
Chapter 4: Continuous Random Variables

4.1 Introduction

When Mozart performed his opera Die Entführung aus dem
Serail, the Emperor Joseph II responded wryly, ‘Too many
notes, Mozart!’

In this chapter we meet a different problem: too many numbers!

We have met discrete random variables, for which we can list all the values
and their probabilities, even if the list is infinite:

e.g. for X ∼ Geometric(p),
x 0 1 2 . . .

fX(x) = P(X = x) p pq pq2 . . .

But suppose that X takes values in a continuous set, e.g. [0,∞) or (0, 1).

We can’t even begin to list all the values that X can take. For example, how
would you list all the numbers in the interval [0, 1]?

• the smallest number is 0, but what is the next smallest? 0.01? 0.0001?
0.0000000001? We just end up talking nonsense.

In fact, there are so many numbers in any continuous set that each of them
must have probability 0.

If there was a probability > 0 for all the numbers in a continuous set, however
‘small’, there simply wouldn’t be enough probability to go round.

A continuous random variable takes values
in a continuous interval (a, b).

It describes a continuously varying quantity such as time or height.
When X is continuous, P(X = x) = 0 for ALL x.

The probability function is meaningless.

Although we cannot assign a probability to any value of X, we are able to assign
probabilities to intervals:
eg. P(X = 1) = 0, but P(0.999 ≤ X ≤ 1.001) can be > 0.

This means we should use the distribution function, FX(x)=P(X≤x).





124

The cumulative distribution function, FX(x)

Recall that for discrete random variables:

• FX(x) = P(X ≤ x);

• FX(x) is a step function:
probability accumulates in discrete
steps;

• P(a < X ≤ b) = P(X ∈ (a, b]) = F (b)− F (a).

x

FX(x)

1

For a continuous random variable:

• FX(x) = P(X ≤ x);

• FX(x) is a continuous function:
probability accumulates continuously;

• As before, P(a < X ≤ b) = P(X ∈ (a, b]) = F (b)− F (a).

x

FX(x)

0

1

However, for a continuous random variable,

P(X = a) = 0.

So it makes no difference whether we say P(a < X ≤ b) or P(a ≤ X ≤ b).

For a continuous random variable,

P(a < X < b) = P(a ≤ X ≤ b) = FX(b)− FX(a).

This is not true for a discrete random variable: in fact,

For a discrete random variable with values 0, 1, 2, . . .,

P(a < X < b) = P(a+ 1 ≤ X ≤ b− 1) = FX(b− 1)− FX(a).

Endpoints are not important for continuous r.v.s.
Endpoints are very important for discrete r.v.s.
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4.2 The probability density function

Although the cumulative distribution function gives us an interval-based tool
for dealing with continuous random variables, it is not very good at telling us
what the distribution looks like.
For this we use a different tool called the probability density function.

The probability density function (p.d.f.) is the best way to describe and recog-
nise a continuous random variable. We use it all the time to calculate probabil-
ities and to gain an intuitive feel for the shape and nature of the distribution.
Using the p.d.f. is like recognising your friends by their faces. You can chat on
the phone, write emails or send txts to each other all day, but you never really
know a person until you’ve seen their face.

Just like a cell-phone for keeping in touch, the cumulative distribution function
is a tool for facilitating our interactions with the continuous random variable.
However, we never really understand the random variable until we’ve seen its
‘face’ — the probability density function. Surprisingly, it is quite difficult to
describe exactly what the probability density function is. In this section we
take some time to motivate and describe this fundamental idea.

All-time top-ten 100m sprint times

The histogram below shows the best 10 sprint
times from the 168 all-time top male 100m
sprinters. There are 1680 times in total,
representing the top 10 times up to 2002 from
each of the 168 sprinters. Out of interest,
here are the summary statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max.

9.78 10.08 10.15 10.14 10.21 10.41
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We could plot this histogram using different time intervals:
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We see that each histogram has broadly the same shape, although the heights of
the bars and the interval widths are different.

The histograms tell us the most intuitive thing we wish to know about the
distribution: its shape:

• the most probable times are close to 10.2 seconds;
• the distribution of times has a long left tail (left skew);
• times below 10.0s and above 10.3 seconds have low probability.
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We could fit a curve over any of these histograms to show the desired shape,
but the problem is that the histograms are not standardized:

• every time we change the interval width, the heights of the bars change.

How can we derive a curve or function that captures the common shape of the
histograms, but keeps a constant height? What should that height be?

The standardized histogram

We now focus on an idealized (smooth) version of the sprint times distribution,
rather than using the exact 1680 sprint times observed.

We are aiming to derive a curve, or function, that captures the shape of the
histograms, but will keep the same height for any choice of histogram bar width.

First idea: plot the probabilities instead of the frequencies.

The height of each histogram bar now represents the probability of getting an
observation in that bar.
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This doesn’t work, because the height (probability) still depends upon the bar
width. Wider bars have higher probabilities.
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Second idea: plot the probabilities divided by bar width.

The height of each histogram bar now represents the probability of getting an
observation in that bar, divided by the width of the bar.
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This seems to be exactly what we need! The same curve fits nicely over all the
histograms and keeps the same height regardless of the bar width.

These histograms are called standardized histograms.

The nice-fitting curve is the probability density function.

But. . . what is it?!
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The probability density function

We have seen that there is a single curve that fits nicely over any standardized
histogram from a given distribution.

This curve is called the probability density function (p.d.f.).

We will write the p.d.f. of a continuous random variable X as p.d.f. = fX(x).

The p.d.f. fX(x) is NOT the probability of x — for example, in the
sprint times we can have fX(x) = 4, so it is definitely NOT a prob-
ability.

However, as the histogram bars of the standardized histogram get narrower,
the bars get closer and closer to the p.d.f. curve. The p.d.f. is in fact the limit
of the standardized histogram as the bar width approaches zero.

What is the height of the standardized histogram bar?

For an interval from x to x+ t, the standardized histogram plots the probability
of an observation falling between x and x+t, divided by the width of the interval,
t.

Thus the height of the standardized histogram bar over the interval from x to
x+ t is:

probability

interval width
=

P(x ≤ X ≤ x+ t)

t
=
FX(x+ t)− FX(x)

t
,

where FX(x) is the cumulative distribution function.

Now consider the limit as the histogram bar width (t) goes to 0: this limit is
DEFINED TO BE the probability density function at x, fX(x):

fX(x) = lim
t→0

{
FX(x+ t)− FX(x)

t

}
by definition.

This expression should look familiar: it is the derivative of FX(x).
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The probability density function (p.d.f.) is therefore the function

fX(x) = F ′X(x).

It is defined to be a single, unchanging curve that describes the
SHAPE of any histogram drawn from the distribution of X.

Formal definition of the probability density function

Definition: LetX be a continuous random variable with distribution function FX(x).
The probability density function (p.d.f.) of X is defined as

fX(x) =
dFX
dx

= F ′X(x).

It gives:

• the RATE at which probability is accumulating at any given
point, F ′X(x);

• the SHAPE of the distribution of X.

Using the probability density function to calculate probabilities

As well as showing us the shape of the distribution of X, the probability density
function has another major use:

• it calculates probabilities by integration.

Suppose we want to calculate P(a ≤ X ≤ b).

We already know that: P(a ≤ X ≤ b) = FX(b)− FX(a).

But we also know that:

dFX
dx

= fX(x),

so FX(x) =

∫
fX(x) dx (without constants).

In fact: FX(b)− FX(a) =

∫ b

a

fX(x) dx.
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This is a very important result:

Let X be a continuous random variable with probability density function fX(x).
Then

P(a ≤ X ≤ b) = P(X ∈ [ a, b ] ) =

∫ b

a

fX(x) dx .

This means that we can calculate probabilities by integrating the p.d.f.

a b
x

fX(x)

The total area under the p.d.f. curve is:

total area =

∫ ∞

−∞
fX(x) dx = FX(∞)− FX(−∞) = 1− 0 = 1.

This says that the total area under the p.d.f. curve is equal to the total proba-
bility that X takes a value between −∞ and +∞, which is 1.

x

fX(x)
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Using the p.d.f. to calculate the distribution function, FX(x)

Suppose we know the probability density function, fX(x), and wish to calculate
the distribution function, FX(x). We use the following formula:

Distribution function, FX(x) =

∫ x

−∞
fX(u) du.

Proof:

∫ x

−∞
f(u)du = FX(x)− FX(−∞) = FX(x)− 0 = FX(x).

Using the dummy variable, u:

Writing FX(x) =

∫ x

−∞
fX(u) du means:

integrate fX(u) as u ranges from −∞ to x.

u

fX(u)

Writing FX(x) =

∫ x

−∞
fX(x) dx is WRONG and MEANINGLESS: LOSES

A MARK every time.

In words,
∫ x
−∞ fX(x) dx means: integrate fX(x) as x ranges from −∞ to x. It’s

nonsense!

How can x range from −∞ to x?!
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Why do we need fX(x)? Why not stick with FX(x)?

These graphs show FX(x) and fX(x) from the men’s 100m sprint times (X is a
random top ten 100m sprint time).
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Just using FX(x) gives us very little intuition about the problem. For example,
which is the region of highest probability?

Using the p.d.f., fX(x), we can see that it is about 10.1 to 10.2 seconds.

Using the c.d.f., FX(x), we would have to inspect the part of the curve with the
steepest gradient: very difficult to see.

Example of calculations with the p.d.f.

Let fX(x) =

{
k e−2x for 0 < x <∞,
0 otherwise.

x

f(x)

0

(i) Find the constant k.

(ii) Find P(1 < X ≤ 3).

(iii) Find the cumulative distribution function, FX(x), for all x.

(i) We need:
∫ ∞

−∞
fX(x) dx = 1

∫ 0

−∞
0 dx+

∫ ∞

0

k e−2x dx = 1

k

[
e−2x

−2

]∞

0

= 1
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−k
2

(e−∞ − e0) = 1

−k
2

(0− 1) = 1

k = 2.

(ii)
P(1 < X ≤ 3) =

∫ 3

1

fX(x) dx

=

∫ 3

1

2 e−2x dx

=

[
2e−2x

−2

]3

1

= −e−2×3 + e−2×1

= 0.132.

(iii)

FX(x) =

∫ x

−∞
fX(u) du

=

∫ 0

−∞
0 du+

∫ x

0

2 e−2u du for x > 0

= 0 +

[
2e−2u

−2

]x

0

= −e−2x + e0

= 1− e−2x for x > 0.

When x ≤ 0, FX(x) =
∫ x
−∞ 0 du = 0.

So overall,

FX(x) =

{
0 for x ≤ 0,

1− e−2x for x > 0.
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Total area under the p.d.f. curve is 1:

∫ ∞

−∞
fX(x) dx = 1.

The p.d.f. is NOT a probability: fX(x) ≥ 0 always,
but we do NOT require fX(x) ≤ 1.

Calculating probabilities:

1. If you only need to calculate one probability P(a ≤ X ≤ b): integrate
the p.d.f.:

P(a ≤ X ≤ b) =

∫ b

a

fX(x) dx.

2. If you will need to calculate several probabilities, it is easiest to find the
distribution function, FX(x):

FX(x) =

∫ x

−∞
fX(u) du.

Then use: P(a ≤ X ≤ b) = FX(b)− FX(a) for any a, b.

Endpoints: DO NOT MATTER for continuous random variables:

P(X ≤ a) = P(X < a) and P(X ≥ a) = P(X > a) .



4.3 The Exponential distribution 2017?

17 Oct

9 Jun2074?

5 N
ov

2345?

When will the next volcano erupt in
Auckland? We never quite answered
this question in Chapter 3. The Poisson
distribution was used to count the
number of volcanoes that would occur in a fixed space of time.

We have not said how long we have to wait for the next volcano: this is a
continuous random variable.

Auckland Volcanoes

About 50 volcanic eruptions have occurred in Auckland over the last 100,000
years or so. The first two eruptions occurred in the Auckland Domain and
Albert Park — right underneath us! The most recent, and biggest, eruption
was Rangitoto, about 600 years ago. There have been about 20 eruptions in
the last 20,000 years, which has led the Auckland Council to assess current
volcanic risk by assuming that volcanic eruptions in Auckland follow a Poisson
process with rate λ = 1

1000 volcanoes per year. For background information,
see: www.aucklandcouncil.govt.nz and search for ‘volcanic hazard’.

Distribution of the waiting time in the Poisson process

The length of time between events in the Poisson process is called the waiting
time.

To find the distribution of a continuous random variable, we often work with
the cumulative distribution function, FX(x).

This is because FX(x) = P(X ≤ x) gives us a probability, unlike the p.d.f.
fX(x). We are comfortable with handling and manipulating probabilities.

Suppose that {Nt : t > 0} forms a Poisson process with rate λ = 1
1000.

Nt is the number of volcanoes to have occurred by time t, starting
from now.

We know that

Nt ∼ Poisson(λt) ; so P(Nt = n) =
(λt)n

n!
e−λt.
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Let X be a continuous random variable giving the number of years waited
before the next volcano, starting now. We will derive an expression for
FX(x).

(i) When x < 0:

FX(x) = P(X ≤ x) = P( less than 0 time before next volcano) = 0.

(ii) When x ≥ 0:

FX(x) = P(X ≤ x) = P(amount of time waited for next volcano is ≤ x)

= P(there is at least one volcano between now and time x)

= P(# volcanoes between now and time x is ≥ 1)

= P(Nx ≥ 1)

= 1− P(Nx = 0)

= 1− (λx)0

0!
e−λx

= 1− e−λx.

Overall: FX(x) = P(X ≤ x) =

{
1− e−λx for x ≥ 0,
0 for x < 0.

The distribution of the waiting time X is called the Exponential distribution
because of the exponential formula for FX(x).

Example: What is the probability that there will be a volcanic eruption in Auck-
land within the next 50 years?

Put λ = 1
1000. We need P(X ≤ 50).

P(X ≤ 50) = FX(50) = 1− e−50/1000 = 0.049.

There is about a 5% chance that there will be a volcanic eruption in Auckland
over the next 50 years. This is the figure given by the Auckland Council at the
above web link.
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The Exponential Distribution

We have defined the Exponential(λ) distribution to be the distribution of the
waiting time (time between events) in a Poisson process with rate
λ.

We write X ∼ Exponential(λ), or X ∼ Exp(λ).

However, just like the Poisson distribution, the Exponential distribution has
many other applications: it does not always have to arise from a Poisson process.

Let X ∼ Exponential(λ). Note: λ > 0 always.

Distribution function: FX(x) = P(X ≤ x) =

{
1− e−λx for x ≥ 0,
0 for x < 0.

Probability density function: fX(x) = F ′X(x) =

{
λe−λx for x ≥ 0,
0 for x < 0.

P.d.f., fX(x) C.d.f., FX(x) = P(X ≤ x).

Link with the Poisson process

Let {Nt : t > 0} be a Poisson process with rate λ. Then:

• Nt is the number of events to occur by time t;

• Nt ∼ Poisson(λt) ; so P(Nt = n) = (λt)n

n! e
−λt ;

• Define X to be either the time till the first event, or the time from now
until the next event, or the time between any two events.

Then X ∼ Exponential(λ).
X is called the waiting time of the process.



Memorylessness

zzzz

Memory likea sieve!

We have said that the waiting time of the
Poisson process can be defined either as
the time from the start to the first event,
or the time from now until the next event,
or the time between any two events.

All of these quantities have the same distribution: X ∼ Exponential(λ).

The derivation of the Exponential distribution was valid for all of them, because
events occur at a constant average rate in the Poisson process.

This property of the Exponential distribution is called memorylessness:

• the distribution of the time from now until the first event is the same as
the distribution of the time from the start until the first event: the time
from the start till now has been forgotten!

time from start to first event

time from now to first eventthis time forgotten

START NOW FIRST
EVENT

The Exponential distribution is famous for this memoryless property: it is the
only continuous memoryless distribution.

For volcanoes, memorylessness means that the 600 years we have waited since
Rangitoto erupted have counted for nothing.

The chance that we still have 1000 years to wait for the next eruption is the
same today as it was 600 years ago when Rangitoto erupted.

Memorylessness applies to any Poisson process. It is not always a desirable
property: you don’t want a memoryless waiting time for your bus!

The Exponential distribution is often used to model failure times of components:
for example X ∼ Exponential(λ) is the amount of time before a light bulb fails.
In this case, memorylessness means that ‘old is as good as new’ — or, put
another way, ‘new is as bad as old’ ! A memoryless light bulb is quite likely to
fail almost immediately.
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For private reading: proof of memorylessness

Let X ∼ Exponential(λ) be the total time waited for an event.

Let Y be the amount of extra time waited for the event, given that we have
already waited time t (say).

We wish to prove that Y has the same distribution as X, i.e. that the time t
already waited has been ‘forgotten’. This means we need to prove that Y ∼
Exponential(λ).

Proof: We will work with FY (y) and prove that it is equal to 1− e−λy. This proves
that Y is Exponential(λ) like X.

First note that X = t+Y , because X is the total time waited, and Y is the time
waited after time t. Also, we must condition on the event {X > t}, because we
know that we have already waited time t. So P(Y ≤ y) = P(X ≤ t+ y |X > t).

FY (y) = P(Y ≤ y) = P(X ≤ t+ y |X > t)

=
P(X ≤ t+ y AND X > t)

P(X > t)

(definition of conditional probability)

=
P(t < X ≤ t+ y)

1− P(X ≤ t)

=
FX(t+ y)− FX(t)

1− FX(t)

=
(1− e−λ(t+y))− (1− e−λt)

1− (1− e−λt)

=
e−λt − e−λ(t+y)

e−λt

=
e−λt(1− e−λy)

e−λt

= 1− e−λy. So Y ∼ Exponential(λ) as required.

Thus the conditional probability of waiting time y extra, given that we have
already waited time t, is the same as the probability of waiting time y in total.
The time t already waited is forgotten. �
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4.4 Likelihood and estimation for continuous random variables

• For discrete random variables, we found the likelihood using the proba-
bility function, fX(x) = P(X = x).

• For continuous random variables, we find the likelihood using the proba-
bility density function, fX(x) = dFX

dx .

• Although the notation fX(x) means something different for continuous and
discrete random variables, it is used in exactly the same way for likelihood
and estimation.

Note: Both discrete and continuous r.v.s have the same definition for the cumula-
tive distribution function: FX(x) = P(X ≤ x).

Example: Exponential likelihood

Suppose that:

• X ∼ Exponential(λ);

• λ is unknown;

• the observed value of X is x.

Then the likelihood function is:

L(λ ;x) = fX(x) = λe−λx for 0 < λ <∞.

We estimate λ by setting
dL

dλ
= 0 to find the MLE, λ̂.

Two or more independent observations

Suppose that X1, . . . , Xn are continuous random variables such that:

• X1, . . . , Xn are INDEPENDENT;

• all the Xis have the same p.d.f., fX(x);

then the likelihood is
fX(x1)fX(x2) . . . fX(xn).
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Example: Suppose thatX1, X2, . . . , Xn are independent, andXi ∼ Exponential(λ)
for all i. Find the maximum likelihood estimate of λ.
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Likelihood graph shown
for λ = 2 and n = 10.
x1, . . . , x10 generated
by R command
rexp(10, 2).

Solution: L(λ ;x1, . . . , xn) =
n∏

i=1

fX(xi)

=
n∏

i=1

λe−λxi

= λne−λ
∑n
i=1 xi for 0 < λ <∞.

Define x = 1
n

∑n
i=1 xi to be the sample mean of x1, . . . , xn. So

n∑

i=1

xi = nx.

Thus
L(λ ;x1, . . . , xn) = λne−λnx for 0 < λ <∞.

Solve
dL

dλ
= 0 to find the MLE of λ:

dL

dλ
= nλn−1e−λnx − λn × nx× e−λnx = 0

nλn−1e−λnx(1− λx) = 0

⇒ λ = 0, λ =∞, λ =
1

x
.

The MLE of λ is

λ̂ =
1

x
.
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4.5 Hypothesis tests

Hypothesis tests for continuous random variables are just like hypothesis tests
for discrete random variables. The only difference is:

• endpoints matter for discrete random variables, but not for con-
tinuous random variables.

Example: discrete. Suppose H0 : X ∼ Binomial(n = 10, p = 0.5), and we have
observed the value x = 7. Then the upper-tail p-value is

P(X ≥ 7) = 1− P(X ≤ 6) = 1− FX(6).

Example: continuous. Suppose H0 : X ∼ Exponential(2), and we have ob-
served the value x = 7. Then the upper-tail p-value is

P(X ≥ 7) = 1− P(X ≤ 7) = 1− FX(7).

Other than this trap, the procedure for hypothesis testing is the same:

• Use H0 to specify the distribution of X completely, and offer a one-tailed
or two-tailed alternative hypothesis H1.

• Make observation x.

• Find the one-tailed or two-tailed p-value as the probability of seeing an
observation at least as weird as what we have seen, if H0 is true.

• That is, find the probability under the distribution specified by H0 of seeing
an observation further out in the tails than the value x that we have seen.

Example with the Exponential distribution

A very very old person observes that the waiting time from Rangitoto to the
next volcanic eruption in Auckland is 1500 years. Test the hypothesis that
λ = 1

1000 against the one-sided alternative that λ < 1
1000 .

Note: If λ < 1
1000 , we would expect to see BIGGER values of X, NOT

smaller. This is because X is the time between volcanoes, and λ is the rate
at which volcanoes occur. A smaller value of λ means volcanoes occur less
often, so the time X between them is BIGGER.
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Hypotheses: Let X ∼ Exponential(λ).

H0 : λ =
1

1000

H1 : λ <
1

1000
one-tailed test

Observation: x = 1500 years.

Values weirder than x = 1500 years: all values BIGGER than x =
1500.

p-value: P(X ≥ 1500) when X ∼ Exponential(λ = 1
1000).

So

p− value = P(X ≥ 1500)

= 1− P(X ≤ 1500)

= 1− FX(1500) when X ∼ Exponential(λ = 1
1000)

= 1− (1− e−1500/1000)

= 0.223.

R command: 1-pexp(1500, 1/1000)

Interpretation: There is no evidence against H0. The observation
x = 1500 years is consistent with the hypothesis that λ = 1/1000, i.e.
that volcanoes erupt once every 1000 years on average.
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4.6 Expectation and variance

Remember the expectation of a discrete random variable is the long-term av-
erage:

µX = E(X) =
∑

x

xP(X = x) =
∑

x

xfX(x).

(For each value x, we add in the value and multiply by the proportion of times
we would expect to see that value: P(X = x).)

For a continuous random variable, replace the probability function with the
probability density function, and replace

∑
x by

∫∞
−∞:

µX = E(X) =

∫ ∞

−∞
xfX(x) dx,

where fX(x) = F ′X(x) is the probability density function.

Note: There exists no concept of a ‘probability function’ fX(x) = P(X = x) for
continuous random variables. In fact, if X is continuous, then P(X = x) = 0
for all x.

The idea behind expectation is the same for both discrete and continuous ran-
dom variables. E(X) is:

• the long-term average of X;

• a ‘sum’ of values multiplied by how common they are:∑
xf(x) or

∫
xf(x) dx.

Expectation is also the

balance point of fX(x)

for both continuous and

discrete X.

Imagine fX(x) cut out of

cardboard and balanced

on a pencil.
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Discrete: Continuous:

E(X) =
∑

x

xfX(x) E(X) =

∫ ∞

−∞
xfX(x) dx

E(g(X)) =
∑

x

g(x)fX(x) E(g(X)) =

∫ ∞

−∞
g(x)fX(x) dx

Transform the values, Transform the values,
leave the probabilities alone; leave the probability density alone.

fX(x) =P(X = x) fX(x) =F ′X(x) (p.d.f.)

Variance

If X is continuous, its variance is defined in exactly the same way as a discrete
random variable:

Var(X) = σ2
X = E

(
(X − µX)2

)
= E(X2)− µ2

X = E(X2)− (EX)2.

For a continuous random variable, we can either compute the variance using

Var(X) = E
(

(X − µX)2
)

=

∫ ∞

−∞
(x− µX)2fX(x)dx,

or

Var(X) = E(X2)− (EX)2 =

∫ ∞

−∞
x2fX(x)dx− (EX)2.

The second expression is usually easier (although not always).
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Properties of expectation and variance

All properties of expectation and variance are exactly the same for continuous
and discrete random variables.

For any random variables, X, Y , and X1, . . . , Xn, continuous or discrete, and
for constants a and b:

• E(aX + b) =aE(X) + b.

• E(ag(X) + b) =aE(g(X)) + b.

• E(X + Y ) =E(X) + E(Y ).

• E(X1 + . . .+Xn) =E(X1) + . . .+ E(Xn).

• Var(aX + b) =a2Var(X).

• Var(ag(X) + b) =a2Var(g(X)).

The following statements are generally true only when X and Y are
INDEPENDENT:

• E(XY ) =E(X)E(Y ) when X , Y independent.

• Var(X + Y ) =Var(X) + Var(Y ) when X , Y independent.

4.7 Exponential distribution mean and variance

When X ∼ Exponential(λ), then:

E(X) = 1
λ Var(X) = 1

λ2 .

Note: If X is the waiting time for a Poisson process with rate λ events per year
(say), it makes sense that E(X) = 1

λ . For example, if λ = 4 events per hour,
the average time waited between events is 1

4 hour.
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Proof : E(X) =
∫∞
−∞ xfX(x) dx =

∫∞
0 xλe−λx dx.

Integration by parts: recall that
∫
udvdx dx = uv −

∫
v dudx dx.

Let u = x, so du
dx = 1, and let dv

dx = λe−λx, so v = −e−λx.

Then E(X) =

∫ ∞

0

xλe−λx dx =

∫ ∞

0

u
dv

dx
dx

=
[
uv
]∞

0
−
∫ ∞

0

v
du

dx
dx

=
[
− xe−λx

]∞
0
−
∫ ∞

0

(−e−λx) dx

= 0 +
[ −1

λe
−λx ]∞

0

= −1
λ × 0−

(−1
λ × e0

)

∴ E(X) = 1
λ .

Variance: Var(X) = E(X2)− (EX)2 = E(X2)− 1
λ2 .

Now E(X2) =

∫ ∞

−∞
x2fX(x) dx =

∫ ∞

0

x2λe−λx dx.

Let u = x2, so du
dx = 2x, and let dv

dx = λe−λx, so v = −e−λx.

Then E(X2) =
[
uv
]∞

0
−
∫ ∞

0

v
du

dx
dx =

[
− x2e−λx

]∞
0

+

∫ ∞

0

2xe−λx dx

= 0 +
2

λ

∫ ∞

0

λxe−λx dx

=
2

λ
× E(X) =

2

λ2
.

So
Var(X) = E(X2)− (EX)2 =

2

λ2
−
(

1

λ

)2

Var(X) =
1

λ2
. �
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Interlude: Guess the Mean, Median, and Variance

For any distribution:

• the mean is the average that would be obtained if a large number of
observations were drawn from the distribution;

• the median is the half-way point of the distribution: every observation
has a 50-50 chance of being above the median or below the median;

• the variance is the average squared distance of an observation from
the mean.

Given the probability density function of a distribution, we should be able to
guess roughly the distribution mean, median, and variance . . . but it isn’t easy!
Have a go at the examples below. As a hint:

• the mean is the balance-point of the distribution. Imagine that the p.d.f.
is made of cardboard and balanced on a rod. The mean is the point where
the rod would have to be placed for the cardboard to balance.

• the median is the half-way point, so it divides the p.d.f. into two equal
areas of 0.5 each.

• the variance is the average squared distance of observations from the
mean; so to get a rough guess (not exact), it is easiest to guess an average
distance from the mean and square it.

x

0 50 100 150 200 250 300

0
.0

0
.0
0
4

0
.0
0
8

0
.0
1
2

f(x)

Guess the mean, median, and variance.

(answers overleaf)
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Answers:

x

0 50 100 150 200 250 300

0
.0

0
.0

0
4

0
.0

0
8

0
.0

1
2

f(x)

median (54.6)

mean (90.0)

variance = (118)  = 13924
2

Notes: The mean is larger than the median. This always happens when the dis-
tribution has a long right tail (positive skew) like this one.
The variance is huge . . . but when you look at the numbers along the horizontal
axis, it is quite believable that the average squared distance of an observation
from the mean is 1182. Out of interest, the distribution shown is a Lognormal
distribution.

Example 2: Try the same again with the example below. Answers are written
below the graph.

x

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

f(x)

Answers:Median=0.693;Mean=1.0;Variance=1.0.
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4.8 The Uniform distribution

X has a Uniform distribution on the interval [a, b] ifX is equally likely
to fall anywhere in the interval [a, b].

We write X ∼ Uniform[a, b], or X ∼ U[a, b].
Equivalently, X ∼ Uniform(a, b), or X ∼ U(a, b).

Probability density function, fX(x)

If X ∼ U [a, b], then

fX(x) =





1

b− a if a ≤ x ≤ b,

0 otherwise.

Distribution function, FX(x)

FX(x) =

∫ x

−∞
fY (y) dy =

∫ x

a

1

b− a dy if a ≤ x ≤ b

=

[
y

b− a

]x

a

=
x− a
b− a if a ≤ x ≤ b.

Thus

FX(x) =





0 if x < a,
x−a
b−a if a ≤ x ≤ b,

1 if x > b.
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Mean and variance:

If X ∼ Uniform[a, b], E(X) =
a+ b

2
, Var(X) =

(b− a)2

12
.

Proof :

E(X) =

∫ ∞

−∞
xf(x) dx =

∫ b

a

x

(
1

b− a

)
dx =

1

b− a

[
x2

2

]b

a

=

(
1

b− a

)
· 1

2
(b2 − a2)

=

(
1

b− a

)
1

2
(b− a)(b+ a)

=
a+ b

2
.

Var(X) = E[(X − µX)2] =

∫ b

a

(x− µX)2

b− a dx =
1

b− a

[
(x− µX)3

3

]b

a

=

(
1

b− a

){
(b− µX)3 − (a− µX)3

3

}

But µX = EX = a+b
2 , so b− µX = b−a

2 and a− µX = a−b
2 .

So,

Var(X) =

(
1

b− a

){
(b− a)3 − (a− b)3

23 × 3

}
=

(b− a)3 + (b− a)3

(b− a)× 24

=
(b− a)2

12
. �

Example: let X ∼ Uniform[0, 1]. Then

fX(x) =

{
1 if 0 ≤ x ≤ 1
0 otherwise.

µX = E(X) = 0+1
2 = 1

2 (half-way through interval [0, 1]).

σ2
X = Var(X) = 1

12(1− 0)2 = 1
12 .
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4.9 The Change of Variable Technique: finding the distribution of g(X)

Let X be a continuous random variable. Suppose

• the p.d.f. of X, fX(x), is known;

• the r.v. Y is defined as Y = g(X) for some function g;

• we wish to find the p.d.f. of Y .

We use the Change of Variable technique.

Example: Let X ∼ Uniform(0, 1), and let Y = − log(X).

The p.d.f. of X is fX(x) = 1 for 0 < x < 1.

What is the p.d.f. of Y , fY (y)?

Change of variable technique for monotone functions

Suppose that g(X) is a monotone function R→ R.

This means that g is an increasing function, or g is a decreasing fn.

When g is monotone, it is invertible, or (1–1) (‘one-to-one’).

That is, for every y there is a unique x such that g(x) = y.

This means that the inverse function, g−1(y), is well-defined as a function for a
certain range of y.

When g : R→ R, as it is here, then g can only be (1–1) if it is monotone.

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y = g(x) = x
2

x = g
−1(y) =

√

y
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Change of Variable formula

Let g : R→ R be a monotone function and let Y = g(X). Then the p.d.f. of
Y = g(X) is

fY (y) = fX(g−1(y))
∣∣∣ ddyg−1(y)

∣∣∣ .

Easy way to remember

Write y = y(x)(= g(x))
∴ x = x(y)(= g−1(y))

Then fY (y) = fX
(
x(y)

) ∣∣∣dxdy
∣∣∣.

Working for change of variable questions

1) Show you have checked g(x) is monotone over the required range.

2) Write y = y(x) for x in ¡range of x¿, e.g. for a < x < b.

3) So x = x(y) for y in ¡range of y¿:
for y(a) < y(x) < y(b) if y is increasing;
for y(a) > y(x) > y(b) if y is decreasing.

4) Then
∣∣∣dx
dy

∣∣∣ = ¡expression involving y¿.

5) So fY (y) = fX(x(y))
∣∣∣dx
dy

∣∣∣ by Change of Variable formula,

= . . . .

Quote range of values of y as part of the FINAL answer.

Refer back to the question to find fX(x): you often have to deduce this from
information like X ∼ Uniform(0, 1) or X ∼ Exponential(λ).
Or it may be given explicitly.
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Note: There should be no x’s left in the answer!

x(y) and
∣∣∣dx
dy

∣∣∣ are expressions involving y only.

Example 1: Let X ∼ Uniform(0, 1), and let
Y = − log(X). Find the p.d.f. of Y . Hence
name the distribution of Y , with parameters.

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

y = −log(x)

1) y(x) = − log(x) is monotone decreasing,
so we can apply the Change of Variable formula.

2) Let y = y(x) = − log x for 0 < x < 1.

3) Then x = x(y) = e−y for − log(0) > y > − log(1), ie.
0 < y <∞.

4)

∣∣∣∣
dx

dy

∣∣∣∣ =

∣∣∣∣
d

dy
(e−y)

∣∣∣∣ =
∣∣−e−y

∣∣ = e−y for 0 < y <∞.

5) So fY (y) = fX(x(y))

∣∣∣∣
dx

dy

∣∣∣∣ for 0 < y <∞

= fX(e−y)e−y for 0 < y <∞.

But X ∼ Uniform(0, 1), so fX(x) = 1 for 0 < x < 1,
⇒ fX(e−y) = 1 for 0 < y <∞.

Thus fY (y) = fX(e−y)e−y = e−y for 0 < y <∞. So Y ∼ Exponential(1).

Note: In change of variable questions, you lose a mark for:

1. not stating g(x) is monotone over the required range of x;

2. not giving the range of y for which the result holds, as part of the FINAL
answer. (eg. fY (y) = . . . for 0 < y <∞).
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Example 2: Let X be a continuous random variable with p.d.f.

fX(x) =

{ 1
4x

3 for 0 < x < 2,

0 otherwise.

Let Y = 1/X. Find the probability density function of Y , fY (y).

Let Y = 1/X. The function y(x) = 1/x is monotone decreasing for
0 < x < 2, so we can apply the Change of Variable formula.

Let y = y(x) = 1/x for 0 < x < 2.

Then x = x(y) = 1/y for 1
0 > y > 1

2 , i.e.
1
2 < y <∞.

∣∣∣∣
dx

dy

∣∣∣∣ = | − y−2 | = 1/y2 for 1
2 < y <∞.

Change of variable formula: fY (y) = fX(x(y))

∣∣∣∣
dx

dy

∣∣∣∣

=
1

4
(x(y))

3

∣∣∣∣
dx

dy

∣∣∣∣

=
1

4
× 1

y3
× 1

y2

=
1

4y5
for

1

2
< y <∞.

Thus

fY (y) =





1

4y5
for 1

2 < y <∞,

0 otherwise.
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For mathematicians: proof of the change of variable formula

Separate into cases where g is increasing and where g is decreasing.

i) g increasing

g is increasing if u < w ⇔ g(u) < g(w). ~
Note that putting u = g−1(x), and w = g−1(y), we obtain

g−1(x) < g−1(y) ⇔ g(g−1(x)) < g(g−1(y))

⇔ x < y,

so g−1 is also an increasing function.

Now

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) put

{
u = X,
w = g−1(y)

in ~ to see this.

= FX(g−1(y)).

So the p.d.f. of Y is

fY (y) =
d

dy
FY (y)

=
d

dy
FX(g−1(y))

= F ′X(g−1(y))
d

dy
(g−1(y)) (Chain Rule)

= fX(g−1(y))
d

dy
(g−1(y))

Now g is increasing, so g−1 is also increasing (by overleaf), so d
dy(g

−1(y)) > 0,

and thus fY (y) = fX(g−1(y))| ddy(g−1(y))| as required.

ii) g decreasing, i.e. u > w ⇐⇒ g(u) < g(w). (?)

(Putting u = g−1(x) and w = g−1(y) gives g−1(x) > g−1(y) ⇐⇒ x < y,
so g−1 is also decreasing.)

FY (y) = P(Y ≤ y) = P(g(X) ≤ y)

= P(X ≥ g−1(y)) (put u = X, w = g−1(y) in (?))

= 1− FX(g−1(y)).

Thus the p.d.f. of Y is

fY (y) =
d

dy

(
1− FX(g−1(y))

)
= −fX

(
g−1(y)

) d
dy

(
g−1(y)

)
.
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This time, g is decreasing, so g−1 is also decreasing, and thus

− d
dy

(
g−1(y)

)
=

∣∣∣∣
d

dy

(
g−1(y)

)∣∣∣∣ .

So once again,

fY (y) = fX

(
g−1(y)

) ∣∣∣∣
d

dy

(
g−1(y)

)∣∣∣∣ . �

4.10 Change of variable for non-monotone functions: non-examinable

Suppose that Y = g(X) and g is not monotone. We wish to find the p.d.f. of
Y . We can sometimes do this by using the distribution function directly.

Example: Let X have any distribution, with distribution function FX(x).
Let Y = X2. Find the p.d.f. of Y .

Clearly, Y ≥ 0, so FY (y) = 0 if y < 0.

For y ≥ 0:

FY (y) = P(Y ≤ y)

= P(X2 ≤ y)

= P(−√y ≤ X ≤ √y)

= FX(
√
y)− FX(−√y) .

Y

X
0

y

√
y−

√
y

So

FY (y) =

{
0 if y < 0,
FX(
√
y)− FX(−√y) if y ≥ 0.
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So the p.d.f. of Y is

fY (y) =
d

dy
FY =

d

dy
(FX(

√
y))− d

dy
(FX(−√y))

= 1
2y
− 1

2F ′X(
√
y) + 1

2y
− 1

2F ′X(−√y)

=
1

2
√
y

(
fX(
√
y) + fX(−√y)

)
for y ≥ 0.

∴ fY (y) =
1

2
√
y

(
fX(
√
y) + fX(−√y)

)
for y ≥ 0, whenever Y = X2.

Example: Let X ∼ Normal(0, 1). This is the familiar bell-shaped distribution (see
later). The p.d.f. of X is:

fX(x) =
1√
2π

e−x
2/2.

Find the p.d.f. of Y = X2.

By the result above, Y = X2 has p.d.f.

fY (y) =
1

2
√
y
· 1√

2π
(e−y/2 + e−y/2)

=
1√
2π
y−1/2e−y/2 for y ≥ 0.

This is in fact the Chi-squared distribution with ν = 1 degrees of freedom.

The Chi-squared distribution is a special case of the Gamma distribution (see
next section). This example has shown that if X ∼ Normal(0, 1), then Y =
X2 ∼Chi-squared(df=1).
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4.11 The Gamma distribution

The Gamma(k, λ) distribution is a very flexible family of distributions.

It is defined as the sum of k independent Exponential r.v.s:

if X1, . . . , Xk ∼ Exponential(λ)and X1, . . . , Xk are independent,
then X1 +X2 + . . .+Xk ∼ Gamma(k, λ).

Special Case: When k = 1, Gamma(1, λ) = Exponential(λ)
(the sum of a single Exponential r.v.)

Probability density function, fX(x)

For X ∼ Gamma(k, λ), fX(x) =

{
λk

Γ(k)x
k−1e−λx if x ≥ 0,

0 otherwise.

Here, Γ(k), called the Gamma function of k, is a constant that ensures fX(x)

integrates to 1, i.e.
∫∞

0 fX(x)dx = 1. It is defined as Γ(k) =

∫ ∞

0

yk−1e−y dy .

When k is an integer, Γ(k) = (k − 1)!

Mean and variance of the Gamma distribution:

For X ∼ Gamma(k, λ), E(X) = k
λ and Var(X) = k

λ2

Relationship with the Chi-squared distribution

The Chi-squared distribution with ν degrees of freedom, χ2
ν, is a special case of

the Gamma distribution.

χ2
ν = Gamma(k = ν

2 , λ = 1
2).

So if Y ∼ χ2
ν, then E(Y ) = k

λ = ν, and Var(Y ) = k
λ2 = 2ν.
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Gamma p.d.f.s

k = 2

k = 5

k = 1

Notice: right skew
(long right tail);

flexibility in shape
controlled by the 2

parameters

Distribution function, FX(x)

There is no closed form for the distribution function of the Gamma distribution.
If X ∼ Gamma(k, λ), then FX(x) can can only be calculated by computer.

k = 5
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Proof that E(X) = k
λ

and Var(X) = k
λ2 (non-examinable)

EX =

∫ ∞

0

xfX(x) dx =

∫ ∞

0

x · λ
kxk−1

Γ(k)
e−λx dx

=

∫∞
0 (λx)ke−λx dx

Γ(k)

=

∫∞
0 yke−y( 1

λ) dy

Γ(k)
(letting y = λx, dx

dy = 1
λ)

=
1

λ
· Γ(k + 1)

Γ(k)

=
1

λ
· k Γ(k)

Γ(k)
(property of the Gamma function),

=
k

λ
.

Var(X) = E(X2)− (EX)2 =

∫ ∞

0

x2fX(x) dx− k2

λ2

=

∫ ∞

0

x2λkxk−1e−λx

Γ(k)
dx− k2

λ2

=

∫∞
0 ( 1

λ)(λx)k+1e−λx dx

Γ(k)
− k2

λ2

=
1

λ2
·
∫∞

0 yk+1e−y dy

Γ(k)
− k2

λ2

[
where y = λx,

dx

dy
=

1

λ

]

=
1

λ2
· Γ(k + 2)

Γ(k)
− k2

λ2

=
1

λ2

(k + 1)k Γ(k)

Γ(k)
− k2

λ2

=
k

λ2
. �
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Gamma distribution arising from the Poisson process

Recall that the waiting time between events in a Poisson process with rate λ
has the Exponential(λ) distribution.

That is, if Xi =time waited between event i−1 and event i, then Xi ∼ Exp(λ).

The time waited from time 0 to the time of the kth event is

X1 +X2 + . . .+Xk, the sum of k independent Exponential(λ) r.v.s.

Thus the time waited until the kth event in a Poisson process with rate λ has
the Gamma(k, λ) distribution.

Note: There are some similarities between the Exponential(λ) distribution and the
(discrete) Geometric(p) distribution. Both distributions describe the ‘waiting
time’ before an event. In the same way, the Gamma(k, λ) distribution is similar
to the (discrete) Negative Binomial(k, p) distribution, as they both describe the
‘waiting time’ before the kth event.

4.12 The Beta Distribution: non-examinable

The Beta distribution has two parameters, α and β. We write X ∼ Beta(α, β).

P.d.f.
f(x) =

{
1

B(α, β)
xα−1(1− x)β−1 for 0 < x < 1,

0 otherwise.

The function B(α, β) is the Beta function and is defined by the integral

B(α, β) =

∫ 1

0

xα−1(1− x)β−1 dx, for α > 0, β > 0.

It can be shown that B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
.


