
Graphics

Graphics

S has extensive graphics facilities. Some examples of
high-level graphics functions are:

• Pie Charts, Bar Charts and Histograms

• Box-and-Whisker Plots

• Scatter plots

• Time Series Plots

• Surface Plots

The quality of the graphs produced by S is often cited as a
major reason for using it in preference to other statistical
software systems.

Low-Level Graphics

The high-level graphics facilities in S are built on a set of
flexible low-level ones. This makes it possible to modify
existing plot types or to implement completely new ones.

The low level facilities include:

• Page Layout

• Setup of Plotting Coordinates

• Drawing Points and Lines

• Drawing Polygons and Rectangles

• Color Management (R rather than S)

Devices and Device Drivers

In S all drawing operations are carried out by a device driver.
This makes it possible to abstract the graphics system away
from the capabilities of particular hardware devices and
provides graphics functionality which works on all devices.

The most common “devices” are:

• The X Window System

• Microsoft Windows (Screen and Metafiles)

• Postscript Printers

For S to create a graph, it musr be told which kind of device
the graph is intended for. This is done by calling a function

which starts a device driver.

Devices and Device Drivers

Under Splus, an on-screen graphics window, use the the
motif() function. Under R, use the X11() function.

Under either system, this is the device driver which is used
automagically if you don’t specify a device driver.

There are many optional arguments to device drivers. Look at
the manual entries to find out what is approriate for each
driver.

Postscript Graphics for LATEX

To use S graphics in LATEX, you will need to produce them
with the postscript device driver.

The typical steps in producing a graph are:

> postscript(file="fig.ps",
+ width=6, height=5,
+ horizontal=FALSE)

graphics commands go here

> dev.off()

You can also adjust the size of font used to annotate the plots
by using an optional \pointsize= argument.

Postscript Graphics and LATEX

Once you have produced a graph in S, you can include it in a
LATEX document as follows.

\usepackage{graphicsx} % in the preamble
\includegraphics{fig.ps} % insert the graph

You can modify the plot by using optional arguments to
includegraphics. For example:

\includegraphics[width=\textwidth]{fig.ps}
\includegraphics[width=0.9\textwidth]{fig.ps}
\includegraphics[width=8cm]{fig.ps}
\includegraphics[width=8cm,angle=45]{fig.ps}

See the graphics bundle documentation for the full details.

Advice on Plot Sizes

In general you should aim to set the size of your graphs to
exactly the size they are to be on the LATEX page and use
\includegraphics without any scaling options. This will
make the font sizes and line thicknesses consistent across all
the graphs in your documents.

An alternative strategy is to create the graphs twice as big as
they need to be and to scale them down by 50% You can scale
the graphs as follows:

\includegraphics[scale=.5]{fig.ps}

If you use this technique, remember to make the fonts twice
as large too.

Producing Graphics Interactively

The typical way of producing a graph using S is to get it right
on the display screen first, and then to run the same
instructions with the postscript driver running.

The easiest way to do this is to type the graphics commands
into a text editor first, and then to copy-and-paste into the S
interpreter. This makes it easy to fix bugs as well.

We will see that XEmacs provides additional support for this
way of working.

XFig Graphics

R (but not Splus) has a device driver for the xfig graphics
editor. The interface to the xfig driver is quite similar to the
postscript one.

> xfig(file="plot.fig",
+ width=6, height=5,
+ horizontal=FALSE)

graphics commands go here

> dev.off()

You can now use xfig to edit the plot and add annotation,
change colors etc.

Basic Graphics

The principal graphics function is plot. The simplest call to
it has the form:

> plot(x, y)

This produces a scatterplot with points at the coordinates
passed as arguments. Extra control is possible through
additional optional arguments. The call

> plot(x, y, xlim=xlims, ylim=ylims)

Changes the limits on the graph to those specified in the xlim
and ylim arguments.

Example

Here is how a very simple scatterplot of some random
numbers can be produced.

> x <- rnorm(100)
> y <- 1 + x/2 + rnorm(100)
> plot(x, y)

(This is a plot showing a sample from a bivariate normal
distribution with correlated variables.)

−2 −1 0 1 2

−
1

0
1

2
3

x

y

Annotation

Axis labelling and an overall title can be added with
additional arguments to the plot call.

> plot(x, y, main="Main Title",
+ xlab="X Label",
+ ylab="Y Label")

Alternatively, you can use blank row and column labels in the
call to plot and use the title function to add them later.

> plot(x, y, xlab="", ylab="")
> title(main="Main Title", xlab="X Label",
+ ylab="Y Label")

−2 −1 0 1 2

−
1

0
1

2
3

Main Title

X Label

Y
 L

ab
el

Plot Type

The type= argument to the plot function sets the plot type.
Some possibilities are:

"n" nothing
"p" points
"l" connected lines
"h" high density “needles”
"s" & "S" step functions

0 20 40 60 80 100

−
2

−
1

0
1

2

type="l"

0 20 40 60 80 100

−
2

−
1

0
1

2

type="h"

0 20 40 60 80 100

−
2

−
1

0
1

2

type="s"

Adding to Plots

Once a plot has been created (with plot), you can add
additional elements to it with a variety of functions.

points add additional points
lines add connected line segments
segments add disconnected line segments
arrows add arrows
abline add a line in slope/intercept form
polygon add polygons
symbols add symbols to a plot

Example

A typical example of a simple plot with added elements is a
scatter plot with added regression lines (linear or smooth).

> plot(x, y)
> abline(lm(y˜x))
> lines(lowess(x, y), lty=2)
> title("Linear Regression and Lowess")

Here, the call to abline adds the least-squares regression line
to the plot. The lines call adds a lowess smooth to the plot.

The additional argument lty=2 ensures that the second line is
drawn with a different line texture.

−2 −1 0 1 2

−
1

0
1

2
3

x

y

Linear Regression and Lowess

Control of Plotting Symbols and Color

• The arguments pch= and col= can be used to control
the choice of symbol and colors for points plotted in
graphs.

• In both Splus and R small integer values will produce
different symbols and colors for the points plotted in a
graph.

• Splus ignores all but the first values in the arguments,
but R allows vectors of symbols and colors to be used.

> plot(x, y, pch=5, col=4)

−2 −1 0 1 2

−
1

0
1

2
3

x

y

l l l

R Plotting Symbols

0 5 10 15 20 25

Control of Line Texture and Color

• The arguments lty= and col= can be used to control
the choice of symbol and colors for lines plotted in
graphs.

• In both Splus and R small integer values will produce
different textures and colors for the lines plotted in a
graph.

• Again, Splus ignores all but the first values in the
arguments, but R allows vectors of linetypes and colors
(where this makes sense).

> plot(1:100, y, type="l", lty=3, col=2)

0 20 40 60 80 100

−
1

0
1

2
3

1:100

y

Color Control In R

R has a rather more sophisticated color model than S. For
campatility with S, colors can be specified by small integer
values, but they can also be specified by name, or by
specifying the amount of Red, Green and Blue which are
mixed to produce the color.

Some valid color specifications in R are:

col=2 this is Red
col="purple" this Purple
col="#FFFF00" this is Yellow
col=rgb(1,0,1) this is Magenta
col=hsv(1/12,1,1) this is Orange(ish)

Better ways of specifying color are a current research topic.

Line Texture Control In R

• In R, the linetype values are as follows: 0=blank,
1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=longdash,
6=twodash.

• As well as specifying line textures by index, they can
also be specified by name – one of the strings "blank",
"solid", "dashed", "dotted", "dotdash",
"longdash" and "twodash").

• Note that in S, linetypes are device dependent.

Direct Line Texture Control

• The texture can also be specified in terms of dash
length. For example, the texture "3212" represents
“on” for 3 points, “off” for 2 points, “on” for 1 point
and “off” for 2.

• “Points” are a typesetting measure — there are 72
points to the inch.

• The texture string can be up to 8 characters long, each
character being one of the hexadecimal digits 1,. . . ,F.

Line Width Control

• The widths of lines drawn by R and S can be controled
with a parameter called lwd.

• This parameter tends not to be used much, but it can
provide some very useful effects.

> y <- rnorm(50)
> plot(y, type="l", lwd=4)
> lines(y, lwd=2, col="yellow")

0 10 20 30 40 50

−
2

−
1

0
1

Index

y

