
DESIGNING POSITIVE FIRST EXPERIENCES WITH CODING FOR INTRODUCTORY-

LEVEL DATA SCIENCE STUDENTS

Anna Fergusson

University of Auckland

New Zealand

a.fergusson@auckland.ac.nz

There is a need to explicate the design of learning tasks that introduce coding to introductory-level data

science students. Computational lab components of an introductory statistics and data science course

at the University of Auckland were written so students could complete them online. The R package

learnr was used to create interactive lab tasks that featured videos, code exercises, progressive

revealing of task components and quiz questions. This paper provides teachers with practical guidance

on how to design and implement "first experience" tasks with coding using learnr. Consideration is

given to balancing the learning of new statistical, computational, data-related, and tool-related

knowledge.

INTRODUCTION

Data science students need learning experiences that support their development of integrating

both statistical and computational thinking to learn from data. Developing at least some coding skills

will support students to access and manipulate a wide variety of digital data sources (e.g., Gould, 2010)

using automated and reproducible approaches. A teaching challenge is how to introduce coding within

an introductory-level data science course, so that the learning of new statistical, computational, data-

related, and tool-related knowledge is not overwhelming for students. Additionally, students’ first

experiences with coding should be positive and support future engagement with learning data science,

and the tasks used will influence the nature of the learning that takes place (e.g., Doerr & Pratt, 2008).

Data science educators have been advised to look to the computer science education community to

inform their teaching of coding (McNamara, 2015). Pedagogical approaches recommended by computer

science educators are to scaffold and structure programming tasks (e.g., Lee et al., 2011), and to align

the task to a clear purpose for learning from data (e.g., Cunningham, 2021). Although statistics education

task design research has not specifically explored coding as the main computational tool, researchers

have attempted to define the complex relationship between software features, task design and learners’

statistical conceptions (e.g., Ben-Zvi, 2000).

When designing tasks that introduce data science students to coding, further consideration is

needed about how both the tool and task support learners to access statistical concepts graphically (e.g.,

Ben-Zvi, 2000), as for novices the mental models needed to produce graphics using code-driven tools

are different from those used for generating data from models. Learners may require less computational

transparency (Fergusson & Pfannkuch, 2022) and greater scaffolding and support when initially using

code-driven approaches to produce graphics. The task designer needs to make several decisions, for

example: which computer programming language to use; the environment within which to read, write

and execute code; the syntax and layout of the code used, including what packages to use; and how

much of the code to reveal or how much to “hide” within functions. These design decisions clearly link

to pedagogical goals. Interactive documents such as RMarkdown (Allaire et al., 2018) can be used as

“computational templates” (Wickham, 2018) to assist learners to engage with the computer

programming language R (R Core Team, 2020), while simultaneously providing structure and support

for new computational ideas. Alternatively, the R package learnr (Schloerke et al., 2018), provides a

way to produce an interactive web-based task where students can execute small “chunks” of R code

within a web browser. For learners new to computer programming, two advantages of using the

interactive web-based environment provided by learnr are: (1) the user interface is simple and so

potentially less overwhelming, and, (2) the desired interactions between the tool and the learner’s

statistical and computational thinking can be embedded within both the tool and task design.

In general, it is difficult to find substantial literature that explicitly communicates specific

pedagogical strategies for designing tasks that introduce coding to data science students. In this paper,

I focus on the design of the lab tasks used in an introductory statistics and data science course at the

University of Auckland.

TEACHING CONTEXT

The teaching context for this paper is STATS 100 (Concepts in Statistics), an introductory

statistics and data science course offered at the University of Auckland. STATS 100 serves as both a

foundation course for more advanced introductory level courses in Statistics or Data Science, as well as

a service course for several client departments including Business and Psychology. The course is

designed to support students who have limited experience or confidence with Grade 12 Mathematics

and/or Statistics, and students are not assumed to have any prior experience with coding. Typically, the

course has around 200 students enrolled per semester. STATS 100 is structured as 12 different week-

long topics which are arranged within four modules: (1) making predictions, (2) conducting tests, (3)

building models, and (4) informing decisions. Students have access to an online coursebook that

provides notes, examples, and interactive “self-marking” exercises. Each week, students attend three

activity-based lectures, complete an online lab task, and submit a weekly assignment. The weekly

assignment involves a mini data investigation that combines use of GUI-driven tools (tools where

computational actions are initiated by pointing, clicking, or gesturing within visual environments) and

code-driven tools (tools where computational actions are initiated using text commands).

The computer programming language used is R. The goal of STATS 100 is not to provide a

comprehensive introduction to computer programming with R but instead to build greater awareness of

the ways code can be used to learn from and create with data. When the course was introduced in 2018,

the labs were completed in person and involved the students working through RMarkdown documents

deployed using RStudio Cloud (now Posit Cloud). A Google form was used to provide structure to the

task and to record students answers to questions throughout the task. During 2019 to 2020, the lab tasks

were created using the R package learnr and deployed using university-hosted Docker containers. In

2019, the students worked through the lab tasks in pairs within timetabled lab sessions. In 2020, students

worked through the lab tasks independently online.

RESEARCH CONTEXT

At the same time as developing and teaching STATS 100, I undertook research for a PhD in

statistics and data science education. The purpose of my PhD research was to explicate design principles

for the construction of statistical modelling tasks that introduce code-driven tools (Fergusson, 2023).

My research involved designing and implementing tasks with high school statistics teachers and several

of these research tasks were derived from tasks I had developed for STATS 100. Accordingly, most of

the code-driven aspects of the tasks used for my research were created using the R package learnr. My

research led to a new task design framework for introducing code-driven tools through statistical

modelling. In Fergusson and Pfannkuch (2022), I present the key components of the task design

framework and describe how the design of a learnr task for introducing APIs (Application Programming

Interfaces) and predictive modelling can be explicated by this framework. The task design framework

has six design principles which are intended to inform decisions about the learning task in terms of

specific actions or experiences for learners and the chronological order of these actions or experiences.

These six design principles are: immerse, familiarise, describe, match, adapt and explore.

The six design principles provide guidance as to how to structure the task. At the beginning of

the task, students should be immersed in the data context and then familiarised with key statistical

modelling ideas and actions. The activities used should encourage students to engage with the data

context and should not involve code-driven tools. The task should then focus on describing key

computational steps in the statistical modelling process using words, matching these modelling steps

with specific lines or chunks of code, and adapting code to complete a specific modelling action. The

activities used should support students to build some awareness of code syntax and structure. The task

should end by asking students to modify code that has been provided in order to explore a “what if?”

scenario or new problem related to the data context. In my research with teachers (Fergusson &

Pfannkuch, 2022), I found that carefully ordering the introduction of new statistical and computational

ideas and progressively revealing each step of the task visually appeared to minimise cognitive load (cf.

Wouters et al., 2008). It also appeared that using tinker questions within the task supported the

introduction of new computational ideas. A tinker question presents a set of related TRUE/FALSE

statements that are deliberately written to require action by the learners within a computational learning

environment to evaluate each statement. The findings from my research align with my experiences of

designing and implementing similar tasks to introduce coding to STATS 100 students.

DESIGNING FIRST EXPERIENCES WITH CODING

In this section, I provide a narrative of the decisions made when designing the first experiences

with coding for students in STATS 100. As this first experience is the lab task that students complete in

the first topic/week of the course, I focus primarily on the design of the first lab tasks used in 2019 and

2020. I begin by describing key design decisions made when structuring the 2020 task, before

identifying examples of how specific learning interactions can be embedded using both tasks. The first

topic of the course is called Exploring time series data. This topic is taught first as it provides a range

of accessible opportunities for introducing and integrating statistical and computational approaches for

learning from data, such as:

• collecting data through sensors (e.g., Apple health steps)

• accessing large open data sets (e.g., time series data from StatsNZ)

• restructuring data by different time periods (e.g., turning daily data into weekly data),

• describing key features of data (e.g., trends, seasonality)

• developing informal prediction models (e.g., sketching forecasts by hand)

• creating informative visualisations (e.g., use of titles, labels, colours, and other graphical

techniques)

In the lecture-based activities for this topic, food price data from StatsNZ and Google search

interest data for different food items had been explored using GUI-driven tools. Activities included:

sketching by hand trends for food prices, describing key features of food price data such as seasonality,

exploring how search interest for coffee changes by the day and hour using Google trends, and critiquing

examples of time series visualisations. Hence, before completing the lab task, students were fully

immersed and familiarised with the food prices and Google trends data contexts and key statistical

modelling ideas related to time series data.

The lab task begins by asking students to watch a short video about how they can use Google

to find recipes for different foods (see https://youtu.be/IsUN1dUbbM8). The intent of this video is to

encourage students to think about reasons why people might search for food items using Google. After

clicking the “Next” button that is a feature of the progressive reveal setting used for the learnr task,

students are presented with a familiar representation, a simple line graph of search interest for tomatoes

in New Zealand over the last five years (Figure 1).

Figure 1: Embedded Google trends plot of search interest for tomatoes within New Zealand

over last five years.

The plot is embedded from Google Trends and is interactive, so students can move their

mouse/cursor over the graph and read information about each data point. The start of the lab task is

designed to link back to lectures and again immerse and familiarise students with data and statistical

knowledge, before introducing new computational knowledge. In the next step of the lab task, students

are briefly introduced to the R package gtrendsR, before being asked simply to run the code to recreate

the plot shown in Figure 1. Figure 2 provides a screenshot of this task step.

https://youtu.be/IsUN1dUbbM8

Figure 2: Screenshot of first step in lab task where students first see R code.

Note that students are asked to run the code first, and then change “NZ” to “US” before running

the code again. The decision here is purposeful, so that the first time running the code is successful, and

the second time is likely to be successful due to only a small change being asked for. Furthermore, the

changes support a statistical modelling focus, in that they allow the students to compare search interest

between NZ and the US. Additionally, students are not asked to read all the code, just the part that needs

changing. Instead, they interact with code like how they would interact with a GUI-driven tool – by

simply clicking a button. In the second step, the statistical modelling goal of being able to compare the

search interest of tomatoes between NZ and the US provides a reason to describe and match key features

of the code (Figure 3).

Figure 3: An example of the task describing and matching code.

Rather than introduce vectors (colloquially referred to as lists on purpose) in abstract terms,

new computational knowledge is introduced more contextually and naturally. After being introduced to

the ISO codes for all countries, students are then asked to adapt the code to compare search interest for

tomatoes between NZ and another country that is not the US. Students are then given a mini challenge,

where they are asked to adapt the code so they can compare the search interest for avocado between

Mexico, Japan and Spain. Increasing the number of countries compared also supports the introduction

of “subsetting” or “facetting" to create visualisations, and the required code needed to accomplish this.

In a similar approach, the lab task then continues to use familiar statistical modelling actions or

goals to demonstrate how small changes to the code result in changes to the visualisation produced. For

instance, in lectures students have seen how the labelling of the time periods on the x-axis can influence

how the plot is interpreted, and so learn how they can “tweak” the code to change the date breaks and

labels. Students also explore how to change the labels of a plot so that there is a clear title, subtitle, and

caption, and how to change the background colour of their plot based on a hex code (e.g., #d3d3d3).

The lab task ends by asking students to create their own informative time series plot that uses a keyword

(search term) that is different from any of the examples used in the lab and compares search interest for

two or more countries different from the examples used in the lab (i.e., not NZ or US). The code supplied

for the “lab challenge” does not have informative labels, uses unhelpful breaks for the dates, and uses

white as the background colour, so there are quite a few changes each students needs to explore.

Importantly, the challenge encourages students to be creative, by allowing them to make their own

selections for keywords, countries, and background colour, which I believe is an important priority for

their first experience with coding.

One of the many affordances of creating a web-based lab task using the R package learnr is that

the desired interactions between the tool and the learner’s statistical and computational thinking can be

embedded within both the tool and task design. Interactions can involve more than executing small

chunks of code in the browser. In addition to embedding videos and interactive plots in the task,

animated GIFs can also be used to demonstrate actions and highlight visually where to look on the

screen. When introducing ISO codes for different countries in the lab task, an animated GIF shows

students how the URL for a Google trends search result changes when the student changes the country,

for example from trends.google.com/trends/?geo=US to trends.google.com/trends/?geo=AL.

Underlying principles for the design of the lab tasks for STATS 100 are that students will learn

by “changing stuff and seeing what happens” and that the risks for students to encounter issues with

running code are minimised. One way that students can be encouraged to try out the “mini challenges”

embedded with the task is to use tabbed content. The main tab is labelled “Try it out!” and provides

initial code with a “challenge” for changing the code to produce a different output. The other tab is

labelled “See an answer” and provides students who need some initial help a nonjudgmental way to

view examples of code approaches. The use of tinker questions is a crucial part of the task design. For

example, when students first learn how to read data from a Google sheet published as a CSV into R, the

tinker question encourages students to inspect the data they have imported, as well as familiarising

students with the interactive data frame produced within the web task (Figure 4). Later in the task, tinker

questions are used to focus students’ attention on identifying and describing key features of the time

series data and how these features change when different food items or countries are used. In this way,

the tinker questions both provoke students to make changes to code but also promote linking

computational actions to statistical modelling actions.

Figure 4: An example of a tinker question

SUMMARY

The first experiences introductory-level data science students have with coding should be

situated within modern data contexts and purposeful statistical modelling tasks. Initial learning goals

should be building a greater awareness about how code can be used to learn from data and empowering

students to create with data and code. To support positive learning experiences, lab tasks should be

designed as part of a larger teaching sequence, so that students can make connections to familiar data

contexts and statistical modelling actions when encountering new computational ideas and approaches.

Web-based tasks created using R packages such as learnr should be carefully structured and utilise

features such as progressive reveal and tinker questions to support development of the learner’s

statistical and computational thinking. More task design research is needed to support educators to make

effective decisions when creating tasks that introduce coding to introductory-level data science students.

REFERENCES

Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang,

W., & Iannone, R. (2021). rmarkdown: Dynamic documents for R. RStudio.

https://rmarkdown.rstudio.com

Ben-Zvi, D. (2000). Toward understanding the role of technological tools in statistical learning.

Mathematical Thinking and Learning, 2(1-2), 127–155. https://doi.org/10.1207/S15327833MTL

0202_6

Cunningham, K. I. (2021). Purpose-first programming: A programming learning approach for learners

who care most about what code achieves (PhD dissertation). University of Michigan.

Doerr, H. M., & Pratt, D. (2008). The learning of mathematics and mathematical modeling. In M. K.

Heid & G. W. Blume (Eds.), Research on technology and the teaching and learning of mathematics:

Volume 1 Research syntheses (pp. 259–285). Information Age Publishing.

Fergusson, A. (2023). Towards an integration of statistical and computational thinking: Development

of a task design framework for introducing code-driven tools through statistical modelling (PhD

thesis). University of Auckland.

Fergusson, A., & Pfannkuch, M. (2022). Introducing high school statistics teachers to predictive

modelling and APIs using code-driven tools. Statistics Education Research Journal, 21(2), Article

8. https://doi.org/10.52041/serj.v21i2.49

Gould, R. (2010). Statistics and the modern student. International Statistical Review, 78(2), 297–315.

https://doi.org/10.1111/j.1751-5823.2010.00117.x

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smtih, J., & Werner, L.

(2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37.

https://doi.org/10.1145/1929887.1929902

McNamara, A. A. (2015). Bridging the gap between tools for learning and for doing statistics (PhD

dissertation). University of California, Los Angeles.

R Core Team. (2020). R: A language and environment for statistical computing.

https://www.Rproject.org

RStudio Team. (2018). RStudio: Integrated development environment for R. http://www.rstudio.com/

Schloerke, B., Allaire, J., & Borges, B. (2018). Learnr: Interactive tutorials for R. CRAN.

https://CRAN.R-project.org/package=learnr

Wickham, H. (2018). Should all statistics students be programmers? Paper presented at the Tenth

International Conference on Teaching Statistics (ICOTS10, July 2018), Kyoto, Japan. Speaker

Deck: https://speakerdeck.com/hadley/should-all-statistics-students-be-programmers

Wouters, P., Paas, F., & van Merriënboer, J. J. (2008). How to optimize learning from animated models:

A review of guidelines based on cognitive load. Review of Educational Research, 78(3), 645–675.

https://doi.org/10.3102/0034654308320320

https://rmarkdown.rstudio.com/
https://doi.org/10.1207/S15327833MTL
https://doi.org/10.52041/serj.v21i2.49
https://doi.org/10.1111/j.1751-5823.2010.00117.x
https://doi.org/10.1145/1929887.1929902
https://www.rproject.org/
http://www.rstudio.com/
https://cran.r-project.org/package=learnr
https://speakerdeck.com/hadley/should-all-statistics-students-be-programmers
https://doi.org/10.3102/0034654308320320

