
Basic Use of S

The Recycling Rule

• Operations are carried out on vectors according to an
element recycling rule.

• Under this rule, when vectors of different lengths are
combined in an arithmetic operation,

− The shorter vector is first enlarged to match the
length of the longer vector by recycling its
elements.

− The vectors are then combined element by element.

Example

Consider adding the vectors 1:3 and 1:6.





1
2
3



+

















1
2
3
4
5
6

















recycle
−→

















1
2
3
1
2
3

















+

















1
2
3
4
5
6

















add
−→

















2
4
6
5
7
9

















This is how the result appears when computed with S.

> 1:3 + 1:6
[1] 2 4 6 5 7 9

Summary Operations on Vectors

The following functions return single-value numerical
summaries for the values in a vector or collection of vectors.

sum(x) the sum of the elements of x
prod(x) the product of the elements of x
min(x) the minimum of the elements of x
max(x) the maximum of the elements of x

The range function computes a two value summary.

> range(1:10)
[1] 1 10

Examples

The prod function can be used to compute factorials. For
example 10!.

> prod(1:10)
[1] 3628800

Beware that very large factorials can’t be represented with
finite precision arithmetic (200! is too large).

> prod(1:200)
[1] Inf

The following computation shows how to compute binomial
coefficients.

> prod(1:10) / prod(1:3, 1:7)
[1] 120

Cumulative Summaries

In addition to the simple summary functions above, there are
also cumulative versions called cumsum, cumprod, cummax,
and cummin, which produce a vector which consists of the
summary computed for; the first element, first two elements,
the first three elements and so on.

> cumsum(1:10)
[1] 1 3 6 10 15 21 28 36 45 55

> cumprod(1:10)
[1] 1 2 6 24
[5] 120 720 5040 40320
[9] 362880 3628800

Statistical Summaries

There are a number of summaries which compute quantities
of statistical interest. The most important of these are:

mean(x) the mean of the elements of x,
median(x) the median of the elements of x,
var(x) the variance of the elements of x.

In addition to these, R also has

sd(x) the s.d. of the elements of x.



Sample Quantiles

The quantile function computes summaries based on the
percentiles of the values in its argument. The simplest use of
quantile computes the median, upper and lower quartiles,
and extremes.

> quantile(1:10)
0% 25% 50% 75% 100%

1.00 3.25 5.50 7.75 10.00

An optional second argument to quantile can be used to
specify a different set of quantiles.

> quantile(1:10, 0:10/10)
0% 10% 20% 30% 40% 50% 60% 70%

1.0 1.9 2.8 3.7 4.6 5.5 6.4 7.3
80% 90% 100%
8.2 9.1 10.0

Character Strings

Any value in quotes is regarded by R as being a character
string.

> greeting <- "hello, world"
> greeting
[1] "hello, world"

This is true, even when the value appears to be numeric.

> number <- "21"
> number
[1] "21"

Character strings can be combined to form vectors.

> c(greeting, number)
[1] "hello, world" "21"

Type Coercion

It is possible to combine numbers and character strings into a
single vector using “c”. In this case, the numbers are first
converted to strings.

> c(greeting, 100)
[1] "hello, world" "100"

This an example of automatic type coercion.

Arithmetic on a mixture of strings and numbers does not
work, however.

> "100" + 10
Error in "100" + 10 : non-numeric argument

to binary operator

Naming Vector Elements

Character strings can be used to name the individual elements
of a vector.

> x <- 1:5
> x
[1] 1 2 3 4 5
> l <- c("a","b","c","d","e")
> l
[1] "a" "b" "c" "d" "e"
> names(x) <- l
> x
a b c d e
1 2 3 4 5

When a named vector prints, the names of the elements are
printed above the elements and the indexing information at
the start of a line is dropped.

Names and Subsetting

Names are preserved during subsetting,

> x[4:5]
d e
4 5

and it is possible to extract subsets by using the names as
subscripts.

> x[c("a","d")]
a d
1 4



Matrices

In addition to vectors, S has a wide range of data structures.

> A <- matrix(1:6, nrow = 3, ncol = 2)

creates a 3×2 matrix. The value can be viewed as follows.

> A
[,1] [,2]

[1,] 1 4
[2,] 2 5
[3,] 3 6

Notice that the elements are inserted into the matrix in column
major order.

Row-Major Order

By default, values are inserted into matrices in column major
order. It is also possible to specify that the matrix be filled in
row major order.

> B <- matrix(1:6, nrow = 3, ncol = 2,
+ byrow = TRUE)

> B
[,1] [,2]

[1,] 1 2
[2,] 3 4
[3,] 5 6

Dimensioning Information

Matrix dimensions can be obtained in a number of ways.

> A <- matrix(1:6, nrow = 3, ncol = 2)

> row(A)
[,1] [,2]

[1,] 1 1
[2,] 2 2
[3,] 3 3

> ncol(A)
[1] 2

> dim(A)

[1] 3 2

Diagonal Matrices

The function diag can be used to create diagonal matrices
and to extract the diagonals from matrices.

> A <- diag(1:3)
> A

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3

> diag(A)
[1] 1 2 3

Special Matrix Forms

There is a special form of call to diag which can be used to
create identity matrices.

> diag(3)
[,1] [,2] [,3]

[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

It is also easy to construct a block matrix of ones.

> matrix(1, nrow = 3, ncol = 3)
[,1] [,2] [,3]

[1,] 1 1 1

[2,] 1 1 1
[3,] 1 1 1

Matrix Arithmetic

The standard arithmetic operations are all defined for
matrices, and take place elementwise.

> A <- matrix(1:6, nrow = 3, ncol = 2)
> B <- matrix(1:6, nrow = 3, ncol = 2,
+ byrow = TRUE)
> A + B

[,1] [,2]
[1,] 2 6
[2,] 5 9
[3,] 8 12

In particular, note that A * B is the elementwise product of A
and B, not the matrix product.



Other Matrix Operations

The function t computes the transpose of its argument.

> t(A)
[,1] [,2] [,3]

[1,] 1 2 3
[2,] 4 5 6

Matrix multiplication can be performed with the %*% binary
operator.

> t(A) %*% B
[,1] [,2]

[1,] 22 28
[2,] 49 64

Solving Linear Equations

The solve function an be used to solve systems of linear
equations. For example the linear system

(

1 2
3 4

)(

x1

x2

)

=

(

1
1

)

,

can be solved as follows

> A <- matrix(c(1, 3, 2, 4), ncol = 2)
> b <- c(1, 1)
> solve(A, b)
[1] -1 1

Matrix Inversion

When solve is called with single argument, it computes the
matrix inverse that argument.

> solve(A)
[,1] [,2]

[1,] -2.0 1.0
[2,] 1.5 -0.5

You do, however, need to remember that computers only work
to a finite precision and that all computations are subject to
roundoff error.

> A %*% solve(A)
[,1] [,2]

[1,] 1 1.110223e-16
[2,] 0 1.000000e+00

Regression

The general linear model can be written in matrix form as

y = Xβ+ ε.

The least-squares estimates of the parameters are given by

β̂ = (X′X)−1X′y

and the residuals by
ε̂ = y−Xβ̂.

The estimated dispersion matrix of β̂ is

D[β̂] =
ε̂′ε̂

n− p
(X′X)−1

.

Regression In S

The equations for regression analysis can be translated
directly into S statements.

> n <- nrow(x)
> p <- ncol(x)
> betahat <- solve(t(x) %*% x, t(x) %*% y)
> epsilonhat <- y - x %*% betahat
> sigmahat2 <- sum(epsilonhatˆ2) / (n - p)
> D <- sigmahat2 * solve(t(x) %*% x)

Warning: This is a direct coding of the mathematical
equations associated with regression analysis. It is not the
best way of computing the results.

Matrix Decompositions

There are many S functions which support computations on
matrices. The most useful are:

eigen eigenvalues and eigenvectors
svd singular-value decomposition
qr QR decomposition

Subsetting

It is possible to extract submatrices from matrices.

> A <- matrix(1:6, ncol=3)
> A

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

> A[1,2]
[1] 3

> A[1:2,1:2]
[,1] [,2]

[1,] 1 3



[2,] 2 4

Subsetting Shorthands

An empty subscript field is equivalent to the full range of
possible subscripts. For example:

> A[,2:3]
[,1] [,2]

[1,] 3 5
[2,] 4 6

extracts the second and third columns of A and

> A[2,]
[1] 2 4 6

extracts the second row.

Subscripting matrices by using logical indices and row or
column labels is also possible, but tends to be far less
common.

Row and Column Indices

The two functions row and column return matrices
containing the index for each row an column.

> A <- matrix(1:6, ncol=3)

> row(A)
[,1] [,2] [,3]

[1,] 1 1 1
[2,] 2 2 2

> col(A)
[,1] [,2] [,3]

[1,] 1 2 3
[2,] 1 2 3

Example: Zeroing A Lower Triangle

row and col can be used together with logical subscripting to
operate on upper and lower triangles of matrices.

> A <- matrix(1:9, ncol=3)
> A[row(A) > col(A)] <- 0
> A

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 0 5 8
[3,] 0 0 9

Row and Column Labeling

Matrices can be made rather more useful by using row and
column labels.

> A <- matrix(1:6, nrow=3)
> dimnames(A) <-
+ list(c("sex","drugs","rock&roll"),
+ c("this", "that"))

The primary benefit of labeling can be seen when the matrix
is printed.

> A
this that

sex 1 4

drugs 2 5
rock&roll 3 6

Labeling The Labels

In R, but not S, it is possible to “label the labels.”

> A <- matrix(1:6, nrow=3)
> dimnames(A) <-
+ list(what=c("sex","drugs","rock&roll"),
+ which=c("this", "that"))
> A

which
what this that
sex 1 4
drugs 2 5
rock&roll 3 6



Multiway Arrays

Multiway arrays generalise the notion of matrices.

• Arrays are created with the array function and their
subsetting and labeling methods parallel those of
matrices.

• The only major difference is that the notion of transpose
must be generalized.

• The function aperm provides such a generalized
transpose operation.


