Basic Useof S

Examples

The pr od function can be used to compute factorials. For
example 10!

> prod(1:10)
[1] 3628800

Beware that very large factorials can’t be represented with
finite precision arithmetic (200! is too large).

> prod(1: 200)
[1] Inf

The following computation shows how to compute binomial
coefficients.

The Recycling Rule

e Operations are carried out on vectors according to an
element recycling rule.

e Under this rule, when vectors of different lengths are
combined in an arithmetic operation,

— The shorter vector is first enlarged to match the
length of the longer vector by recycling its
elements.

— The vectors are then combined element by element.

> prod(1:10) / prod(1:3, 1:7)
[1] 120

Example

Consider adding the vectors 1: 3 and 1: 6.

recycle
—

wWN -
+
O WNE
WNEFEWN PR
O WNERE
8_
o
oO~NTOoOR~DN

Thisis how the result appears when computed with S.
> 1:3 1.6
[1]

+
1] 246579

Cumulative Summaries

In addition to the simple summary functions above, there are
also cumulative versions called cunsum cunpr od, cummax,
and cumni n, which produce a vector which consists of the
summary computed for; the first element, first two elements,
the first three elements and so on.

> cunsun(1: 10)
[1] 1 3 6 10 15 21 28 36 45 55

> cunprod(1: 10)
[1] 1 2 6 24
[5] 120 720 5040 40320
[9] 362880 3628800

Summary Operations on Vectors

The following functions return single-value numerical

summaries for the values in a vector or collection of vectors.

sum(x) the sum of the elements of x
prod(x) theproduct of the elements of x

m n(x) the minimum of the elements of x
max(x) the maximum of the elements of x

Ther ange function computes a two value summary.

> range(1: 10)
[1] 1 10

Statistical Summaries

There are anumber of summaries which compute quantities
of statistical interest. The most important of these are:

mean(x) the mean of the elements of x,
medi an(x) the median of the elements of x,
var (x) the variance of the elements of x.

In addition to these, R also has

sd(x) the s.d. of the elements of x.

Sample Quantiles

Thequant i | e function computes summaries based on the
percentiles of the valuesin its argument. The simplest use of
quant i | e computes the median, upper and lower quartiles,
and extremes.

> quantile(1:10)
0% 25% 50% 75% 100%
1.00 3.25 5.50 7.75 10.00

An optional second argument to quant i | e can be used to
specify adifferent set of quantiles.

> quantile(1: 10, 0:10/10)
0% 10% 20% 30% 40% 50% 60% 70%

Type Coercion

It is possible to combine numbers and character strings into a
single vector using “c”. In this case, the numbers are fist
converted to strings.

> c(greeting, 100)
[1] "hello, world" "100"

This an example of automatic type coercion.
Arithmetic on a mixture of strings and numbers does not
work, however.

> "100" + 10
Error in "100" + 10 : non-nuneric argunent
to binary operator

1.0 1.9 2.8 3.7 4.6 55 6.4 7.3
80% 90% 100%
8.2 9.1 10.0

Naming Vector Elements

Character strings can be used to name the individual elements
of avector.

> x <- 1:5

> X

[1] 1 23 45

> < c("a","b","c","d","e")
> |

[1] "a" "b" "c¢c" "d" "e"

> names(x) <- |

> X
abcde
12345

Character Strings

Any value in quotesis regarded by R as being a character
string.

> greeting <- "hello, world"

> greeting

[1] "hello, world"
Thisistrue, even when the value appears to be numeric.

> nunber <- "21"
> nunber
[1] "21"

Character strings can be combined to form vectors.

When a named vector prints, the names of the elements are
printed above the elements and the indexing information at
the start of alineis dropped.

> c(greeting, nunber)
[1] "hello, world" "21"

Names and Subsetting

Names are preserved during subsetting,

> X[4: 5]
de
45

and it is possible to extract subsets by using the names as
subscripts.
> x[e("a", "d")]
ad
14

Matrices

In addition to vectors, S has awide range of data structures.
> A< matrix(1:6, nrow = 3, ncol = 2)
creates a 3 x 2 matrix. The value can be viewed as follows.

> A

[1 [.2]
[1,] 1 4
(2] 2 5
[3,] 3 6
Notice that the elements are inserted into the matrix in column
major order.

Diagonal Matrices

The function di ag can be used to create diagonal matrices
and to extract the diagonals from matrices.

> A <- diag(1l:3)
> A

(.1 [.2] [.3

]]]
1 0 o0
, 0o 2 o0
o o0 3

—_———
W N -
—

> di ag(A)
[1] 12 3

Row-Major Order

By default, values are inserted into matrices in column major
order. It is also possible to specify that the matrix befilled in
row major order.

> B <- matrix(1:6, nrow = 3, ncol = 2,
+ byrow = TRUE)
> B
[.1 [.2]
[1.] 1 2
[2,] 3 4
[3.] 5 6

Special Matrix Forms

Thereisaspecia form of call to di ag which can be used to
create identity matrices.

> di ag(3)
(.1 [.2] [.3]
, 1 0 0
, 0 1 0
0 0 1

—_———
WN -
—

It is also easy to construct a block matrix of ones.

Dimensioning I nformation

Matrix dimensions can be obtained in a number of ways.

> A <- matrix(1l:6, nrow = 3, ncol = 2)

> ncol (A)
[1 2

> dim(A)

> matrix(1, nrow = 3, ncol = 3)
[.1] [.2] [.3]

[1,] 1 1 1

[2,] 1 1 1

[3,] 1 1 1

[1] 32

Matrix Arithmetic

The standard arithmetic operations are all defined for
matrices, and take place elementwise.

> A< matrix(1l:6, nrow = 3, ncol = 2)
> B <- matrix(1l:6, nrow = 3, ncol = 2,
+ byrow = TRUE)
>A+B
[.11 [.2]
[1,] 2 6
[2,] 5 9
[3,] 8 12

In particular, notethat A * B isthe elementwise product of A
and B, not the matrix product.

Other Matrix Operations

Thefunctiont computes the transpose of its argument.

> t(A)

(.1 [.2] [.3]
[1,] 1 2 3
[2,] 4 5 6

Matrix multiplication can be performed with the % %binary
operator.

> t(A) %%B

[.1] [.2]
[1,] 22 28
[2,] 49 64

Regression
The general linear model can be written in matrix form as
y=XB+e.
The least-squares estimates of the parameters are given by
p=(x'x)"'Xy
and the residuals by R
E=y—XB.
The estimated dispersion matrix of f5 is
a

”i(

DI = E5 (X)L

Solving Linear Equations

The sol ve function an be used to solve systems of linear
equations. For example the linear system

12\ (x) (1
3 4 x /1)
can be solved asfollows

> A< mtrix(c(l, 3, 2, 4), ncol = 2)
>b < c¢(1, 1)

> solve(A, b)

[1] -1 1

RegressionIn S

The equations for regression analysis can be translated
directly into S statements.

n <- nrow(x)

p <- ncol(x)

betahat <- solve(t(xX) %*% x, t(X) %*% y)
epsilonhat <- y - x %*% betahat
sigmahat2 <- sum(epsilonhat™2) /7 (n - p)
D <- sigmahat2 * solve(t(x) %*% Xx)

VVVVYVYV

Warning: Thisisadirect coding of the mathematical
equations associated with regression analysis. It isnot the
best way of computing the results.

Matrix Inversion

When sol ve is caled with single argument, it computes the
matrix inverse that argument.

> sol ve(A)

(.1 [,2]
[1,] -2.0 1.0
[2,] 1.5 -0.5

You do, however, need to remember that computers only work
to afinite precision and that all computations are subject to
roundoff error.

> A % % sol ve(A)
[.1] [.2]

Matrix Decompositions

There are many S functions which support computations on
matrices. The most useful are:

ei gen eigenvalues and eigenvectors

[1,] 1 1.110223e- 16
[2,] 0 1.000000e+00

svd singular-value decomposition
qr QR decomposition
Subsetting

It is possible to extract submatrices from matrices.

> A <- matrix(1:6, ncol=3)

> A

(.1 [.2] [.3]
[1,] 1 3 5
[2,] 2 4 6
> AL, 2]
[1] 3
> A[1:2,1: 2]

[.11 [.2]
[1,] 1 3

[2,] 2 4

Example: Zeroing A Lower Triangle

rowand col can be used together with logical subscripting to
operate on upper and lower triangles of matrices.

> A< matrix(1:9, ncol =3)
> Alrow(A) > col (A)] <- 0
> A

[,1

[.21 [.3

]]]
1 4 7
0o 5 8
o o0 9

—_———
WN -
—_—

Subsetting Shorthands

An empty subscript field is equivalent to the full range of
possible subscripts. For example:

> A, 2:3]

[,1] [,2]
[1,] 3 5
[2,] 4 6

extracts the second and third columns of A and

> A 2]
[1] 2 4 6

extracts the second row.

Row and Column Labeling

Matrices can be made rather more useful by using row and
column labels.

A <- matrix(1:6, nrow=3)
di manes(A) <-
list(c("sex","drugs","rock&oll"),
c("this", "that"))

+ + VvV V

The primary benefit of 1abeling can be seen when the matrix
is printed.

Subscripting matrices by using logical indices and row or
column labelsis also possible, but tends to be far less
common.

> A

this that
sex 1 4
drugs 2 5
rocké&roll 3 6

Row and Column Indices

Thetwo functionsr owand col umm return matrices
containing the index for each row an column.

> A <- matrix(1:6, ncol=3)

> rowm A)

(.1 [.2] [.3]
[1,] 1 1 1
[2,] 2 2 2
> col (A)

(.1 [.2] [.3]

[1,] 1 2
[2,] 1 2 3

w

Labeling The Labels

In R, but not S, it is possible to “label the labels.”

> A <- matrix(1:6, nrow=3)

> di manes(A) <-

+ Iist(what=c("sex","drugs","rock&oll"),
+ whi ch=c("this", "that"))

>

A
whi ch
what this that
sex 1 4
drugs 2 5
rocké&roll 3 6

Multiway Arrays

Multiway arrays generalise the notion of matrices.

e Arraysare created with the ar r ay function and their
subsetting and labeling methods parallel those of
matrices.

e Theonly major differenceisthat the notion of transpose
must be generalized.

e The function aper mprovides such a generalized
transpose operation.

