Released in 2000.

• Contains a rather more sophisticated version of
object-oriented programming and a number of other
developments which support programming activities with
S.

• The initial versions of S4 ran very slowly, and this has
tended delay its acceptance by the S programming
community.

• This version of S is described in the book

Programming with Data

(also known as the “ green book” ).

The ACM Software Systems Award

• The importance of John Chambers’ work on S was
recognised in 1998, when he was awarded the ACM
award for software systems.

• The ACM award is the world’s most prestigious award
for software engineering.

• Other winners of the ACM award include Thompson and
Ritchie for the UNIX operating system and Don Knuth
for the TEX typesetting system.



John Chambers, Luke Tierney and some other guy.

S Implementations

S This was the version of S used internally for research
purposes at Bell Labs. A small group of external
researchers had access to this version.

S-Plus In the late 1980s AT&T sold the rights to sell a
commercial version of S to Seattle-based
Statistical Sciences. The company has since been
renamed twice and is now known as Insightful.

R In the early ’1990s two misguided individuals at
the University of Auckland developed an alternative
“ free” S implementation. It is called R after its
original developers: Robert Gentleman
and Ross Ihaka.

The R developers plotting world domination.

Basic S Concepts

• S is a computer language which is processed by a special
program called an interpreter. This program reads and
evaluates S language expressions, and prints the values
determined for the expressions.

• The interpreter indicates that it is expecting input by
printing its prompt at the start of a line. By default the S
prompt is a greater than sign >.

• On UNIX or LINUX machines you can start Splus by
typing “ Splus” and R by typing “ R”

Using S as a Calculator

A user types expressions to the S interpreter.
S responds by computing and printing the answers.

> 1 + 2
[1] 3

> 1/2
[1] 0.5

> 17ˆ2
[1] 289

Grouping and Evaluation

Normal arithmetic rules apply,

> 1 + 2 * 3
[1] 7

but evaluation can be controlled with parentheses.

> (1 + 2) * 3
[1] 9

Built-in Functions

Many mathematical and statistical functions are available.

> sqrt(2)
[1] 1.414214

> log(10)
[1] 2.302585

> qnorm(.975)
[1] 1.959964

Assignment

Values are stored by assigning them a name.
The resulting name-value pair is called a variable. The
statements:

> z = 17

> z <- 17

> 17 -> z

all store the value 17 under the name z.



Using Variables

Variables can be used in expressions in the same way as
numbers. For example,

> z = 17

> z = z + 23

> z
[1] 40

Special Values

In addition to ordinary numbers, S has special codes which
indicate infinite and undefined numerical values.

> 1/0
[1] Inf

> -1/0
[1] -Inf

> 0/0
[1] NaN

Special Values

Infinities and NaNs have expected properties.

> 100 + Inf
[1] Inf

> 100 + NaN
[1] NaN

> 100/Inf
[1] 0

> Inf/Inf
[1] NaN

Other Types

In addition to real numbers, S also has complex numbers,
logical values and character strings.

> sqrt(-1+0i)
[1] 0+1i

> 10 > 20
[1] FALSE

> s = "hello"
> s
[1] "hello"

Vectors

S works naturally with vectors of values. The simple way to
combine scalar values into a vector is using the c() function.

> x = c(1, 2, 4, 3, 1)
> x
[1] 1 2 4 3 1

Vectors can be manipulated just like scalar values.

> 2 * x
[1] 2 4 8 6 2

> x/4
[1] 0.25 0.50 1.00 0.75 0.25

Properties of Vectors

The functions length and mode return information about the
values stored in vectors.

> x = c(1, 2, 4, 3, 1)

> length(x)
[1] 5

> mode(x)
[1] "numeric"

Simple Subsetting

Individual vector elements can be accessed with a subsetting
mechanism.

> x = c(1, 2, 4, 3, 1)

> x[5]
[1] 1

> x[3]
[1] 4

Vector Subsets

Extracting vector subsets.

> x = c(1, 2, 4, 3, 1)

> x[c(1, 2, 3)]
[1] 1 2 4

> x[-5]
[1] 1 2 4 3

(When subscripts are all negative, all elements except those
are extracted).



Logical Subsetting

Values can be extracted using logical conditions. For
example, the command x[x>2] extracts all elements from x

which are greater than 2.

> x = c(1, 2, 4, 3, 1)

> x[x > 2]
[1] 4 3

Logical subsetting can be very expressive.

> mean(income[gender == "male"])

Modifying Subsets

It is possible to change the values in a subset of a vector by
using subsetting in conjunction with assignment. For
example, the expression

> x[1:2] = 10

will change the first two elements of the vector x to 10.

Patterned Sequences

S has a number of ways of generating vectors containing
special sequences of values. The one that is most commonly
used is the sequence operator “ :” . The expression n1:n2

returns the sequence of integer values from n1 to n2.

> 1:10
[1] 1 2 3 4 5 6 7 8 9 10

> 10:1
[1] 10 9 8 7 6 5 4 3 2 1

Patterned Sequences Using :

The vectors created with : can be quite large, and when
printed they may span several lines.

> 1:50
[1] 1 2 3 4 5 6 7 8 9 10 11 12
[13] 13 14 15 16 17 18 19 20 21 22 23 24
[25] 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48
[49] 49 50

The value in brackets at the start of each line gives the index
of the first value on the line. This can make it easier to locate
particular values.

Patterned Sequences Using seq

More general sequences can be created by using the “ seq”
function. The expression seq(0,5,by=0.2) generates the
sequence of values from 0 to 5 in steps of 0.2.

> seq(0, 5, by = 0.2)
[1] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
[10] 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
[19] 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

It is also possible to create sequences of a specified length.

> seq(0, 4, length = 9)
[1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Patterned Sequences Using rep

Another function which is useful for creating patterned
sequences is the function “ rep” , which repeats its first
argument according to the value of its second. The second
argument can either be a single count, giving the number of
times to repeat the first,

> rep(1:3, 5)
[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

or it can be a vector of counts, indicating how many times to
repeat each element of the first argument.

> rep(1:3, c(3, 4, 3))
[1] 1 1 1 2 2 2 2 3 3 3

Arithmetic on Vectors

S has very general capabilities for vector arithmetic.
Arithmetic operations are carried out on vectors according to
an element recycling rule. Under this rule, when vectors of
different lengths are combined in an arithmetic operation, the
shorter vector is first enlarged to match the length of the
longer vector by recycling its elements. Then the vectors are
combined element by element.

Example

Consider adding the vectors 1:3 and 1:6.





1
2
3



+

















1
2
3
4
5
6

















recycle
−→

















1
2
3
1
2
3

















+

















1
2
3
4
5
6

















add
−→

















2
4
6
5
7
9

















This is how the result appears when computed with S.

> 1:3 + 1:6
[1] 2 4 6 5 7 9


