
Chapter 5: The Normal Distribution

and the Central Limit Theorem

The Normal distribution is the familiar bell-shaped distribution. It is probably
the most important distribution in statistics, mainly because of its link with
the Central Limit Theorem, which states that any large sum of independent,
identically distributed random variables is approximately Normal:

X1 +X2 + . . .+Xn ∼ approx Normal
if X1, . . . , Xn are i.i.d. and n is large.

Before studying the Central Limit Theorem, we look at the Normal distribution
and some of its general properties.

5.1 The Normal Distribution

The Normal distribution has two parameters, the mean, µ, and the variance, σ2.

µ and σ2 satisfy −∞ < µ <∞, σ2 > 0.

We write X ∼ Normal(µ, σ2), or X ∼ N(µ, σ2).

Probability density function, fX(x)

fX(x) =
1√

2πσ2
e{−(x−µ)

2/2σ2}
for −∞ < x <∞.

Distribution function, FX(x)

There is no closed form for the distribution function of the Normal distribution.
If X ∼ Normal(µ, σ2), then FX(x) can can only be calculated by computer.
R command: FX(x) = pnorm(x, mean=µ, sd=sqrt(σ2)).
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Probability density function, fX(x)

Distribution function, FX(x)

Mean and Variance

For X ∼ Normal(µ, σ2), E(X) = µ, Var(X) = σ2.

Linear transformations

If X ∼ Normal(µ, σ2), then for any constants a and b,

aX + b ∼ Normal
(
aµ+ b, a2σ2

)
.

In particular, put a =
1

σ
and b = −µ

σ
, then

X ∼ Normal(µ σ2) ⇒
(
X − µ
σ

)
∼ Normal(0, 1).

Z ∼ Normal(0, 1) is called the standard Normal random variable.
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Proof that aX + b ∼ Normal
(
aµ+ b, a2σ2

)
:

Let X ∼ Normal(µ, σ2), and let Y = aX + b. We wish to find the distribution
of Y . Use the change of variable technique.

1) y(x) = ax+b is monotone, so we can apply the Change of Variable technique.

2) Let y = y(x) = ax+ b for −∞ < x <∞.

3) Then x = x(y) = y−b
a for −∞ < y <∞.

4)

∣∣∣∣
dx

dy

∣∣∣∣ =

∣∣∣∣
1

a

∣∣∣∣ =
1

|a| .

5) So fY (y) = fX(x(y))

∣∣∣∣
dx

dy

∣∣∣∣ = fX

(
y − b
a

)
1

|a| . (?)

But X ∼ Normal(µ, σ2), so fX(x) =
1√

2πσ2
e−(x−µ)2/2σ2

Thus fX

(
y − b
a

)
=

1√
2πσ2

e−(y−ba −µ)2/2σ2

=
1√

2πσ2
e−(y−(aµ+b))2/2a2σ2

.

Returning to (?),

fY (y) = fX

(
y − b
a

)
· 1

|a| =
1√

2πa2σ2
e−(y−(aµ+b))2/2a2σ2

for −∞ < y <∞.

But this is the p.d.f. of a Normal(aµ+ b, a2σ2) random variable.

So, if X ∼ Normal(µ, σ2), then aX + b ∼ Normal
(
aµ+ b, a2σ2

)
.
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Sums of Normal random variables

If X and Y are independent, and X ∼ Normal(µ1, σ
2
1), Y ∼ Normal(µ2, σ

2
2),

then
X + Y ∼ Normal

(
µ1 + µ2, σ2

1 + σ2
2

)
.

More generally, if X1, X2, . . . , Xn are independent, and Xi ∼ Normal(µi, σ
2
i ) for

i = 1, . . . , n, then

a1X1 +a2X2 + . . .+anXn ∼ Normal
(

(a1µ1 + . . .+anµn), (a2
1σ

2
1 + . . .+a2

nσ
2
n)
)
.

For mathematicians: properties of the Normal distribution

1. Proof that
∫∞
−∞ fX(x) dx = 1.

The full proof that

∫ ∞

−∞
fX(x) dx =

∫ ∞

−∞

1√
2πσ2

e{−(x−µ)2/(2σ2)} dx = 1

relies on the following result:

FACT:

∫ ∞

−∞
e−y

2

dy =
√
π.

This result is non-trivial to prove. See Calculus courses for details.

Using this result, the proof that
∫∞
−∞ fX(x) dx = 1 follows by using the change

of variable y =
(x− µ)√

2σ
in the integral.

2. Proof that E(X) = µ.

E(X) =

∫ ∞

−∞
xfX(x) dx =

∫ ∞

−∞
x

1√
2πσ2

e−(x−µ)2/2σ2

dx

Change variable of integration: let z = x−µ
σ : then x = σz + µ and dx

dz = σ.

Then E(X) =

∫ ∞

−∞
(σz + µ) · 1√

2πσ2
· e−z2/2 · σ dz
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=

∫ ∞

−∞

σz√
2π
· e−z2/2 dz

︸ ︷︷ ︸
this is an odd function of z
(i.e. g(−z) = −g(z)), so it
integrates to 0 over range

−∞ to ∞.

+ µ

∫ ∞

−∞

1√
2π
e−z

2/2 dz

︸ ︷︷ ︸
p.d.f. of N(0, 1) integrates to 1.

Thus E(X) = 0 + µ× 1

= µ.

3. Proof thatVar(X) = σ2.

Var(X) = E
{

(X − µ)2
}

=

∫ ∞

−∞
(x− µ)2 1√

2πσ2
e−(x−µ)2/(2σ2) dx

= σ2

∫ ∞

−∞

1√
2π
z2 e−z

2/2 dz

(
putting z =

x− µ
σ

)

= σ2

{
1√
2π

[
−ze−z2/2

]∞
−∞

+

∫ ∞

−∞

1√
2π
e−z

2/2 dz

}
(integration by parts)

= σ2 {0 + 1}

= σ2. �

5.2 The Central Limit Theorem (CLT)

also known as. . . the Piece of Cake Theorem

The Central Limit Theorem (CLT) is one of the most fundamental results in
statistics. In its simplest form, it states that if a large number of independent
random variables are drawn from any distribution, then the distribution of their
sum (or alternatively their sample average) always converges to the Normal
distribution.
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Theorem (The Central Limit Theorem):

Let X1, . . . , Xn be independent r.v.s with mean µ and variance σ2, from ANY
distribution.
For example, Xi ∼ Binomial(n, p) for each i, so µ = np and σ2 = np(1− p).

Then the sum Sn = X1 + . . . + Xn =
∑n

i=1Xi has a distribution
that tends to Normal as n→∞.

The mean of the Normal distribution is E(Sn) =
∑n

i=1 E(Xi) = nµ.

The variance of the Normal distribution is

Var(Sn) = Var

(
n∑

i=1

Xi

)

=
n∑

i=1

Var(Xi) because X1, . . . , Xn are independent

= nσ2.

So Sn = X1 +X2 + . . .+Xn → Normal(nµ, nσ2) as n→∞.

Notes:

1. This is a remarkable theorem, because the limit holds for any distribution
of X1, . . . , Xn.

2. A sufficient condition on X for the Central Limit Theorem to apply is
that Var(X) is finite. Other versions of the Central Limit Theorem relax the
conditions that X1, . . . , Xn are independent and have the same distribution.

3. The speed of convergence of Sn to the Normal distribution depends upon the
distribution of X. Skewed distributions converge more slowly than symmetric
Normal-like distributions. It is usually safe to assume that the Central Limit
Theorem applies whenever n ≥ 30. It might apply for as little as n = 4.
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Distribution of the sample mean, X, using the CLT

Let X1, . . . , Xn be independent, identically distributed with mean E(Xi) = µ
and variance Var(Xi) = σ2 for all i.

The sample mean, X, is defined as:

X =
X1 +X2 + . . .+Xn

n
.

So X =
Sn
n

, where Sn = X1 + . . .+Xn ∼ approx Normal(nµ, nσ2) by the CLT.

Because X is a scalar multiple of a Normal r.v. as n grows large, X itself is
approximately Normal for large n:

X1 +X2 + . . .+Xn

n
∼ approx Normal

(
µ,

σ2

n

)
as n→∞.

The following three statements of the Central Limit Theorem are equivalent:

X =
X1 +X2 + . . .+Xn

n
∼ approx Normal

(
µ, σ2

n

)
as n→∞.

Sn = X1 +X2 + . . .+Xn ∼ approx Normal
(
nµ, nσ2

)
as n→∞.

Sn − nµ√
nσ2

=
X − µ√
σ2/n

∼ approx Normal (0, 1) as n→∞.

The essential point to remember about the Central Limit Theorem is that large
sums or sample means of independent random variables converge to a Normal
distribution, whatever the distribution of the original r.v.s.

More general version of the CLT

A more general form of CLT states that, if X1, . . . , Xn are independent, and
E(Xi) = µi, Var(Xi) = σ2

i (not necessarily all equal), then

Zn =

∑n
i=1(Xi − µi)√∑n

i=1 σ
2
i

→ Normal(0, 1) as n→∞.

Other versions of the CLT relax the condition that X1, . . . , Xn are independent.
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The Central Limit Theorem in action : simulation studies

The following simulation study illustrates the Central Limit Theorem, making
use of several of the techniques learnt in STATS 210. We will look particularly
at how fast the distribution of Sn converges to the Normal distribution.

Example 1: Triangular distribution: fX(x) = 2x for 0 < x < 1.

x

f(x)

0 1

Find E(X) and Var(X):

µ = E(X) =

∫ 1

0

xfX(x) dx

=

∫ 1

0

2x2 dx

=

[
2x3

3

]1

0

=
2

3
.

σ2 = Var(X) = E(X2)− {E(X)}2

=

∫ 1

0

x2fX(x) dx−
(

2

3

)2

=

∫ 1

0

2x3 dx− 4

9

=

[
2x4

4

]1

0

− 4

9

=
1

18
.

Let Sn = X1 + . . .+Xn where X1, . . . , Xn are independent.

Then

E(Sn) = E(X1 + . . .+Xn) = nµ =
2n

3

Var(Sn) = Var(X1 + . . .+Xn) = nσ2 by independence

⇒ Var(Sn) =
n

18
.

So Sn ∼ approx Normal
(

2n
3 ,

n
18

)
for large n, by the Central Limit Theorem.
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The graph shows histograms of 10 000 values of Sn = X1+. . .+Xn for n = 1, 2, 3,
and 10. The Normal p.d.f. Normal(nµ, nσ2) = Normal(2n

3 ,
n
18) is superimposed

across the top. Even for n as low as 10, the Normal curve is a very good
approximation.
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Example 2: U-shaped distribution: fX(x) = 3
2x

2 for −1 < x < 1.

-1 10 x

f(x)

We find that E(X) = µ = 0, Var(X) = σ2 = 3
5 . (Exercise)

Let Sn = X1 + . . .+Xn where X1, . . . , Xn are independent.

Then

E(Sn) = E(X1 + . . .+Xn) = nµ = 0

Var(Sn) = Var(X1 + . . .+Xn) = nσ2 by independence

⇒ Var(Sn) =
3n

5
.

So Sn ∼ approx Normal
(
0, 3n

5

)
for large n, by the CLT.

Even with this highly non-Normal distribution for X, the Normal curve provides
a good approximation to Sn = X1 + . . .+Xn for n as small as 10.
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Normal approximation to the Binomial distribution, using the CLT

Let Y ∼ Binomial(n, p).

We can think of Y as the sum of n Bernoulli random variables:

Y = X1 +X2 + . . .+Xn, where Xi =

{
1 if trial i is a “success” (prob = p),
0 otherwise (prob = 1− p)

So Y = X1 + . . .+Xn and each Xi has µ = E(Xi) = p, σ2 = Var(Xi) = p(1−p).

Thus by the CLT,

Y = X1 +X2 + . . .+Xn → Normal(nµ, nσ2)

= Normal
(
np, np(1− p)

)
.

Thus,

Bin(n, p)→ Normal
(

np︸︷︷︸
mean of Bin(n,p)

, np(1− p)︸ ︷︷ ︸
var of Bin(n,p)

)
as n→∞ with p fixed.

The Binomial distribution is therefore well approximated by the Normal
distribution when n is large, for any fixed value of p.

The Normal distribution is also a good approximation to the Poisson(λ)
distribution when λ is large:

Poisson(λ)→ Normal(λ, λ)when λ is large.
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Why the Piece of Cake Theorem? . . .

• The Central Limit Theorem makes whole realms of statistics into a piece
of cake.

• After seeing a theorem this good, you deserve a piece of cake!

5.3 Confidence intervals

Example: Remember the margin of error for an opinion poll?

An opinion pollster wishes to estimate the level of support for Labour in an
upcoming election. She interviews n people about their voting preferences. Let
p be the true, unknown level of support for the Labour party in New Zealand.
Let X be the number of of the n people interviewed by the opinion pollster who
plan to vote Labour. Then X ∼ Binomial(n, p).

At the end of Chapter 2, we said that the maximum likelihood estimator for p
is

p̂ =
X

n
.

In a large sample (large n), we now know that

X ∼ approx Normal(np, npq) where q = 1− p.

So

p̂ =
X

n
∼ approx Normal

(
p,

pq

n

)
(linear transformation of Normal r.v.)

So
p̂− p√

pq
n

∼ approx Normal(0, 1).

Now if Z ∼ Normal(0, 1), we find (using a computer) that the 95% central
probability region of Z is from −1.96 to +1.96:

P(−1.96 < Z < 1.96) = 0.95.

Check in R: pnorm(1.96, mean=0, sd=1) - pnorm(-1.96, mean=0, sd=1)
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Normal (0, 1) distribution

f(x)

0

x

0.0250.025

−1.96 1.96

0.95

Putting Z =
p̂− p√

pq
n

, we obtain

P

(
−1.96 <

p̂− p√
pq
n

< 1.96

)
' 0.95.

Rearranging to put the unknown p in the middle:

P
(
p̂− 1.96

√
pq

n
< p < p̂+ 1.96

√
pq

n

)
' 0.95.

This enables us to form an estimated 95% confidence interval for the unknown
parameter p: estimated 95% confidence interval is

p̂− 1.96

√
p̂(1− p̂)

n
to p̂+ 1.96

√
p̂(1− p̂)

n
.

The 95% confidence interval has RANDOM end-points, which depend on p̂.
About 95% of the time, these random end-points will enclose the true unknown
value, p.

Confidence intervals are extremely important for helping us to assess how useful
our estimate is.

A narrow confidence interval suggests a useful estimate (low variance);
A wide confidence interval suggests a poor estimate (high variance).

When you see newspapers quoting the margin of error on an opinion poll:

• Remember: margin of error = 1.96
√

p̂(1−p̂)
n ;

• Think: Central Limit Theorem!

• Have: a piece of cake.
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Confidence intervals for the Poisson λ parameter

We saw in section 3.6 that if X1, . . . , Xn are independent, identically distributed
with Xi ∼ Poisson(λ), then the maximum likelihood estimator of λ is

λ̂ = X =
1

n

n∑

i=1

Xi.

Now E(Xi) = µ = λ, and Var(Xi) = σ2 = λ, for i = 1, . . . , n.

Thus, when n is large,

λ̂ = X ∼ approx Normal(µ,
σ2

n
)

by the Central Limit Theorem. In other words,

λ̂ ∼ approx Normal
(
λ,

λ

n

)
as n→∞.

We use the same transformation as before to find approximate 95% confidence
intervals for λ as n grows large:

Let Z =
λ̂− λ√

λ
n

. We have Z ∼ approxNormal(0, 1) for large n.

Thus:

P


−1.96 <

λ̂− λ√
λ
n

< 1.96


 ' 0.95.

Rearranging to put the unknown λ in the middle:

P

(
λ̂− 1.96

√
λ

n
< λ < λ̂+ 1.96

√
λ

n

)
' 0.95.

So our estimated 95% confidence interval for the unknown parameter λ is:

λ̂− 1.96

√
λ̂

n
to λ̂+ 1.96

√
λ̂

n
.
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Why is this so good?

It’s clear that it’s important to measure precision, or reliability, of an estimate,
otherwise the estimate is almost worthless. However, we have already seen
various measures of precision: variance, standard error, coefficient of variation,
and now confidence intervals. Why do we need so many?

• The true variance of an estimator, e.g. Var(λ̂), is the most convenient quantity
to work with mathematically. However, it is on a non-intuitive scale (squared
deviation from the mean), and it usually depends upon the unknown parameter,
e.g. λ.

• The standard error is se(λ̂) =

√
V̂ar

(
λ̂
)

. It is an estimate of the square

root of the true variance, Var(λ̂). Because of the square root, the standard error
is a direct measure of deviation from the mean, rather than squared deviation
from the mean. This means it is measured in more intuitive units. However, it
is still unclear how we should comprehend the information that the standard
error gives us.

• The beauty of the Central Limit Theorem is that it gives us an incredibly easy
way of understanding what the standard error is telling us, using Normal-
based asymptotic confidence intervals as computed in the previous two
examples.

Although it is beyond the scope of this course to see why, the Central Limit
Theorem guarantees that almost any maximum likelihood estimator will be
Normally distributed as long as the sample size n is large enough, subject only
to fairly mild conditions.

Thus, if we can find an estimate of the variance, e.g. V̂ar(λ̂), we can immediately
convert it to an estimated 95% confidence interval using the Normal formulation:

λ̂− 1.96

√
V̂ar

(
λ̂
)

to λ̂+ 1.96

√
V̂ar

(
λ̂
)
,

or equivalently,
λ̂− 1.96 se(λ̂) to λ̂+ 1.96 se(λ̂) .

The confidence interval has an easily-understood interpretation: on 95% of
occasions we conduct a random experiment and build a confidence interval, the
interval will contain the true parameter.
So the Central Limit Theorem has given us an incredibly simple and power-
ful way of converting from a hard-to-understand measure of precision, se(λ̂),
to a measure that is easily understood and relevant to the problem at hand.
Brilliant!


