Chapter 3: Modelling

with Discrete Probability Distributions

In Chapter 2 we introduced several fundamental ideas: hypothesis testing, like-
lihood, estimators, expectation, and variance. Each of these was illustrated by
the Binomial distribution. We now introduce several other discrete distribu-
tions and discuss their properties and usage. First we revise Bernoulli trials

and the Binomial distribution. %Mmo Al Y response x ‘; T

Bernoulli Trials EY =%

2C
*Pf( Ay i

A set of Bernoulli trials is a series of trials such that:

i) each trial has only 2 possible outcomes: Success and Fuailure;
ii) the probability of success, p, is constant for all trials;
iii) the trials are independent.

Examples: 1) Repeated tossing of a fair coin: each toss is a Bernoulli trial with
P(success) = P(head) = 3.
2) Having children: each child can be thought of as a Bernoulli trial with
outcomes {girl, boy} and P(girl) = 0.5.

3.1 Binomial distribution

Description: X ~ Binomial(n,p) if X is the number of successes out of a fixed
number n of Bernoulli trials, each with P(success) = p.

Probability function: fx(z)=P(X =z)= (")p*(1—p)" “forz=0,1,...,n.

Mean: E(X) = np.
Variance: Var(X) = np(l —p).
Sum of independent Binomials: If X ~ Binomial(n,p) and Y ~ Binomial(m, p),

and if X and Y are independent, and if X and Y both share the same parameter
p, then X +Y ~ Binomial(n + m, p).
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Shape: Usually symmetrical unless p is close to 0 or 1. 0 or 1.
Peaks at approximately np.
n=10,p=05 n=10,p=09 n =100, p=0.9
(symmetrical) (skewed for p close to 1) (less skew for p = 0.9 if n is large)
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Geometric distribution

Like the Binomial distribution, the Geometric distribution is defined in terms
of a sequence of Bernoulli trials.

e The Binomial distribution counts the number of successes out of a fixed
3 —— '_'H
number of trials, " -

e The Geometric distribution counts the number of tria]@e first

SUCCESS Ooccurs. W
S’}'ﬂd’i\j Ltdorg,

This means that the Geometric distribution counts the nwibo- O'dr FAILURES

before fre iy Success.

If every trial has probability p of success, we write: X~ eomebac ( I:\ ,

Examples: 1) X =number of boys before the first girl in a family:

X~ Ceometac (p= 0-‘5)

2) Fish jumping up a waterfall. On every jump the fish
has probability p of reaching the top.

Let X be flo 4 a’—m___;__(_z_é JM«‘DJ L,L{_or‘e, He (fffﬂa SthcCeedr,
Then X ~ Goometic (p) ,
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Properties of the Geometric distribution

i) Description

X ~ Geometric(p) if X is the number of failures before the first success in a
series of Bernoulli trials with P(success) = p.

ii) Probability function

Explanation:

For X ~ Geometric(p), /O’n' SLZAFMLM "o upper [imit
&

/
Y/

fx(@)=P(X =2)=(1—-p)*p for x=0,1,2,...

A= 0 wron

=0, ... a
x / 4 V(J-ﬂ(“’lt"i{j Ldfbcﬁ
]’F()(:x) = (’ﬂf)) ¥ p
NUA w frilwes.. o Han one Shecess, ovd Yo S}vf_

Difference between Geometric and Binomsial: For the Geometric distribu-

tion, the trials must always occur in the order +f . £ ¢
N~

; 4
Z frilwe O S) le ctceess
/:j"d’ Hee 2~

For the Binomial distribution, failures and successes can occur in any order:
eg. FF...FS, FSF...F, SF...F, etc.

This is why the Geometric distribution has probability function ‘
Ve bYnomjal LO%JOTM" Lecanse

P(z failures, 1 success) = (1 — p)*p, only ont Ly 7

. R . . 9Uhting L fails

while the Binomial distribution has probability function N
nC CeSs
" l

P(z failures, 1 success) = ( )(1 —p)*p. '_qL’:( has b Le

ot of & o e end

iii) Meean and variance _
1 - = |-
EX)=—2=1 1
p p

For X ~ Geometric(p),




Sem 4 Biromials : X~ Bin (n)fn T~ R, {”“ /o)‘ ’
4 B (oo %

iv) Sum of independent Geometric random variables

If X1,..., X, are independent, and each X; ~ Geometric(p), then

X1 + ...+ Xj ~ Negative Binomial(k,p). (see later)

X+Y L:%
v) Shape 3 :Ht%u o kh,\ scces,
[P(K %) = (- P P = IP(X=0)= }:Lf) po=p JAZULA

Geometric probabilities are always greatest at =06
The distribution always has a | on ong r ¥ W fail (taog]h ve Slaug),

The length of the tail depends on p. For small p, there could be many failures
before the first success, so the tail is (.on,\.j .

For large p, a success is likely to occur almost immediately, so the tail is < lAOF‘l- .

P(X:l)

@
=}

lﬁ) (K 1_) p = 0.3 (small p) p = 0.5 (moderate p) p=0.9 (large p)

P(X=D=(-pp
P
Lecanse
l~p < |

0.4

“p(x=0) ¢
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vi) Likelihood

For any random variable, the likelihood function is just the probability function
expressed as a function of the unknown parameter. If:

e X ~ Geometric(p);

® pis walenown :

e the observed value of X is

then the likelihood function is: L(P ]_ x.) - p ("F)L Efnr‘ 0< ID < '

Example: we observe a fish making 5 failed jumps before reaching the top of a
waterfall. We wish to estimate the probability of success for each jump.

Tlen L F?) = ‘o(l~f>)s_ o O<P<|
Maximise L Wila rufao{'h ‘0 J{ fw\/\ He MLE "

M L € stimake 'rf’ - 7:_-1 ;.QL. ML EsBmabor = x,r’.
+ + |
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For mathematicians: proof of Geometric mean and variance formulae

(non-examinable)

We wish to prove that E(X) = % and Var(X) = % when X ~ Geometric(p).

We use the following results:

;qu‘l = q=gp (orld <D (3.1)
and .
) 2
;x(x—l)qx_ e (for |g| < 1). (3.2)

Proof of (3.1) and (3.2):

Consider the infinite sum of a geometric progression:

(0.9] N 1
Zq = T (for |q| < 1).

=0

Differentiate both sides with respect to ¢:

() - 5 ()

0
~d,, 1
—(¢") =
; dq( ) (1—q)?
Zaqu_l = ! as stated in (3.1).
- (1—q)?*

Note that the lower limit of the summation becomes x = 1 because the term
for x = 0 vanishes.

The proof of (3.2) is obtained similarly, by differentiating both sides of (3.1)
with respect to ¢ (Exercise).
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Now we can find E(X) and Var(X).
E(X) = Y aP(X =u)
=0
= Z xrpq” (where ¢ =1 —p)
=0
= pz xq” (lower limit becomes x = 1 because term in x = 0 is zero)
r=1

o0
= pgy xq""
=1

= pq <(1 _lq)2> (by equation (3.1))

1
= pq (—2> (because 1 — ¢ = p)
p

, as required.

IR

For Var(X), we use

Var(X) = E(X?) — (EX)? =E{X(X - 1)} +E(X) — (EX)*. (%)

Now
E{X(X-1)} = ) a(z-1)P(X =z)
x=0
- Zx(az — 1)pq” (where ¢ =1 —p)
x=0
= pq’ Z z(r — 1)¢" % (note that terms below z = 2 vanish)
r=2
= pq’ < 2 3> (by equation (3.2))
(1—4q)
_ 27
2
Thus by (x) ) )
’ 2
Var(X) = -4 4+ 9 (Q) _datr) g
Pop o\ P P

as required, because g + p = 1.
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3.3 Negative Binomial distribution

The Negative Binomial distribution is a generalised form of the Geometric dis-

tribution:

e the Geometric distribution counts the number of failures before th
SUCCESS;

e the Negative Binomial distribution counts the number of afm(wu Qz_,djar-e
e RH, Swccess.

If every trial has probability p of success, we write: X~ Necj@f,\ ( e , lo) '

Examples: 1) X =number of boys before the second girl in a family:

A~ NeyBin (k=2 , p=0-s).
2) Tom needs to pass 24 papers to complete his degree. @

He passes each paper with probability p, independently
of all other papers. Let X be fle #rpo\f_uj’ Tom ﬁ,h

PPN d(.%jrae,. — @
Then XM NLJBM( I?_:Zq,) f:) _

Properties of the Negative Binomial distribution

i) Description
X ~ NegBin(k, p) if X is the ntml, o @f' (f'ﬁ‘lhd‘d L/;aepro. Hee k'K, Success

In A Sues T@xmanll'. PRl wiHa ﬂ)($u\CCQ,s;>:f_
ii) Probability function

For X ~ NegBin(k, p), {:; Frnla g\,\u}

k+x—1

)p’“(l —p)® for £=0,1,2,...
X

Fel) =F(X =) = (
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Explanation:
e For X = x, we need 9 failures and 1( successes.
e The trials stop when we reach the £’th success, so the last trial must be @
sSuccess,

e This leaves X failures and b\ﬂl successes to occur in O\A\j orde :
a total of A+ le- | trials.

For example, if x = 3 failures and k = 2 successes, we could have:

FFFSS FFSFS FSFFS SFFFS

S~ R A P
So:
ke Swnecesses
Lk —1 ~ N
P(X =x) = ( i ) X P x (1-p)°
€T \_V—J
‘#ua ¢ VCL\oos?A 2 frals o gﬁi[w\u
Fo Lo failwes ot Je+¢-|
nallocated PRl in tofal .
iii) Mean and variance B K1 —p) kg ‘F:)FMV\U\
For X ~ NegBin(k, p) g - S
or ~ INegbIm(Kr, p),
_k(1—p) kg \__ (- 4 1
Var(X) = T = -
b 3 = E(X)

= U () > () ©
These resu
i

S C’fm be proved from the fact that the Negative Biiremial distribu-
o 5 NEL
tion 1s o

it
ined as the sum of k£ independent Geometric random variables:
X = Y1+...4Y),  where each Y; ~ Geometric(p), Y; indept,

- E(X) = kE(xc):%,

Var(X) = kVar(Y}):%. L\j ]/VLf_FU\AMCL.

iv) Sum of independent Negative Binomial random variables

If X and Y are indepohent,
and X ~ NegBin(k, p), Y ~ NegBin(m, p), with the same value of p, then

X+Y ~ NQGBT,\ ( [L-rm) ‘o)

ST



EER)
-

NEW ZEALAND

100
v) Shape (m«s)rmahb Li’f)

The Negative Binomial is flexible in shape. Below are the probability functions
for various different values of k and p-

k=3, p=0.5 k=3,p=0.28 k=10,p=0.5

Lo;‘tj (‘:J’/J'
il o
poss}LLc
LN a(o;

(e k..

0.05 0.10 0.15
0.1 0.2 0.3 0.4 0.5
0.02 0.04 0.06 0.08

0.0
0.0
0.0

01 2 3 456 7 8 910 01 2 3 45 6 7 8 9 10 0 2 4 6 81012141618 202224

vi) Likelihood

As always, the likelihood function is the probability function expressed as a
function of the unknown parameters. If:

e X ~ NegBin(k, p);

o kis lnown ;

e pis lenown |

e the observed value of X is

then the likelihood function is:

k x
L(P;1> :‘C@}z“l) P (’Ff’) &Gr O<f’< 1.

FExample: Tom fails a total of 4 papers before finishing his degree. What is his
pass probability for each paper?

X = :H(F-p\llﬁk Pl\F&U L%nre, 2L FG\QQL'L Fp\f],uj
Modk X~ NeyBin (24, p)
Obsovakion ; X =4 fmileh papos,

Liletl boold L(p;4) = (24;4_]) P?J;— ((hpj{*: (22>‘:@ (t-j

Maximise [ wifle msﬁ;eo{' to f [ f;"'( HALMLE)? : OTJ’(L
Pt Xk
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3.4 Hypergeometric

ution: sampling without replacement

.i 1.1

The hypergeometric distribution is used when we are sampling without replace-
ment from a finite population.

i) Description

Suppose we have N objects:

e M of the N objects are special;
e the other N — M objects are not special.

We remove n objects at random without replacement.
Let X = number of the n removed objects that are special.
Then X ~ Hypergeometric(N, M, n).

Example: Ron has a box of Chocolate Frogs. There are 20 chocolate frogs in the
box. Eight of them are dark chocolate, and twelve of them are white chocolate.

Ron grabs a random handful of 5 chocolate frogs and stuffs them into his mouth
when he thinks that noone is looking. Let X be the number of dark chocolate
frogs he picks.

Then X ~ Hypergeometric(N =20, M =8, n =5).

ii) Probability function

For X ~ Hypergeometric(N, M,n),

for 2 = max(0,n + M — N) to = min(n, M).
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FExplanation: We need to choose x special objects and n — x other objects.

e Number of ways of selecting x special objects from the M available is: (Agf)

e Number of ways of selecting n — x other objects from the N — M available
.. (N-M
is: (Y1),

n—x
e Total number of ways of choosing z special objects and (n—x) other objects
is: (M) x (VM.

n—xr

e Overall number of ways of choosing n objects from N is: (‘]T\L] )

Thus: M
_ number of desired ways (m ) (

P(X =z) = a
( z) total number of ways (N)

Note: We need 0 < x < M (number of special objects),
and 0 <n —x < N — M (number of other objects).
After some working, this gives us the stated constraint that

r =max(0,n+ M — N) to x = min(n, M).
Example: What is the probability that Ron selects 3 white and 2 dark chocolates?

X =# dark chocolates. There are N = 20 chocolates, including M = 8 dark
chocolates. We need

~ () 28x220

P(X = 2) = Ter - 0.397
5
iii) Mean and variance
For X ~ Hypergeometric(N, M, n),
E(X)=np
where p = 4,
Var(X) = np(1 - p) (¥=4) "
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iv) Shape

The Hypergeometric distribution is similar to the Binomial distribution when
n/N is small, because removing n objects does not change the overall compo-
sition of the population very much when n/N is small.

For n/N < 0.1 we often approximate the Hypergeometric(N, M, n) distribution
by the Binomial(n,p = 4t) distribution.

Hypergeometric(30, 12, 10) Binomial(10, 53)

0.10 0.15 0.20 0.25

0.0 0.05 010 0.15 0.20 0.25 0.30
0.05

0.0

01 2 3 456 7 8 910 01 2 3 456 7 8 910

Note: The Hypergeometric distribution can be used for opinion polls, because
these involve sampling without replacement from a finite population.

The Binomial distribution is used when the population is sampled with replace-
ment.

My as N — oo.

As noted above, Hypergeometric(N, M, n) — Binomial(n, 3

A note about distribution names

Discrete distributions often get their names from mathematical power series.

e Binomial probabilities sum to 1 because of the Binomial Theorem:
(p + (1 - p)) = <sum of Binomial probabilities> = 1.

e Negative Binomial probabilities sum to 1 by the Negative Binomial expan-
sion: i.e. the Binomial expansion with a negative power, —k:
—k

pk(l —(1—- p)) = <sum of NegBin probabilities> = 1.

e Geometric probabilities sum to 1 because they form a Geometric series:

o
pZ(l —p)* = <sum of Geometric probabilities> = 1.
=0
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3.5 Poisson distribution _~ RN

S

When is the next volcano due to erupt in Auckland?
AU Mo et Now, n }Drf"ﬂ\ﬂ*bb

fj‘nfg ol }—o\luz [boo Yeus or 5@) ;
A volcano could happen in Auckland this afternoon, or it might not happen for

another 1000 years. Volcanoes are almost impossible to predict: they seem to
happen completely at random. p Aiscrebe Aisha ' veles 0, 1,2, .

A distribution that counts the number a&- (endop, weds 1 & J%XUL gloa\ce,
Car (HMQ, i Ha PO 15Co N A?SJN'& LV\HOI\,

How many cars will cross the Harbour Bridge today? X~ Paisoon
How many road accidents will there be in NZ this year? X~ foisson
How many volcanoes will erupt over the next 1000 years? X~ f,\¢cc, "

= s

M. Poiscon (mr, F:sh)

Poisson Process ( Onc Oan f\e how o forcson Aishr 5 nsed, buf
- ji__,b YKo Daf low it wiges in /‘L‘\M)
The Poisson process counts the numl o o&r wents o ccwri/\xj N o /O(ﬁ xed

Fae or S(JG\CL) When v nll  0CC W~ M M b & conStrat

mi/crage, ra\,h, :

The Poisson distribution arose from a mathematical

formulation called the Poisson Process, published

by Siméon-Denis Poisson in 1837.

Example: Let X be the number of road accidents in a year in New Zealand.
Suppose that:

i) all accidents are 1|f\¢)\1;,‘o4/v{m{’ Gar encly oHe l/ C\f‘ﬁ[:w[‘ti_g

ii) accidents occur at a constand F\VWOQ« rate da— N FJJW’
iii) accidents Cannoty oCCw 55MAls(ﬁf\ﬁ° M\f[\jf

exat
Then the number of accidents in a year, X, has theLdistribution

Xf\/ PoiS_S’or\ (F/\B :
e s i Low e Poicon Diha arices @gﬂo{'b in Nahve,
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Number of accidents in one year

Let X be the number of accidents to occur in one year:

The probability function for X ~ Poisson(\) is

N,
P(X = x) —;91“01‘ xr=0,1,2,... E
' v
Number of accidents in ¢ AVW?X/DM
umber of accidents in t years Hum\? ?, t\/bgrs

Let X; be the number of accidents to occur in time € \jgaﬁ“.

Then Xt ~ Poicson (Xfc)

P(xX, - ) - _(13_@ fr x-

General definition of the Poisson process

Take any sequence of random events such that:

i) all events are independent;
ii) events occur at a constant average rate of \ per unit time;

iii) events cannot occur simultaneously.

Let Xt Le He nmb o of- evenks o occws AWTCJ Fire £

Then X(._ r~ Po]_g_’;‘on ( Xt} ) Pyicto P
0158 [fo CeSLS
and A . W\&_ohlj OUL‘

5N Firme |
P(Xt:*> = —(—:—\;2@ j’;r A=0510, - -

Note: For a Poisson process in space, let X4 = # events in area of size A.

Then X4 ~ Poisson(AA). %5 Einne
t

Example: X, = number of raisins in a volume A of currant bun.
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Where does the Poisson formula come from?

(Sketch idea, for mathematicians; non-examinable).
The formal definition of the Poisson process is as follows.

Definition: The random variables {X;:t > 0} form a Poisson process with rate \ if:

i) events occurring in any time interval are independent of those occurring
in any other disjoint time interval;

ii)

¥ (P(exactly one event occurs in time intervallt, ¢ + (515]))
im
5t10 ot

iii)

’ (P(more than one event occurs in time interval[t, ¢ + (575])) 0
im =0.
3t10 ot

These conditions can be used to derive a partial differential equation on a func-
tion known as the probability generating function of X;. The partial differential

equation is solved to provide the form P(X; = z) = %e‘”.

/l#"-’ 6{ A

uxtf
Poisson distribution ¢ More jy\uv{ nSe aa, He A ijJrn " WLWJ
G, origpaly 2 o
]—\,IO‘O F,,.SSN\ f‘/
The Poisson distribution is not just used in the context of the Poisson process.

It is also used in many other situations, often as a subjective model (see Section
3.7). Its properties are as follows.

i) Probability function

For X ~ Poisson(\),

£ () = P (X=x)

The parameter A is called the {~ ﬁ\{'g_ of the Poisson distribution.
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ii) Mean and variance

The mean and variance of the Poisson(\) distribution are both A

E(X) =) oA \/ar(X):,\ wher X ~Poisson (N)
(N,

Notes:

1. It makes sense for E(X) = A: by definition, A is the average number of events
per unit time in the Poisson process.

2. The variance of the Poisson distribution increases with the mean (in fact,
variance = mean). This is often the case in real life: there is more uncertainty
associated with larger numbers than with smaller numbers.

(QUV\ML»J NLT)B\‘A VAT > peen, e La‘a'effor red (IJ.Q) 0”"‘)

iii) Sum of independent Poisson random variables

If X and Y are ;.AC{LFL/\A.U\-{’ , and X ~ Poisson()), Y ~ Poisson(u), then

X+Y ~ Poiscon ( X4pm) .
iv) Shape

The shape of the Poisson distribution depends upon the value of A\. For small
A, the distribution has positive (right) skew. As A increases, the distribution
becomes more and more symmetrical, until for large A it has the familiar bell-
shaped appearance.

The probability functions for various A are shown below.

W(Kﬂ'\ A=1 A=35 P(Xe) A= 100

<
e

(=}

lerge X -
'L‘whd.f

S vavvwl"/{c

0.20

«@
o 2]
=]
(=]

0.15

small X
rig-"
Sleer

0.2

N
o
o

0.10

0.1

=
=
o

0.05

0.0
0.0

<
[S)

0123456 78 910 0123456 78 910 60 80 100 120 140
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v) Likelihood and Estimator Variance

As always, the likelihood function is the probability function expressed as a
function of the unknown parameters. If:

e X ~ Poisson(\);

o \is nlknouwn .

e the observed value of X is X =x of X~> O
then the likelihood function is: / s e
X e
X; ) = — - O<N\< oo,
L Tt g

Example: 28 babies were born in Mt Roskill yesterday. Estimate A.
Lk X = #Ualies Lorn Th @ o{@ in Mt Roskll.
A sSume X ~ P o s son (X)
Obsn: X=28 Lalies. SN
L kel ood - L(X;ZSB: %16 for O< A< oo,
Maimise L it copedt b X fo fik fle MLE, X

We find that = » =28, A
Similarly, the maximum likelihood estimator of X is: "\ = X |

Thus the estimator variance 1is: VQJ“ (;\) = Var ( X) = ')\ Lecamee
W XuPorsson (N)
so Ver (X) =N .
Because we don’t know A\, we have to estimate the variance:
A A A : = .
(30 By ot e et

A N '\ LL A\ 3
Se (R) = JVo (N = Jzg \ ot X2 Fhse (X)
vi) R command for the p-value: . pg * |-4¢L [og .

If X ~ Poisson()\), then the R command for P(X < z) is ppois(x, lambda).

Proof of Poisson mean and variance formulae (non-examinable)

We wish to prove that E(X) = Var(X) = A for X ~ Poisson(\).

T

For X ~ Poisson(\), the probability function is fx(z) = —'e*’\ forx =0,1,2,...
x!
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3 ()

=0
o0 A‘/'E _)\ '
Z @1 e (note that term for x = 0 is 0)
r=1 ’

©© pant!

A Z @1 e (writing everything in terms of z — 1)

A Z e (putting y = x — 1)

A, because the sum=1 (sum of Poisson probabilities) .

So E(X) = A, as required.

For Var(X), we use:

But E[X(X —1)] =

Var(X) = E(X?) - (EX)?
= E[X(X - 1)]+E(X) — (EX)?
= E[X(X —1)]+ X\

0} Ax
Z e (terms for z = 0 and z = 1 are 0)

o0
)\x—?
22 Z e (writing everything in terms of = — 2)

— (z—2)!
0 )\y B '
= A\ Z ae A (putting y = x — 2)
y=0
= A\
S0
Var(X) = E[X(X —1)]+ X — \?
= XA N
= )\, as required.
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3.6 Likelihood and log-likelihood for n independent observations

So far, we have seen how to calculate the maximum likelihood estimator in the

case of a

e Y ~ Binomial(n, p) where n is known and p is to be estimated.

Maximum likelihood estimator: p = %

e Y ~ Geometric(p). Maximum likelihood estimator: p = .

e Y ~ NegBin(k, p) where k is known and p is to be estimated.
Maximum likelihood estimator: p = @

e Y ~ Poisson()\). Maximum likelihood estimator: A =Y .

Question: What would we do if we had n independent observations, Y7, Y5, ..., Y,”

Answer: As usual, the likelihood function is defined as the meLaL i b aa, Ha
An’rﬁx) .eo(f(q,s_%a)\ rS o ffm.c)f{ox\ 0af Ha W\le_/\ow/] f‘\fﬁ/vlvh/“

If the data consist of several independent observations, their probability is

gained by mu *“f'()\ﬁ he  indidnal probabilikies ,L.,Jau

Example: Suppose we have observations Y1, Ys, . .., Y, where each Y; ~ Poisson(\),
and Y7,...,Y, are independent. Find the maximum likelihood estimator of .

Before we start, what would you guess ) to be in this situation?

Solution: ﬁr oL sovedions Y. 9 YA =Y, He Ulelilood s
L:__(x } 3"""3;’_\) - ”j( Y‘:Du Y".L:\j?..l'") ttj") AU FMU' A
- ’P(Y’:ﬁ‘ N Yl:jz A - N Y"’:jn)

Y, -
—_—> = W A Q/ PO;SSW\ PUIEN (fcf ond. YL
L=) j
_ | O NNV P
- 31.'311."'3,\‘, (6 ) )

——y = Ke—n) >\"‘5 {ar O< N\ < oo,
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So L(A;yla"'nyn):KeinA)‘ny7
N —
where g = + 3" | y;, and K =[] ﬁ is a constant that doesn’t depend on .

Differentiate L(\;y1,...,y,) and set to 0 to find the MLE:

= D{L(X, NEVEEED N PN
0 ol y 35

_ - -n\ n_a . ny-| )
SR S ) Y R

— NS

- Kgn} Xﬂaﬂl E—M\ + n:u)j
= 0 =aK @™ XN {5y
N T e

— 222, As0 er 2-j

—> If we know that L(\;yi,...,y,) reaches a unique maximum in 0 < A < oo, for
examplebn Youna b a f)rﬁlb\") then we can deduce that the MLE is g )

So the maximum likelihood estimator is:

AR R A

- VY - -

Note: When n =1, we get the same result as we had before: A= =Y.

Log-likelihood

Instead of maximizing the likelihood function L to find the
logs and maximize the log-likelihood function, log L. (Noté

IY'E, we often ta-ke
: log =log, = In.)
n Skafy 2(0 &

—

There are several reasons for using the log-likelihood:
1. The logarithmic function L + log(L) is tncreasing, so the functions L(\)

and log {L(A)} will have Ho sevae maximan ) 3

2. When there are observations Y7, ...,Y,, the likelihood L is a product. Be-
cause log(ab) = log(a) + log(b), the log-likelihood convuts M me
‘ato A sww. It is often easier to differentiate a sum than a product, so
the log-likelihood is easier to maximize while still giving the same MLE.

3. If we need to use a computer to calculate and maximize the likelihood, there
will often be numerical problems with computing the likelihood product,
whereas the log-likelihood sum can be accurately calculated.

le. Bocamse CLT applies fo SWAS S uing (oL will perumte Sore
Supt enticic NoTmal Lilechiboal aory
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Example: Suppose we have observations Y1, Y, ..., Y, where each Y; ~ Poisson(\),
and Y7,...,Y, are independent, as before. Use the log-likelthood function
to find the maximum likelihood estimator of A, and show that you get the same
answer A =Y as we obtained by maximizing the likelihood function directly.

Te

Solution: For observations Y, = y1,...,Y, = y,, the likelihood is:

LAy, -y yn) = H (Ay ) (by independence) @th-)

i=1 v

n Y
So log {L(Aiy1,....yn)} = > log (yﬁ”) St

= 3 fion (L) +tom) 1o ()

1=1

_ 3 {log (yl') +yilog () + (—A)}

1=1
n

= K'+1log(\) Z y; —nX\  where K’ is a constant
i=1

—_— l ryl
LOJ L (x > = K"+ log ()\) ny — nA. Likelihood function

-

=

il
>
|

D1ﬁ”erent1ate/and setto 0
for the MLE:

0 = d 10g{L()\ yl,---,yn)} (7

d)\
, I T '/lk T T I
0 = ﬁ {K'" + log (\) ny — n/\} o 25 = 35 4.0

77 Q\o Seme MASC}MV\M
[\" |
ny Y( Log-Likelihood function

— O = TX— — N szcﬁ” \k
=X =7, |

L(»)
0e+00 4e-81 8e-81
|1

-190

assuming a unique maximum
in0 <\ < oo.

log(L(2))

-200

So the MLE is A = Y as before.

I T T T I
2.0 25 3.0 3.5 4.0
A

L(\) and log {L(A\)} for n = 100, 7 = 2.86.
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3.7 Subjective modelling

Most of the distributions we have talked about in this chapter are exact models
for the situation described. For example, the Binomial distribution describes
exactly the distribution of the number of successes in n Bernoulli trials.

However, there is often no exact model available. If so, we will use a subjective
model.

In a subjective model, we pick a probability distribution to describe a situation
just because it has properties that we think are appropriate to the situation, such
as the right sort of symmetry or skew, or the right sort of relationship between
variance and mean.

Example: Distribution of word lengths for English words.
Let Y = number of letters in an English word chosen at random from the dictio-
nary.

If we plot the frequencies on a barplot, we see that the shape of the distribution
is roughly Poisson.

English word lengths: Y — 1 ~ Poisson(6.22)

Word lengths from 25109 English words

7\

0.15

0.10

probability

0.05

0.0

The Poisson probabilities (with A estimated by maximum likelihood) are plotted
as points overlaying the barplot.

We need to use Y ~ 1 + Poisson because Y cannot take the value 0.

The fit of the Poisson distribution is quite good.
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In this example we can not say that the Poisson distribution represents the
number of events in a fixed time or space: instead, it is being used as a subjective
model for word length.

Can a Poisson distribution fit any data? The answer is no: in fact the Poisson
distribution is very inflexible.

Best Poisson fit

0.10

Here are stroke counts from 13061
Chinese characters. Y is the number
of strokes in a randomly chosen
character. The best-fitting Poisson
distribution (found by MLE)

is overlaid.

0.08

0.06

probability

0.04

The fit of the Poisson distribution is
awftul.

0.02

0.0

It turns out, however, that the Chinese number of strokes
stroke distribution is well-described by

a Negative Binomial model.

Stroke counts from 13061 Chinese characters

The best-fitting Negative
Binomial distribution

(found by MLE)

is NegBin(k = 23.7,p = 0.64).
The fit is very good.

0.08

0.06
&

probability

0.04

However, Y does not

represent the number

0.02

of failures before
the k’th success:

the Negative Binomial

0.0

T T T T
0 10 20 30

number of strokes iS a SUbjeCthe mOdel.
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NOT chen verable e.

NIT Y= g (EL) ey Y=X" S e
Statistical regression modelling is a fundamental technique used in data analysis

in science and business. In this section we give an introduction to the idea of
regression modelling, using the simplest example of modelling a straight line
through the origin of a scatterplot.

Y i response

3.8 Statistical regression modelling

In statistical regression, we explore the relah W\S\a\f Lehven l'l'do var ables .
One variable, z, is typically w de” oW control .

We select several different values of x. At each value of x, we make measure-
ments of the other variable, Y.

The other variable, Y, is regarded as ardomm _
The distribution of Y depends upon the value of x at which we measure it.
We write (x;,Y;) for the i’th pair of measurements, where i = 1,2,... n.

(

After the measurements are observed, we use lower-case letters and write (x;, y;).

Example: Where would you draw the best-fit line through the origin?

y

g - io{qs&‘»\*’
yorlnad 74

_ e slope, o

L. i ; 3 X

e 1 is called the predictor variable, because (f fr@A/T s M AihALbuhon Od— Y

e YV is called the response variable, because ! Foig obsaved in (‘iﬁﬁ nse fo
‘S@(.L(/Hg A ﬁao\rch(N" velue a‘éf x

e You might sometimes see z called the ‘independent variable’ and Y called the
‘dependent variable’. Although it is widely used, this terminology is confusing

because x is not independent of Y in a statistical sense. Most statisticians avoid
this language and use the terms predictor and response instead.
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How does the distribution of Y depend upon x?
In regression modelling, we generally assume that MEAN f(lr Y's Aishaluhlon ) E Y)
has Some r'el.c\,HmsL\“\Jg Wit fle value aﬂ—- x
The simplest regression model is a straight line through the origin. In this

model, we assume that:
E{) = P>,

where the slope parameter 3 is what we want to estimate.

More specifically, in each of the pairs (z;,Y;) for i = 1,...,n, we assume the
same relationship E(Y;) = fz;. . A Acesa't darge .
e The parameter (8 stays the same for all e = 1,...,n. It gives the SLDFL Ba'-
H,e L esk- &-‘-& Line ‘H,\J'a':j[,\ He or'lji/\ .
e The mean of Y changes as x changes. When s ( e, Y lhes &
[orﬁ;_r Mmuan Haoa Whea i Smu (Q-SSLM@ S O),
M SN Yo E(Yﬂiﬁyl:,

w
—

10
|

("_LQ bae b a_ﬂ?/uﬁﬁo/\
(j = (5
-~ (W&) /5 :3)
|G (e sbows He MEAN C’a" He )
AShA oa’ Y Al el 6)9?/\’[ X . 0 L ; ;X
Why do we want to fit a line to these points?

Our main interest is in the relationship between z and Y. In regression
through the origin, this relationship is captured by the slope of the line, 5.

FExample:
e 1 represents some level of experience: e.g. A= | dfor daildran in \yy\f 1 Oﬂ*

S C'l’\"':’\) =2 gﬂj" 24*'3£W:S) eh .
e Y represents some sort of achievement: e.g. Y could Le a r tad ing Sore
of AW"\W\U SCore .
e The slope of the line, 3, tells us about e M in da\dreas
SCores  from one Yeor to Hae aond.
e The school needs to prove that ( is sufficiently high, and not 0 or negative!
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In order to~estimate the slope

¢ need to specify A model de"r He Whole

O(/HS'} Lv\.hoA Y‘
Example 1: Lc,{’ Y NPQ [ SSon ﬁ)d) Tlen IE ()= nfsxl gz:ac] (=1, V) L

This model could be suitable if Y; measures a count of some item that depends
upon x; and has no upper limit. In the school example, Y; could be a number
of achievements or credits accumulated over the years.

As another example, a university student could create a model in which z; is
the percentage course credit awarded for an assignment, and Y; is the time
in hours spent on the assignment. We would expect more time to be spent on
assignments with higher credit, but there will be randomness (scatter) about the
straight-line relationship. A student might use this model to look for outliers,
to decide whether a particular assignment takes an unreasonably long time for the
amount of credit awarded!

Scatter of Y~Poisson(3x) about the mean

Properties of Y; ~ Poisson(Bx;): y .
o Y. s vames 0,1, - Wit =] I ) J/
o 1 .\ V&
° VCJ‘(KB = [E[Yt): (5?(,;}50 S T L o]
Vo aa L InUanges whitlh pmusan . ;i - - L A
It is often appropriate to allow the © } T ™

p——

variance to increase with the mean. 1_%
If you estimate an assignment is going o

1

to take you 1 hour, you are unlikely to 0 1 X

be wrong by 10 hours: there is low wvartance about a mean of E(Y) = 1.
Conversely, if you estimate the assignment will take 100 hours, it could easily

take 10 hours more or less: there is higher wvariance about the mean of

E(Y) = 100.

Although the Poisson distribution allows variance to increase with the mean, it
also makes a very specific assumption about the increase: A4 Y~ Po 1SSon Moau,\
He verione 4 Y EQUALS fle M.

This assumption is often good enough, but e equally it is often too restrictive.

The usual problem is that the Poisson distribution doesn’t allow the variance

to increase enough as the mean gets larger. If so, modellers often use a more

flexible distribution such as the N%M"lt/t 3} Aomial

v et

w —
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Exzample 2: Iqﬁ Y L nominal (ﬂu(O P = &X ) H,M #_(Y) nP [5'{,
L

(Note: we could use p = yz; instead of p = % We use % so that we can compare the distribution of Y;

between Examples 1, 2, and 3 with the same value of 3.)

This model could be suitable if Y; measures a score out of 10 on some test.
In the school example, we might expect older children (larger z;) to achieve a
higher score than younger children on the same test.

Properties of Y; ~ Binomial ( 0 B%). Scatter of Y~Bin(10, Bx/10) about the mean
(2

? 10 y

e Y; takes values 0, (, -, Jo Wil & &7

S%n‘()r bxﬂhu’ U\M'-." o\Jr O .

oVar(Y ( f) (5,7( (}__ (—5%[)8—

Whida s f‘csfm_c/{—-?vd:j 2, 24,09
Wher (3=3 and A= |2, aad 3.
T[/.L uar"im/\ozﬂ !,{COM(J Smmu al o

EY gek dose fo e vpper bimik o o
Example 3: :[([— Y- "4’\@:r\0r\nml.(51k ) P= '@) tHoen E(Y)'nf (31

ﬁr eada U
(We use the peculiar formulation p = £ so we can keep the same value of 8 to compare with Examples 1 & 2.)

For example, a person at a falrground can pay $x, corresponding to $1, $2, or
$3, to get respectively 5, 10, or 15 chances to throw a ball through a net. Their
winnings are related to Y;, the number of times they succeed in throwing the

ball through the net out of their 5z; attempts.
Scatter of Y~Bin(5x, 3/5) about the mean

Properties of Y; ~ Binomial <5a3,~, g) y

o Y; takes values O, 1,2, ..., S, - >

Withh & wppo Wmif &k 51-
e Var(Y] _n{a (- D ,@7( | — g}

which is respectively 1.2, 2.4, 3.6
when f =3 and x = 1, 2, 3.

T vermance incases with EY
bwt (Mv\sw\l\\j) Ve () s jMaLUy 0
Hes EY,
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Difference between statistical regression and our previous models

e In section 3.6, we had n independent random observations Y7, ...,Y,,.
These observations were A " fom e Same AistALudion -
they were independent, identically distributed (iid). .

In the example in section 3.6, each Y; ~ Poisson(\), and we wanted to
estimate the common parameter .

e In statistical regression, we again have n independent random variables
Y1, ....,Y,, but this time they have different distributions: < .
Y. ~ Poisson ((571;) . Aisha OLAde s x C/{,\A,\ﬁ.d
The different distributions are linked by a common parameter, (3, that
describes how the distribution of the response variable Y changes as the
predictor variable  changes.

"'Jmﬁ'ﬁh Al Sl‘f—f’f\\

Estimation by maximum likelihood

To estimate the parameter 3, we use maximum likelihood as usual.

We assume that the response variables Yi,... Y, are 'i/\atbfmatg,\_’i‘ y ch.Hwi
on fte C"rrq..S[oo!\J\;:s Pfeﬁtxd‘br Vartables o, oy, .
For observations Y, = vy, ..., Y, = y,, the likelihood is:

L(ﬁ) :)"""’Jnv = ﬂD(Y,=3]) .- Yn:fjn ]%“'“)7(/1 . ﬁ,)
= TP (Vomy | ;) [by inbipedanass

: < bo
The log-likelihood is: iw 0 ﬁ’ <

log {L(B5y1,---,yn)} = log {HP(YZ- = yi | xi;ﬁ)}
1=1

= Zlog{IP’(Y; =yi|xi;B)} .
i=1

We maximize the likelihood (or more often, the log-likelihood) with respect to
£ as usual. The only difference from typical likelihood maximization is that

We bewe fo Foambo” [P(chj; \%z;(s) 5 Adfot for
Ze A et valie T
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Example: Poisson regression
Recall the scenario shown at the beginning of this section:
y
(z1,91) = (1,4)
(72, 42) = (2,5) M e Seo A
@nm) = (BI) s T e
g 2 P
0 . 30 : A ’]
: kS
19 -"J\"X
0 1 2 3 X

Consider the model Y; ~ Poisson(fz;), for i =1,...,n. R
Maximize the likelihood to find the maximum likelihood estimator, 3.

~

Also find the exact variance, Var(f) in terms of the unknown parameter 3, and

suggest a suitable estimator \//a\r(g) for the variance.

Evaluate B\ and \//'5"(3) for the data shown above, where n = 3 and x; = ¢ for
1 =1,2,3. Mark your estimated best-fit line on the graph shown.

Solution: For Y; ~ Poisson(fx;), the likelihood is (from the previous page):

L( 2 Jn ) ( (T l A ,ﬁ) (fao{p[gmdimc,g)
T e Wh fﬂ' r%ﬂ A

N 5: "j" _(37(;
- I £ e Ax
17 Ull ny NN
e
3

; 3'+"'+Un _'P’(”Cl‘i‘----f?(,,)
73 e

cnld MSK(LOA,WO&"’{M-"/\”( Aurw\Am A,
_ nx
= K (5 6 (; aeor O< A <o,



121

171 Ty ny -nx
=0 K G e e ﬁg
| f){‘oﬁtmd’ rv\h,,
O = K n 6 N ‘3 % _5 -%Z(}.\i

“_"_'> /—)7:0 or (S:DQ or :(j_._q_(_ﬁ =0
fissme o aAIIA PRI n 0< <o (’thQJJW’L‘ o

. V\éo N CQ e
Han We nw@rmwre, B_ i{_), =0 aF Max mmta,
= p=- Y - w0 - g
x - (’?t,+---+7(,\3 x4+,
So tHe MLE is: fi: Vs tY, -

At -, ML € shwaTor -

For' At (,){\)'31): (“"')) @Q’U"):(z’g)) (7‘3fjs):(3,lD

(> —— - - - — = 3-33.

So ﬁ = 333y S -ZS}"\M‘\-"&A Sla‘a{,

F
-._<
I

233 is "hesk £ e

A*ﬂk Hao lbest— @Lﬂ' AL fo fle jf“f‘/\ ‘r:j P?Cpa;\ Q_F—O*’R\CS
e Une posses fhrosli o (0,0) ank (3, lo).



Scatter of Y~Poisson(3x) about the mean

y

15
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Observed data and best—fit line

|—-—'I l'loo..

(a) True line with f = 3; and true distributions of

Y; ~ Poisson(3z;).

So V&F(fb)

¢ 03 sswU’“\
g e

N

y

1 -
: : 8_ i" (3; JIO)
- 1 o -
< : (0,9) 5
* ON ,/
| | [ [ |
2 3 X 0 1 2 3 X

Zz lxZ

( o

=
!

me.) %

Suggested estimator, @'(B\)

Vor ()

For the data above with 5 = 3.333: VcJ'

e ()= Josst

()=

95 Nprox CT s

(b) Observed data and the estimated best-fit line of
y = Bz using B= 10/3 = 3.33.

o Zz 1Y e

Find the variance, Var(ﬁ) using § =

Z\/cr(‘ﬂ +o

3 333

\/ar(ra)( 1) = ™ l/U"(X>

Yo+t Y,
N A

+Ynj75

| ek

J

{( Ver (V) + ~'+V~°\’”(‘f25] DDEY

N

B, + Pt - Jr/svtw}

L,ecm«&t \r PSJSSOA (P*z

N
Notiee |/ar ((5) Acreases
a8 Scw\f\c $Hize N

IAUEASCS [ )

o vﬂ\nb ﬁ)(d .

N7

- 0.556.
+247  —

“+|7es€(ﬁ>) ~S sl



