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Chapter 1: Probability Essentials
P(2)- P (A3

In this chapter wé review the essential concepts of probability that will be
needed as building blocks for the rest of the course.

1.1 Sample Space, Events, Probabilities, and Random Variables

First of all, everything about probability starts with a sample space.
Probabilities have no meaning without reference to a sample space, and the
values of probabilities change according to which sample space they relate to.
Understanding the role and importance of the sample space is one of the most
important steps in mastering probability and statistical theory.

Definition: A random experiment is an experiment whose outcome is not known
until it is observed.

e A random experiment describes a situation with an unpredictable, or random,
outcome.

Definition: A sample space, (2, is a set of outcomes of a random experiment.
Every possible outcome is included in one, and only one, element of €.

e () is a collection of all the things that could happen.

e () is a set. This means we can use the language of set theory, e.g. N and U.

Definition: An event, A, is also a collection of outcomes. It is a subset of ().
e Anevent A is SOMQH,;.& Hod could L\aﬂou,
e An event A is a set of specific outcomes we are interested in.

e The formal definition of an event A is a subset of the sample space: A C ().

e Just like (), A is also a set. This means we can use the language of set theory,
e.g. for two events A and B we talk about AN B, AU B, A, and so on.

e It makes no sense to talk about events unless we have first defined the random
experiment and the sample space. This is not always as easy as it sounds!
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It is helpful to conceptualise sample spaces and events in pictures.

() is a bag of items

Q) is a region

Event A is a subregion
Event A is a smaller bag of items &

Probability

The idea of probability is to attach a number to every item or event in §2 that

reflects |, o0 L; [U,lj He 2vely 's to occur.

() is a bag of items Q is a region

A

P(A)=0.75

\(

Probability is represented by AREA
P(A)=4/11 if all items

are equally likely

P(A)=0.5 even though bag A
contains only 2 out of 6 items

Question: What random experiments are we implicitly assuming here?

e () as a bag of items? P",clf\ O H—w a\)( fmdLoM ff«om He Lotj\.
o O as aregion? Cplock o f)g;q‘{’ ot fandom afm/m Hee rgj}m.
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Formal probability definition: the three axioms

As the pictures imply, the idea of probability is to allocate a number to every
subset of ) that reflects how likely we are to obtain an outcome in this subset.
Imagine that all of €2 is given a cake: the idea of probability is to distribute
a piece of cake to each item in 2. Some items might get more cake than
others, reflecting that the corresponding events are more likely to occur. This
is why we talk about probability distributions: & ero Lab, M—j AistAL whon

AescriLes L\gw Mndn “ealee T j‘,-‘/(/\ to £ad, _S‘hL;Sd’ OCFJ),

Definition: A probability distribution allocates an amount of probability to
every possible subset of €).

This idea is formalized in the following three Axioms, which constitute the
definition of a probability distribution. A rule for allocating probability to
subsets of () is a valid probability distribution if and only if it satisfies the
following three axioms or conditions.

Axiom 1:
e This means that the total amount of ‘cake’ available is 1.
e It also makes it clear that proLaL{l' yhfowl_c on fle Samp [ Ifoaa
ML, ard Lias no M.M/\\j mless S s Ae{anu{ ?}f’S}-
Axiom 2: 0 <P(A) <1 for all events A.
e This says that probability is always a number between 0 and 1.
)@ Axiom 3: If Ay, Ay, ..., A, are mutually exclusive events, (no overlap), then

Ay on A, ot.-—0R AL
P(AiUAU...UA,) =P(A;) +P(4) + ... + P(4,).

e This says that if you have non-overlapping sets,
the amount of cake they have in total is the sum
of their individual amounts.

e This axiom is the reason why we can say that
P(A) = 0.3 + 0.2 = 0.5 in the bag diagram.

e In the region diagram, P(AU B) = (0-2§ @
fc)ﬁ_.cmu, A Nk = sb

—

= 4 i omphy ook A, B we Mu{*m\tj

P(B)=0.5

L)(C[l/\( ‘l'\/e i

—

\?(@
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Examples of probability distributions

Suppose we are interested in the composition of a two-child family in terms of
number of girls and boys. Assuming each child is equally likely to be a boy or

a girl, there are 4 Qél/kﬂu\j..,[}‘(.t\lj ounkcomesS:

So if we pick a two-child family at randm, we have probability 1/4 = 0.25 of
getting each of the outcomes BB, BG, GB, and GG.

Now suppose we don’t care what order the children are in: we only care how
many of each ser are in the family. We could choose to represent this by a
second sample space, 21, in which the outcomes are no longer equally likely:

This is cumbersome to write down — especially if we consider listing the options
for families of more than two children. Instead, we can be more efficient if we

describe the outcomes by Cou\/\){\i\j Ho numbo 0& laodi , 0, 1,2
Q, f);";ij JLZ:EOJIJZ}

Now think of a different way of picturing 25 that is easier to extend:
Th1§ rep.resentatlon is more like .the Probability

‘region’ image of {2 we used earlier, A

where probabilities are represented 0-507

by oreas.
It also has the huge advantage of being 025 ""]

a flexible, graphical display. »
Question: where would you draw (257 ﬁO

Sy

0 1 3 » Number of boys
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If we move to three-child families, we quickly see the advantage of our graphical

depiction of €2:
P ili
robakl ity J/ J,
3/8 1

2/8

1/8

0 » Number of boys
0 1 2 3
(a) Representation of the probability (b) Representation of the probability distribution if we
distribution if child-order is of interest. count the number of boys.

We can see that the numerical expression of outcomes (0, 1, 2, or 3 boys) is much
more succinct than describing all combinations, BBB, BBG, BGB, ..., GGG,
as long as we do not care about the order that children occur in the family.

However, we lave 1o talee account of m[[ He ﬁfiﬁ'ubd’ OW(U'}/‘JJ
whaen We C.&Ll(mlhl’e Pfo LM_L',HL_QJ

P(2boge) = P(BRGY + P(a68) + P(580)

f

- ¥ —gL
Random variables - 3
g

The idea above of converting an outcome described in words (e.g. BBG) into a
numeric summary of the outcome (e.g. 2 boys) is the definition of a random
variable. Instead of writing P(2 boys) above, we give the unknown numerical
outcome a capital letter, say X.

X is called a wvariable because it is a varialle Awnl J  and it is called
random because we don’t know what value it will take until we make an
observation of our random experiment. For example, if I pick a three-child
family at random, I might observe X =0, X =1, X =2, or X = 3 boys.

In essence, a renhon varialle i & Nbmaric SW"\MN\U fa' He ounfconae
of ~ random QJXPUJ‘MU&".

In formal language, a random variable is a mapping from €2 to the real numbers:

X : Q — R. For example, for outcome BBG (a member of 2), the number of

boys is 2, so we can write X(BBG) = 2. However, we usually use a more
succinct notation and just say that our outcome is X = 2.

X< X =x
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Everything you need to know about random variables

e Random variables always have CAF 7T AL LETTC,Qj) 2 j X ol Y

Understand the capital letter to mean that X denotes a quantity that will
take on values at random.

e The term ‘random variable’ is often abbreviated to V. V.

e You can think of a random variable simply as 1L name Oa’ IV TS SPINEYS
for quenbing ranhom real nwmbos.
In the example above, X generates random numbers 0, 1, 2, or 3 by picking
a 3-child family at random and counting how many boys are in it.

e Each possible value of a random variable has a probability associated with
it. In the example above, where X is the number of boys in a three-child

family:
Plx-o) =4 P(x-N=% P22, @
iP(X*"B):-é-.

e If we want to refer to a generic, unspecified, value of a random variable,
we use a Ao - case e sudy as . or
For example, we might be interested in finding a formula for P(X = z) for
all values x = 0,1, 2, 3. ook (ﬁw\lf) nimber
) J
Differences between X, x, {X = x}, and P(X = x)

It is very important to understand this standard notation and how it is used.

@capital letter) is a random wvariable: a mechanism for generating
random real numbers. It is mainly used as a nave -JU\S‘} Llex Jow' Nomy

¢4 SO\U\\ij X:?_ TR Y S NP S@}Cj " Sunson e 1a He
e bdan™ T TH tells wsoa cwret olsovation ot v
We bave aalled X

e z (lower-case letter) is a real number like 2 or 3. It is used to indicate
an unspecified value that X might take.

@ an event: it is a Sz;l' N

For example, X = 2 is the event that we count 2 boys when we pick a
three-child family at random.

e {X = x}, often written just|
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Because X = 2 is an event, it is a S‘L-\—) A SU\LS«U\' 06‘ He gmru Sfaq,

Crucially, n<e SL\' na)\'mHOA +0 C"Mlv\\’\—@ %f’l’ﬁs;ofu’ [;)J;Q_ X:Z
(\SQIL [anOw),

e P(X = z) is a real number: it is a number between 0 and 1.

Nse oeer&‘riofu (e + a~d X T Combine ‘ofogmlail}ﬁq:
ea- P(xX<1) 2 P(X=0) + P(X=1)

When talking about events, like {X = x}, use set notation like N and U.

When talking about probabilities, like P(X = x), use ordinary addition and
multiplication + and X, just as you would for any other real numbers.

Right Wrong
X=2UX=3 X=24+X=3 )(
vk Pk K e 2 0k 3
P(X =2UX =3) P(X =2) UP(X =3) ¢
N u_ 5L )
nwmb g =
P(X =2) + P(X = 3) P(X =24 X =3)
Probability of the event that X is 2 OR 3 Sor Sex
X<2NnX>1 X<2xX>1

Euvunr Hat X is BoTH <2
AND s%Mu\fWoub > 1

(Hoe velae X=2 16 e 0nly poseitilin) <
P(X <2NnX >1) P(X <2)NP(X > 1)
Probability that X is BOTH < 2 AND > 1 L,l Wl "”M«LJ
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1.2 Bernoulli trials and the Binomial Distribution

The Binomial distribution is one of the simplest probability distributions. We
shall use it extensively throughout the course for illustrating statistical concepts.

The Binomial distribution Cownts e numler Shecesses 1/\ a
%Xe* V\MMLU N Dé/ ?na\{;fw‘—__@) wLJL Mc\»\ THC\\,L\M

oo Fo_fs’\ub onkcomes © Sunccess witha fmgq\’]\jtz p o«\A ‘F{Ai\b\f(,
Wit progak.;\'\\;a l-p. | |

Such trials are called Bernoulli trials, named after the 17th century Swiss

mathematician Jacques Bernoulli.

Definition: A sequence of Bernoulli trials is a sequence
of independent trials where each trial has two possible
outcomes, denoted Success and Failure, and the
probability of Success stays constant at p for all trials.

Examples: (1) Repeated tossing of a fair coin:

“S b\CCESf“ = HU\A\ , P = f? (HE-""A) = ‘% ‘
(2) Repeated rolls of a fair die: p = P (31{* a é) = i— '

Note: Saying the trials are independent means that  Jacques Bernoulli, and his brother

A Jean, were bitter rivals. They both
H"‘\‘j Ao (\O%, ‘A& lM—U\CC eodhy o Hﬁu" studied mathematics secretly,
Thus, whether the current trial yields a Success or against their father’s will.

. . . Their father wanted Jacques
a Failure is not influenced by the outcomes of any to be a clergyman o

previous trials. For example, you are not more Jean to be a merchant.
likely to have a win after a run of losses: the
previous outcomes simply have no influence.

Definition: The random variable Y is called a Bernoulli random variable if

W tale g w\l:) 2 vabwes, O and 1.
We weke Y m Banodlli (p)  whee p= P (V=)

Definition: For any random variable Y, we define the probability function of Y
to be the function fy(y) =P(Y =vy).

The probability function of the Bernoulli random variable is:

g Low ose P '+ j:l (gmccuf
% (U) - ﬁ)(y:\j) - -p ?& J:O (Fo\][w‘eg

[
éch\p]h\\ SuLgU'lr’r _ O o Hurwise
We often write the probability function in table format: Y \ o 1

PY=9) | -p ¢
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Binomial distribution

The Binomial distribution describes the outcome from a fixed number, n, of
Bernoulli trials. For example:

e X is the number of boys in a 3-child family: "= 3 trials (C Ly [Arm>

p=P(Boy) = 05 for encs caild.
e X is the number of 6’s obtained in 10 rolls of a die: N=10 fAald (f‘olLs)

p=F(caal) = % fr wad, moll.

Definition: Let X be the number of successes obtained in n independent Bernoulli
trials, each of which has probability of success p.

Then X has the Binomial distribution with parameters n and p.

We write X’\/ 8J-qc?/\/\“r“l (f\) r) or Xwg]n (/1, P)

The Binomial distribution counts the number of successes
in a fixed number of Bernoulli trials.

Seele IP(X: ) Jor ey .

If X ~ Binomial(n,p), then X = x if there are x successes in the n trials. We
don’t care what order the successes occur in — in other words, we don’t care
which of the trials are successes and which are failures. However, we do have

to bear in mind all the different orderings when we calculate the probabilities
of the distribution.

Take the example of X = number of boys in a 3-child family, so

X~ Bin (n=3, p=03),
If we want to calculate P(X = 2), we have to take account of all the different
ways that we can achieve X = 2:

P(X=1)= P(88C) + P (868) + P(cBB)-

In this case, there are 3 ways of getting the
outcome we are interested in: 2 boys and 1 girl.
How would we calculate the number of ways
()

in general? @ J @

TNure are D Faals (ch [Afm) A we need to choose 2 aa, Horn
f‘“a L,ﬂ_ L;Olﬁs. T #W“&J \f&, (,L,\_OOS;\/j ZTﬂﬁu d)if'OM 2 s

3! 3x 2 x|
3C/'L :(3) = = T = 5.

(3-2)! 2! Fx (2x1)
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Question: How many ways are there of achieving 6 boys in a 10-child family?
Answer: o 0 X wSe calculakor Lulfon
C,\= = _— =210 n 2
£ 6 (lo B (J\ | é .| CI"' or C’)C
i~ be carepnl /- Grocleets!
¢c.q. dede you gek it cight - you Ao 2*(2); (20

Question: How many ways are there of achieving x successes in n trials?

Answer:
e () = P(x=)]

(n=0)! !

Question: If each trial has probability p of being a success, what is the probability

of getting the precise outcome SFFEFSF from n =5 trials?
Answer:

.....

fo (r"())(l—‘o) f’ (‘*F) -y ‘D‘l (“P)B
T will be . sonne fml.al.ﬁlkl:j reijlzg - ey orde Fae 8%
A Fs are in, as long as e We 2087 and R F

Question: What is the probability of one ordering that contains x successes and
n — x failures?

Answer: f * ( = P)nnf .

Question: So what is the overall probability of achieving x successes in n trials:
P(X = z) when X ~ Binomial(n,p)?

Answer: N
HFordying * rob el | n x
( ij (P ,e_p\d.,\tgr' ;5) = (q)@

This gives the probability function for the Binomial distribution:

Let X ~ Binomial(n, p). The probability function for X is:

Lo Lrk LENRN)
fx(x) =P(X = z) zﬁzmx for z=0,1,...,n. -

.

Note: 1. Importantly, ﬁg (’X) =0 q", W 1S Not one 4 e valees 0,.-A.
The correct way to write the range of valuesis > =0, 1, ... n
— Writing « € [0, n] is wrong, because this includes decimals like 0.4.
— Writing z = 0,1, ... is wrong, because the range of values must stop

at n: you can’t have more than n successes in n trials.

2. fx(x) means, ‘the probability function belonging to the r.v. I've named X .
Use a capital X in the subscript and a lower-case x as the argument.
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Shape of the Binomial distribution ver (X) = i (i f) srandl b P>

The shape of the Binomial distribution depends upon the values of n and p. For
small n, the distribution is almost symmetrical for values of p close to 0.5, but
highly skewed for values of p close to 0 or 1. As n increases, the distribution
becomes more and more symmetrical, and there is noticeable skew only if p is
very close to 0 or 1.

The probability functions for various values of n and p are shown below.

fP (X; 1\ n=10,p=0.5 ﬁ(x:;jl =10,p=0.9 l \swﬁélw“l n =100, p = 0.9
° f\'j -“'\Mt’\‘/“l“(‘vr Even H«.f)\?j\,.
§ / \ 8 \ p=0-1,
gy ¥ ) o

N
<]

0.10

b
<)

0.05

0.0 0.02 0.04 0.06 0.08 0.10 0.12

o o
' xX °© W
01 2 3 4 .@6 7 8 9 10 0123456 7 8f9Jio X 80 90 100 ’

Sum of independent Binomial random variables:

st M Mal\s\/
If X and Y are \lnok.trb\oku\\', and X ~ Binomial(n,p), Y ~ Binomial(m,p),

then X-l'Y Na@i,\(ﬂh\q ) 'o)

This is because X counts the number of successes out of n trials, and Y counts
the number of successes out of m trials: so overall, X + Y counts the total
number of successes out of N+ F-ials .

Note: X and Y must both share Hw Some fD) o\ be }/v(_zfuu{_p/\;l-

Binomial random variable as a sum of Bernoulli random variables

It is often useful to express a Binomial(n, p) random variable as the sum of n
Bernoulli(p) random variables. If Y; ~ Bernoulli(p) for i = 1,2,...,n, and if
Y1, Y,, ... Y, are independent, then:

X =Y +Y,+...+Y, ~ Binomial(n, p).

This is because X and Y; +...+Y,, both represent ’-IZ)F Snecesees in N
N ~ L’—_'_‘_J -
|/\Aa,f)r d‘rm\_f, Lad, i, fmgmlaﬂ‘i:j rd— Swnceceess :f'



Cumulative distribution function, Fx(x)

We have defined the probability function, fx(z), as fx(z) = P(X
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Another function that is widely used is the cumulative distribution function, or
CDF, written as Fx(z).

Definition: The cumulative distribution function, or CDE, is

Fx(x) =P(X <xz) for —oco<z <

The cumulative distribution function Fx(x) as a probability sweeper

The cumulative distribution function, Fx(z), Stu Ceps wp
Pm\""\"r'\"b ap Fooand ?/‘f/\"\ot‘l\fkj e point .

P(X=x)
0.10

Clearly,

0.20

0.15

0.05

0.00

=T\
i"}
P(X=x)
0.2 0.3
I |

0.1

K

S \/\h_M A\D

mu&%/

012@45678910
X
X ~ Bin(10, 0.5)

Fe(@) =Y fx().

y<w

X

0 1 2 3 4 5 6 7849 10

X ~ Bin(10, 0.9)

Using the cumulative distribution function to find probabilities

P(a < X < b) = Fx(b) — Fx(a)

itb > a.
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J .
Proof that P(a < X < b) = Fx(b) — Fx(a):

P(X <b) = P(X <a)+Pla<X <b)
So Fx(b) = Fx(a)+P(a< X <b)
= Fx(b)—Fx(CL> = P(G<X§b)

A
W vabmes X O O & v, - o P
?mvfr:u o “ (&\(Xéb)
o—0 oa\ 0 v O}’—————Q——__- = lP(XSL)
\ e F)({"’)
A L T’;"("‘“ﬁ y;
& = o 6—0 O IP(X < a) 't
Fel®)

Warning: endpoints
Be careful of endpoints and the difference between < and <. ;;;

For example,

Warning!

]P)(X < 10) = ]P)(X < 9) = FX(9> End of interval l

Examples: Let X ~ Binomial(100,0.4). In terms of Fx(z), what is:

LP(xX <307 F (30)
2. P(X <302, (29)
BBX 25607 |- P(X<56) = |- P(X<s5) = -fi (55)

1 P(x >42?7 |- P (X< 41) = 1= B (k)

5. P(0< X <60)? £, (60) - (M) (cldck)
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1.3 Conditional probability

We have mentioned that probability depends upon the sample space, €2

ﬂj(;L: ), 5o the symbol P is oaly depined relfive fo o
Pc\rlrwc..mlar S(;‘Mf\(’_ Space .

Conditional probability is about le\W\J}A He o amp le s pace.
In particular, conditional probability is about reducing the sample space
to a smaller one.

Look at €2 on the right. Pick a ball at random. All
11 balls are equally likely to be picked. What is the
probability of selecting the white ball?

P (waike Lall) = L

[

Now suppose we select a ball only from within the smaller bag A. Recall that
A is a subset of €2, so in probability language, A is an 2V et

What is the probability of selecting the white ball, if we pick only from the
balls in bag A?

P(wike LAl T we seleck only from £ ) = L

We use a shorthand notation to write this down:

l?(wfa:’m Lall i we seleck OA\IJ from within ﬁ)
= ﬂD(whthml\ , ﬂ) = ‘;_.

We read this as, ‘probability ef-the.white ball given A’ or ‘probability of
selecting the white ball fron

P(white ball | A) is called a conditional probability, and we say we have
COI\A:\"IOA.QA IN et A‘ .

Note: The vertical bar in P(white ball | A) is vertical: |.
Do not write a conditional probability as P(WW/A) or P(W\A): itis P(W | A).

What we have done is to reduce the sample space from (), which was a bag
containing 11 equally-likely items, to a smaller bag A which contains only 4
equally-likely items.

But A is still a oi-items — so A is a valid sample space in its own right.

When we wrife P(W | A), we have changed the sample space from 2 to A.



Define event [/\) = { lochL Wh'ite Loﬁxug
We have said: fP ( l/\)) = -1J|_ :
This means ]P (w -%om wiHain _’Q_)

where we recall that the symbol P is defined
relative to 2 because P(§2) = 1.
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Now if we reduce to selecting only from the balls in A, we write: )P ( W I ﬂ ) - 1.
_ | .

Question: What is P(A| A)?

P =1 P(AlA)=)

Answer: ]? p‘) f{_ L2 canse (R' We Se ech ti‘u\/\_f?.nm
WA A A We arg ﬂ‘d—d’lmjratﬁ 39‘-/3 to S’U{«QO{' SQM‘-/H’UAj 1A A

The conditional probability P(WW | A) means the probability of event W,
when selecting only from within set A.

Read it as ‘probability of event W, given event A’,
or ‘probability of event W from within the set A’

It is equivalent to changing the sample space from Q to A.

The notation P(W | A) is like saying,
‘P(W) when my symbol PP is defined relative to A instead of to €.’

Formula for conditional probability

PR - P(Ane)
f? (8)

Suppose we have several white balls in (2, instead of just one. As before, we
pick a ball at random and event W is the event that we select a white ball.

Question: What is P(W)?

Answer: P(W) refers to the probability within
the whole sample space €, so f[D ( W) = S

Question: What is P(W | A)?
Answer: P(W | A) refers to the probability
within bag A only, so P (!A) | /ﬁ}) = ,,_. :

Question: Can you see why P(W |A) = BA)

JP(W N A)
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It is obvious from the diagram that P(W | A) = 2. = T

The probability of W, when selecting from bag A only,
is the probability contained in the small dotted bag
as a fraction of the probability in the dashed bag.

The small dotted bag represents the set W) N A :

The dashed bag represents the set A ‘

Thus, the probability of W when selecting from within A is:

[P(L\JM) : f’foLmloitx\‘\\j in fle Aotted laa\tj ) (P([,\)/\/CD
Prolvo\\:iwb A The daslied (oij P (ﬂ)

This reasoning gives us our formal definition of conditional probability.

Definition: Let A and B be two events on a sample space ). The conditional
probability of event B, given event A, is written P(B | A), and defined as

P(gIA) - P(8nA) [LeAen)

P (A) J

Read P(B| A) as “probability of B, given A”, or “probability of B within A”.

Note: ‘P (81AY) give P (g and A Arom Wity mﬂw«gr
JJ’ onl
|f.> (_60A> o Z3; ’/P(gwulﬂr, e Wlole S’w/\ks’oc-\cc,o

Follow this reasoning carefully. It is important to understand why conditional _’ni>

probability is the probability of the intersection within the new sample space.

Conditioning on event A means changing the sample space to A.

Think of P(B| A) as the chance of getting a B, from the set of A’s only.

The notation P(B | A) is good because Tt=emphasises that the denominator
of the proportion is A. In a sense/P(B | A) ip asking for event B as a fraction
of event A.
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Conditional probability corresponds to changing the sample space. This
means it affects the set we are picking FROM, when we calculate the probability
that its members satisfy a certain event.

Suppose we are picking a person at random from this class (£2). Event A is that
the person has dark hair, and event B is that the person has blue eyes.

e P(B) means we want the probability of picking someone who satisfies B

from e Whole Sample spaee, (1.
e P(B| A) means the probability of picking someone who satisfies B M
L\)fl’L\‘;r\ H.\L _QLU{" 0& A (d(f\f{t—"-—\ﬁ\lif' ﬂ.}&orlﬂ) 0/\!3 e T
H Pf\’)loé‘(ﬂi\;"_ fer & W ITHIN 70( .
e P(BNA) means?he probability of picking someone who satisfies 6 oTH
B Avd A wha ‘H“’:j we pideed dombte wlole
Son fJLt_ Sf? ace __ﬁ_ ;
This means you can easily identify which probabilities are conditional and which
are intersections by looking to see Wlio are e Fi\dﬂ@ F{&OM. Recall:

(2 = {people in this class}; A = {dark-haired people}; B = {blue-eyed people}

Define also a random variable X = number of GenEd papers a person has passed.
At the University of Auckland, most students have to complete two GenEd
(General Education) papers as part of their undergraduate degree. The GenEd
papers can be completed at any time during the degree. Nearly everyone in
this class will satisfy one of the events X =0, X =1, or X = 2.

Define further events: F' = {first years}; S = {second years}; T = {third years};
O = {other students, e.g. exchange students, COPs, ... }.

Exercise: Translate the following statements into probability notation. Assume
in all cases we are picking a person at random from this class.

e Probability a person has dark hair and blue eyes: ho ( ﬂ N 6)

e Probability a dark-haired person has blue eyes: IP ( L TQI)

e Probability a person has passed two GenEd papers: IP ( X = 7.)

e Probability a second-year has passed two GenEd papers: ﬁj ( )< =2 \ S)
e Probability a first-year has passed two GenEd papers: )P ( X=2 l F )

e Probability a dark-haired first-year has passed one or two GenEd papers:

'/P(_X:I U X=9 ’{-‘mﬂ]) SP(X=1|FaA) + IP(X:ZIFAA)?



ip(ﬁ): P(A1&) P (B + IP (,ﬂ[pg),?(g) Pertibion Tl

NOT  PIAY = P(AI8) + P (A1 B WRONG , oy IR

Trick for checking conditional probability calculations:

A wuseful trick for checking a conditional probability expression is to replace the
conditioned set by (), and see whether the expression is still true.

behave exactly like ordinary probabilities IP(-), as long as all the
are conditioned on the same event A.

Question: IsP(B|A)+P(B|A) =17 ﬁ'ﬁ;é/ ,
——

Answer: ;Qg_flﬁc& ,q L’J N Hag j}ve.j

Plal o)+ p(B |0
y P (8)

So UQ_S)

P(&IA)+ Pz [4)
.1. r N
g’(:ﬂf\pkj
L A foo

Answer: Try to replace the conditioning setby-=—tIC con't D Tlere e

fro conditioning shs, A and 7.

The expression is NOT T/@VU; .It doesn’t make sense to try to add together
probabilities from two different sample spaces.

The Multiplication Rule

For any events A and B, Hoe oy Fo calcnlate an intugcdhon f"(’!’ ¥

LTF(A/\@ = P(AIB) P (&) = P(BIA) P(A) |teaen

J

Proof:  Immediate from the definitions:

P(ﬂl@):m’q‘”@ = P (A18) P (&) :IP(M@)

P A
e } i%m\

o~ P (81) - ﬂ){f?@ > P(BINRMA) = PBAR)
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1.4 Statistical independence

Events A and B are said to be independent if they lz\m/e No INFLReEN
on eada ol

For example, in the previous section, would you expect the following pairs of
events to be statistically independent?

(2 = {people in this class}; A = {dark-haired people}; B = {blue-eyed people}
F = {first years}; S = {second years}; T' = {third years}; O = {other students} ;
and random variable X = number of GenEd papers passed.

e Aand B? p(ol_—,p\\gl V\OJF' A&J“[& L\ﬁif—ﬁﬁk r;u,o{ob; N H/VJ (|

/Vlfj\,\‘r G more (e o lave L rown €y e, So lfﬁ

e Aand F? YL_S) Pml’o‘l'\lj lﬂj{{f} Lxlc-cb Fo bave Llue

o Fland S? () 54" A : ’UU{J
Pk NoT lnhpﬂ/\lb\)r

Noont can Le 1aB0TH Fret - yeer AND S—&aoMkUJaJ‘
Co 2odn Wert STOPS Mo oflur From b ppesing very Shoj

e Events X = 2 and F?

Pfokgk\gb f\e%' |/\o(.(,fy</x0\{/\1\” /Ltpvulma, .

To give a formal definition of statistical independence, we need a notion of what
it means for two events to have no influence on each other:

e A has no influence on Bif [P( 3 | A) = IP (8 )

e B has no influence on A if 'P(H | B) = [P (A)

e So A and B have no influence on each other if both P(B|A) = P(B)
and P(A|B) =P(A).

However, it is untidy to have a definition with two statements to check. It
would be better to have a definition with just one statement.

Using the multiplication rule: 9 ]?(@\;’x) ? ®)
(o\lwmj; e 1/
o I P(B|A) =P(B), then B(ANB) = P(B1A) P (A) = P(B) P(A)
e I P(A| B) = P(A), then P(AN B) = | (A 18) IP(®) = P(A) P(a)
Alunys Ty 7

So both statements imply that P(AN B) = P(A)P(B). What about the other ﬂ)(f’t ?)
way around? Suppose that P(ANB) = P(A)P(B). What does that imply about _
P(A|B) and P(B| A)? P
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e If P(AN B) =P(A)P(B), then
P(A|B) = !P(AﬂG) = ’P (A)}P(@) - ﬂ)m)
Alusgs 1P (R) P (@)
e Similarly, if P(AN B) = P(A)P(B), then
paly= PR PRPE)  pey.
abongs [P (A) P@)

So the single statement P(A N B) = P(A)P(B), implies both statements
P(A|B) =P(A) andP(B| A) = P(A). Likewise, either of these two statements
implies P(A N B) = P(A)P(B). We can therefore use this single statement as
our definition of statistical independence.

Definition: FEvents A and B are statistically independent if P(ANB) = P(A)P(B).

Definition: If there are more than two events, we say events Aj, Ao, ..., A, are
mutually independent if

P(AiNAsN...NA,) =P(A)P(A,) ... P(A,), AND
the same multiplication rule holds for every subcollection of the events too.
£ .. _
- P(AinAunhy) =P AP,
P(A )

Independence for random variables X, Y

Random variables are independent if tH.u lave neo ‘m,(f}l,vw\q

\jor\ eocl, oflwr.

That is, random variables X and Y are independent if, whatever the outcome

of X, it has no influence on the outcome of Y.

Definition: Random variables X and Y are statistically independent if
PH{X =z} n{Y =y}) = P(X = 2)P(Y =y)

for all possible values x and y.

\non
f%usually replace the Cgﬂl@ersgm% notation P{X =z} Nn{Y = y}) by the
simpler notation P ( X = x ) Y:j ) intuprek Ha comma «$ ﬂ .
From now on, we will use the following notations interchangeably:
PU{X =z}n{Y =y})=P(X =2 ANDY =y)=P(X =2z,Y =y).

Thus X and Y are independent if and only if
P(X =xz,Y =y)=P(X =2)P(Y =y) for ALL possible values z, y.
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Independence in pictures \'m‘\\\
It is very difficult to draw a picture of statistical independence. ( P\’LE {:"A‘g‘ J l‘:j
Are events A and B statistically independent? / b&“: = CP)

@ No, tluy ae NOT in

@

A E venks and coannot L\aﬂom 'f‘o\ﬂ s
ST0P enda oflws ﬁmM L\af)b;.u\v:j }/Ltj

Thas s S*i‘ro@ Abpu\etmct, : [AZJL\ }ndL(Mmu;.
Are events W and A statistically independent?

P(win) == bur P(W)=2

So P(WIA) F P(W) So thay o
N OT MOL‘-\O UVLU\\'
Question: How would you convey independence between events A and B on a
diagram? Where would you draw event B?

[Hint: think of the formula P(B|A) = P(B),
and what this means if we repreMlities by areas.|

1.5 Bayes’ Theorem

Bayes’ Theorem follows directly from the multiplication rule.
It shows how to invert the conditioning in conditional
probabilities, i.e. how to express P(B| A) in terms of P(A| B).

Rev. Thomas Bayes

Consider P(BN A) =P(AN B). (1702-1761),

English clergyman
and founder of
Bayesian Statistics.

Apply the multiplication rule to each side:

PIBIAYP(A) = P (AIR) P (8
&

Thus P(B|A) =

P(A|B)P(B)
P(A)
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1.6 The Partition Theorem (Law of Total Probability)

Definition: Events A and B are mutually exclusive, or disjoint, if A ngk= ¢ :

This means events A and B cannot happen together. If A happens, it excludes
B from happening, and vice-versa.

T@ @i

If A and B are mutually exclusive, ﬁ) (P[ vV 6) - '{P(P( ) t ?(8)-' 1’“'%”““ @\_0
For all other A and B, ﬁD(PT UB) - }P(ﬂ) + HD(B>-"’P(A0@) P(ANB)=

Definition: Any number of events By, Bs, ..., B; are mutually exclusive if every
pair of the events is mutually exclusive: ie. B; N B; = () for all i, j with i # j.
I &y 63 L

VNGRS

Definition: A partition of ) is a Coll e chion Ua’ MMFM&[EJ— exclnsive
LVeAES Whase nlon s L ,

That is, sets By, Bo, ..., By form a partition of € if

B,NB; = 0 forall i,j with ¢ # j,

k
and UBi — BiUByU...UB, = Q.
=1

~enN/

By, ..., By form a partition of € if they lhave no 0VJL“f AND
collectively cove All passivle outcomes.

(0\/\?\ H».L\j o‘(ﬂ/l"l' LK&C—AJL‘Q’”/L“J-: B,U,-.ugk:ﬁ__j
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Ezxamples: l B, 84_ ues 0
| & 3 &3 Fon =
2 3 perhhon=
By, | vps

S~ mast sl fo”mrﬁw\: B ~d &

Partitioning an event A

Any set A can be partitioned: it doesn’t have to be ().
In particular, if By, ..., By form a partition of €, then (AN By),..., (AN By)

. . —_— K/\/-\_—\A!
form a partition of A.

W

Theorem 1.6: The Partition Theorem (Law of Total Probability)

Ld’ 6\) ) @m afng 4\ ‘DN'FiH"A ’a’ SL. T’A—M a?of' &NY

vt R, - . | Leman
PRy - 2 P(rinss) = 2 F(A]8)P(s;)

Both formulations of the Partition Theorem are very widely used, but especially
the conditional formulation " P(A| B;)P(B;).

C)M P(A18,) + (A 18,) +--
— Lat PAIBIPB) + PAIEYPB)+-..
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The Partition Theorem in pictures
- e

The Partition Theorem is easy to understand because it simply states that “the
whole is the sum of its parts.”

AﬂBl AﬂBg

AN I A
aala
R
o T

AN B; AN By

(I)(Pf\ W(Hn@)Jr’Pm”ﬁL)’rf?(ﬂné@-ka An@)
At (wdusromd T+ Ll i)

So: (m&t it (ike Has)
P(ay-P(AI&Pe 0+rPAleNm%gﬁ4?ﬁm3)P 3)

+ P (A 18P (8,)

Examples of conditional probability and partitions

Tom_gets the bus to campus every day. The bus is on time with probability
nd late with probability 0.4.
—_—

e sample space can be written as 2 = {bus journeys}. We can formulate
events as follows:

T = {on time} L = {late}

From the information given, the events have probabilities:

P(T) = 0.6; P(L) = 0.4.

(a) Do the events T and L form a partition of the sample space Q7 Explain why
or why not.

Yes: H"'\’j cove all fOQ;LQ \)OMA”JIJ (froLaL?l'\Hu Stm
"‘o j_\) M HJ’UC Ny o OUU'lAP A MU/L’AH Llj A‘%\A;F

104,
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The buses are sometimes crowded and sometimes noisy, both of which are
problems for Tom as he likes to use the bus journeys to do his Stats assignments.
When the bus is on time, it is crowded with probability 0.5. When it j_s__lg_t_g it
is crowded with probability 0.7. The bus is noisy with probability 0.8 when it
is crowded, and with probability 0.4 when it is not crowded.

(b) Formulate events C' and N corresponding to the bus being crowded and noisy.
Do the events C' and N form a partition of the sample space? Explain why

or why not.
L+ C = Soowded 3 and N -’i/\/o?_f:jj_
No, C ad N Ao NoT potibon ).
T+ s G)‘J‘S&}LLL éor e buvs Fo Le LoHi corowdad ond
V\OU\ﬂ) so Hure pnst Le ouu*La]o Lebween C oand N

(c) Write down probability statements corresponding to the information given
above. Your answer should involve two statements linking C' with T" and L,
and two statements linking N with C.

PCcIT) =05 P(clL)=07%
P(nN1c) =08 P(NIC)=0¢

(d) Find the probability that the bus is crowded.

PCY = Pl YP(T) + Plc IO)P(Y

[

becomee T and L ot & fﬁf’*\rHM

i

P (c)= 058  (chaed)

(e) Find the probability that the bus is noisy.
PONY= PUNIOPCS) + PINICT)P(E) Leows
[_ C & Z FGJ”HH‘M

0-6372 @

1l

P
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1.7 Extra practice and reference

The following sections include some extra reading and examples taken from the
old Stats 210 notes (pre-2015) before this material became a prerequisite for
taking the course.

1. Probability of a union

The union operator, AU B, means A OR B OR both. For any events A and B
on a sample space §2:

P(AUB) =P(A) +P(B) - P(AN B).

For three or more events: e.g. for any events A, B, and C on €

P(AUBUC) = P(A)+P(B)+P((C)
—P(ANB)-P(ANC)-P(BNC)
+P(ANBNC).

Explanation

To understand the formula, think of the Venn diagrams:

A . Q A << \,\ Q
B\(AnB) 4
When we add P(A) + P(B), we Alternatively, think of AU B as
add the intersection twice. two disjoint sets: all of A,

9o we have to subtract the and the bits of B without the
intersection once to get P(A U B): intersection. S0 P(AU B) =
P(AUB) = P(A) +P(B) - P(AN B). P(A) + { P(B) — P(AN B)}.
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2. Probability of an intersection

Q

The intersection operator, A N B, means

both A AND B together.
There is no easy formula for P(AN B).

We might be able to use statistical independence:
tf A and B are independent, then
P(AN B) =P(A)P(B).

If A and B are not statistically independent,
we usually use conditional probability: P(AN B) = P(A | B)P(B) for any events
A and B. It is usually easier to find a conditional probability than an intersection.

Q

3. Probability of a complement

The complement of A is written A and denotes
everything in () that is not in A.

|

Clearly, P(A) =1—P(A).

Examples of basic probability calculations

An Australian survey asked people what sort of
car they would like if they could choose any car
at all. 13% of respondents had children and
chose a large car. 12% of respondents did

not have children and chose a large car.

33% of respondents had children.

Find the probability that a respondent:
(a) chose a large car;

(b) either had children or chose a large car
(or both).

First define the sample space: €) = { respondents }. Formulate events:
Let C = { has children } C = { no children }

L = { chooses large car }.
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Next write down all the information given:
P(C) = 0.33
P(CNL) = 0.13
P(CNL) = 0.12.

(a) Asked for P(L).

P(L) = P(LNC)+P(LNC) (Partition Theorem)
= P(CNL)+P(CNL)
= 0.13+0.12

= 0.25. P(chooses large car) = 0.25.

(b) Asked for P(L U C).

P(LUC) = P(L)+P(C)-P(LNC) (formula for probability of a union)
= 0.25+0.33 -0.13
= 0.45.

Example 2: Facebook statistics for New Zealand university students aged between
18 and 24 suggest that 22% are interested in music, while 34% are interested in
sport. Define the sample space € = {NZ university students aged 18 to 24}.

Formulate events: M = {interested in music}, S = {interested in sport}.

(a) What is P(M)?
(b) What is P(M N S)?
Information given: P(M) = 0.22 P(S) = 0.34.

(@) P(M) = 1—P(M)
= 1-0.22
= 0.78.

(b) We can not calculate P(M N S) from the information given.
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(¢) Given the further information that 48% of the students are interested in
neither music nor sport, find P(M U S) and P(M N 5).

Information given: P(M U S) = 0.48.

Thus P(MUS) = 1-P(MUYS)
= 1-048
= 0.52.

Probability that a student is interested in music, or sport, or both.

P(MNS) = P(M)+P(S)—-P(MUS) (probability of a union)
= 0.22+0.34 —0.52
= 0.04.

Only 4% of students are interested in both music and sport.

(d) Find the probability that a student is interested in music, but not sport.

P(MNS) = P(M)—-P(MnNS) (Partition Theorem)
= 0.22-0.04
= 0.18.

1.8 Probability Reference List

The following properties hold for all events A, B, and C' on a sample space ).

e P()) =0 and P(Q2) =1. 0 is the ‘empty set’: the event with no outcomes.
e 0 <P(A) <1 : probabilities are always between 0 and 1.
e Complement: P(A) =1—P(A).
e Probability of a union: P(AU B) =P(A) +P(B) — P(AN B).
For three events A, B, C"-

P(AUBUC) = P(A)+P(B)+P(C)—P(ANB)—P(ANC)—P(BNC)+P(ANBNC) .

If A and B are mutually exclusive, then P(AU B) = P(A) + P(B).
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P(AN B)
P(B)
e Multiplication rule: P(AN B) =P(A|B)P(B) =P(B| A)P(A).

e Conditional probability: P(A|B) =

e The Partition Theorem: if By, By, ..., B,, form a partition of {2, then

P(A)=> PANB;) =Y P(A|B)P(B;) for any event A.
=1

i=1
As a special case, B and B partition €2, so:
P(A) = P(ANB)+P(ANB)
= P(A|B)P(B) +P(A| B)P(B) for any A, B.
P(A|B)P(B)
P(A)
More generally, if By, Bo, ..., B,, form a partition of 2, then

__ P(A|B;j)P(B;) .
P(B;|A) = S B(A| B,)P(B) for any j.

e Bayes’ Theorem: P(B|A) =

e Chains of events: for any events Ay, A, As,

P(A1NAsNA3) =P(A)P(Ay | A1) P(As | As N Ay).

e Statistical independence: events A and B are independent if and only if

P(AN B) = P(A)P(B).

Alternatively, either of the following statements is necessary and sufficient for
A and B to be independent: P(A| B) =P(A) and P(B|A) =P(B).

e Manipulating conditional probabilities:
If P(B) > 0, then we can treat P(- | B) just like P: for example,

% if A and A, are mutually exclusive, then

P(A, U Ay | B) = P(A;|B)+P(A;| B)
P(A;) + P(Ay).

compare with the usual formula, P(A; U As)
% if Aq,... A, partition the sample space 2, then
P(A)|B)+P(As | B) +.. .+ P(A,, | B) = 1;
% P(A|B) =1—P(A|B) for any A.
Note: it is not generally true that P(A|B) =1 —P(A| B).



