
Text Handling In R

Printing

Complete S objects can be displayed by using the print
function.

> print("A Title")
[1] "A Title"
> print(matrix(1:4,nc=2))

[,1] [,2]
[1,] 1 3
[2,] 2 4

Only very basic control of formatting is possible when the
print function is used.

There are other functions which can be used which can be
used when finer control is necessary.

Control Of Printing

Print formating can be controlled by a number of optional
arguments.

digits= controls the number of digits printed to the
right of the decimal point. The default is the
value of the system option digits.

quote= controls whether strings are printed with or
without quotes. Takes the values TRUE or
FALSE. The default value is TRUE.

na.print= the character string used to indicate NA
values. This is printed without quotes.

Examples

Here are some examples of control of the print function.

> print(c("Hello", "there"), quote=FALSE)
[1] Hello there

> print(1/1:5, digits=2)
[1] 1.00 0.50 0.33 0.25 0.20

> print(c(1, NA, Inf), na.print=".")
[1] 1 . Inf

The cat function

cat is a function which can be used to concatenate and then
print character strings passed to it as arguments.

• Objects other than character strings are automatically
converted to character strings by cat.

• By default, the strings being concatenated are separated
by a space character. This can be overridden with the
sep= argument.

• Certain sequences of characters have a special
interpretation (shared with C, C++, Java and other
languages). The sequence \n represents a newline

character, \t represents a tab character, and \\

represents a backslash character.

Examples

Here are some simple uses of cat.

> R2 <- .7863

> cat("aaa", "bbb", "\n")
aaa bbb

> cat("aaa", "bbb", "\n", sep="")
aaabbb

> cat("a","b","c","d","\n",sep=" - ")
a - b - c - d -

> cat("R-squared =", R2, "\n")
R-squared = 0.7863



Vector Arguments to cat

When the arguments to cat are vectors, their elements are
treated as though they were separate arguments.

> letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i"
[10] "j" "k" "l" "m" "n" "o" "p" "q" "r"
[19] "s" "t" "u" "v" "w" "x" "y" "z"

> cat("The alphabet: ",
+ letters,"\n",sep="")
The alphabet: abcdefghijklmnopqrstuvwxyz

Rounding

There are a variety of S functions which help to format
numbers for use with cat.

The function round rounds its argument to a specified
number of decimal digits.

> round(runif(5), 2)
[1] 0.07 0.66 0.36 0.72 0.55

The function signif rounds its argument to a specified
number of significant digits.

> signif(runif(5), 2)
[1] 0.93 1.00 0.56 0.58 0.86

Formatting

The R function formatC provides general formatting of
numeric values as strings. The function is very flexible and
provides better control than format.

formatC has arguments which control whether scientific or
standard formatting is used. It also has control for the number
of digits appearing in results.

> formatC(1/3, format="f", digits=4)
[1] "0.3333"

> formatC(1/3, format="e", digits=4)
[1] "3.3333e-01"

The function provides facilities for printing numbers in
European formats or for printing dollar amounts.

The paste Function

The paste function provides a very flexible way of pasting
strings together. It is very useful when used in conjunction
with cat.

paste obeys the vector recycling rule, which makes it useful
for tasks like creating labels.

> paste("Var", 1:4)
[1] "Var 1" "Var 2" "Var 3" "Var 4"

In addition, paste has sep= and collapse= arguments
which control how strings are glued together and make it
possible to glue all the results into a single string.

> paste("Var", 1:4, sep="-", collapse=":")
[1] "Var-1:Var-2:Var-3:Var-4"

LATEX Tables

The next page shows a very simple S function which can be
used to print tables suitable as input for LATEX. This is really
just a sketch of how a real latex.table function could be
written. Here is how it works.

> x
c d

a 1 3
b 2 4

> latex.table(x)
\begin{tabular}[lrr]
& c & d \\

a & 1 & 3 \\

b & 2 & 4 \\
\end{tabular}



Source Code

> latex.table <-
+ function(x)
+ {
+ rlabs <- dimnames(x)[[1]]
+ clabs <- dimnames(x)[[2]]
+ fmt <- c("l", rep("r", length(clabs)))
+ cat("\\begin{tabular}[", fmt,
+ "]\n", sep="")
+ cat(" ", clabs, sep = " & ")
+ cat(" \\\\\n")
+ for(i in 1:nrow(x)) {
+ cat(rlabs[i], x[i,], sep=" & ")
+ cat(" \\\\\n")
+ }

+ cat("\\end{tabular}\n")
+ }

Generalisations

The latex.table function is very basic and can be
enhanced in a number of ways.

• The function fails if its argument does not have row and
column labels. The function should be changed so that
the labels are optional, or could be specified on the
command line.

• It might be useful to be able to be able to centre or left
justify some columns.

• It might be useful to round or format columns
differently.

Text Processing

There are a number of functions which allow manipulation of
character strings in R.

nchar computes string lengths

substr extracts substrings

substring extracts substrings

strsplit splits strings

tolower converts to lower case

toupper converts to upper case

casefold character case conversion

chartr carries out character conversions

Substring Examples

> substr("abcdef", 2, 4)
[1] "bcd"

> substring("abcdef", 1:6, 1:6)
[1] "a" "b" "c" "d" "e" "f"

> substr(rep("abcdef",4), 1:4, 4:5)
[1] "abcd" "bcde" "cd" "de"

> substr("abcdef", 1:4, 4:5)
[1] "abcd"

> substring("abcdef", 1:4, 4:5)
[1] "abcd" "bcde" "cd" "de"

Substring Replacement

> x <- "123456789"
> substring(x, 2) <- "aaa"
> x
[1] "1aaa56789"

> x <- "123456789"
> substring(x, 2, 3) <- "aaa"
> x
[1] "1aa456789"

Splitting Strings

> strsplit("hello there world", " ")
[[1]]
[1] "hello" "there" "world"

> strsplit("hello there\tworld", " ")
[[1]]
[1] "hello" ""
[3] "there\tworld"

> strsplit("hello there\tworld",
+ "[[:space:]]+")
[[1]]
[1] "hello" "there" "world"

Pattern Matching

The grep function can be used to carry out pattern matching.

> x <- "all the king’s men"
> x <- unlist(strsplit(x, " "))

> x
[1] "all" "the" "king’s" "men"

> grep("e", x)
[1] 2 4

> x[grep("e", x)]
[1] "the" "men"



Pattern Substitution

> x <- "The color of money colors my decision"

> sub("color", "colour", x)
[1] "The colour of money colors my decision"

> gsub("color", "colour", x)
[1] "The colour of money colours my decision"

> x <- "all the king’s men"
> x <- unlist(strsplit(x, " "))
> gsub("(.*)", "\\1=\\1", x)
[1] "all=all" "the=the"
[3] "king’s=king’s" "men=men"


