
Chapter 6: Wrapping Up

Probably the two major ideas of this course are:

• likelihood and estimation;

• hypothesis testing.

Most of the techniques that we have studied along the way are to help us with
these two goals: expectation, variance, distributions, change of variable, and
the Central Limit Theorem.

Let’s see how these different ideas all come together.

6.1 Estimators — the good, the bad, and the estimator PDF

We have seen that an estimator is a capital letter replacing a small letter.
What’s the point of that?

Example: Let X ∼ Binomial(n, p) with known n and observed value X = x.

• The maximum likelihood estimate of p is p̂ = x
n .

• The maximum likelihood estimator of p is p̂ = X
n .

Example: Let X ∼ Exponential(λ) with observed value X = x.

• The maximum likelihood estimate of λ is λ̂ = 1
x .

• The maximum likelihood estimator of λ is λ̂ = 1
X .

Why are we interested in estimators?

The answer is that estimators are random variables. This means they
have distributions, means, and variances that tell us how well we can
trust our single observation, or estimate, from this distribution.
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Good and bad estimators

Suppose that X1, X2, . . . , Xn are independent, and Xi∼Exponential(λ) for all i.
λ is unknown, and we wish to estimate it.

In Chapter 4 we calculated the maximum likelihood estimator of λ:

λ̂ =
1

X
=

n

X1 +X2 + . . .+Xn
.

Now λ̂ is a random variable with a distribution.

For a given value of n, we can calculate the p.d.f. of λ̂. How?

We know that T = X1+. . .+Xn ∼ Gamma(n, λ) whenXi ∼ i.i.d. Exponential(λ).

So we know the p.d.f. of T .

Now λ̂ = n
T .

So we can find the p.d.f. of λ̂ using the change of variable technique.

Here are the p.d.f.s of λ̂ for two different values of n:

• Estimator 1: n = 100. 100 pieces of information about λ.

• Estimator 2: n = 10. 10 pieces of information about λ.

λ

λ

True
(unknown)

f( )

p.d.f. of Estimator 1

p.d.f. of Estimator 2

λ

Clearly, the more information we have, the better. The p.d.f. for n = 100 is
focused much more tightly about the true value λ (unknown) than the p.d.f.
for n = 10.
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It is important to recognise what we do and don’t know in this situation:

What we don’t know:

• the true λ;

• WHERE we are on the p.d.f. curve.

What we do know:

• the p.d.f. curve;

• we know we’re SOMEWHERE on that curve.

So we need an estimator such that EVERYWHERE on the estimator’s p.d.f.
curve is good!

λ

λ

True
(unknown)

f( )

p.d.f. of Estimator 1

p.d.f. of Estimator 2

λ

This is why we are so concerned with estimator variance.

A good estimator has low estimator variance: everywhere on the estimator’s
p.d.f. curve is guaranteed to be good.

A poor estimator has high estimator variance: some places on the estimator’s
p.d.f. curve may be good, while others may be very bad. Because we don’t
know where we are on the curve, we can’t trust any estimate from this poor
estimator.

The estimator variance tells us how much the estimator can be trusted.

Note: We were lucky in this example to happen to know that T = X1 + . . .+Xn ∼
Gamma(n, λ) when Xi ∼ i.i.d. Exponential(λ), so we could find the p.d.f. of
our estimator λ̂ = n/T . We won’t usually be so lucky: so what should we do?
Use the Central Limit Theorem!
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Example: calculating the maximum likelihood estimator

The following question is in the same style as the exam questions.

Let X be a continuous random variable with probability density function

fX(x) =





2(s− x)

s2
for 0 < x < s ,

0 otherwise .

Here, s is a parameter to be estimated, where s is the maximum value of X
and s > 0.

(a) Show that E(X) =
s

3
.

Use E(X) =

∫ s

0

xfX(x) dx =
2

s2

∫ s

0

(sx− x2) dx.

(b) Show that E(X2) =
s2

6
.

Use E(X2) =

∫ s

0

x2fX(x) dx =
2

s2

∫ s

0

(sx2 − x3) dx.

(c) Find Var(X).

Use Var(X) = E(X2)− (EX)2. Answer: Var(X) = s2

18 .

(d) Suppose that we make a single observation X = x. Write down the likelihood
function, L(s ; x), and state the range of values of s for which your answer is
valid.

L(s ;x) =
2(s− x)

s2
for x < s <∞.

s

L
ik

e
li
h

o
o

d

3 4 5 6 7 8 9

0
.0

0
.0

5
0

.1
0

0
.1

5

(e) The likelihood graph for a particular value of
x is shown here.

Show that the maximum likelihood estimator
of s is ŝ = 2X . You should refer to the graph
in your answer.
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L(s ; x) = 2s−2(s− x)

So
dL

ds
= 2

{
−2s−3(s− x) + s−2

}

= 2s−3(−2(s− x) + s)

=
2

s3
(2x− s).

At the MLE,
dL

ds
= 0 ⇒ s =∞ or s = 2x.

From the graph, we can see that s =∞ is not the maximum. So s = 2x.

Thus the maximum likelihood estimator is

ŝ = 2X.

(f) Find the estimator variance, Var(ŝ), in terms of s. Hence find the estimated

variance, V̂ar(ŝ), in terms of ŝ.

Var(ŝ) = Var(2X)

= 22Var(X)

= 4× s2

18
by (c)

Var(ŝ) =
2s2

9
.

So also: V̂ar(ŝ) =
2ŝ2

9
.
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(g) Suppose we make the single observationX = 3. Find the maximum likelihood
estimate of s, and its estimated variance and standard error.

ŝ = 2X = 2× 3 = 6.

V̂ar(ŝ) =
2ŝ2

9
=

2× 62

9
= 8

se(ŝ) =

√
V̂ar(ŝ) =

√
8 = 2.82.

This means ŝ is a POOR estimator: the twice standard-error interval would be
6− 2× 2.82 to 6 + 2× 2.82: that is, 0.36 to 11.64 !

Taking the twice standard error interval strictly applies only to the Normal
distribution, but it is a useful rule of thumb to see how ‘good’ the estimator is.

(h) Write a sentence in plain English to explain what the maximum likelihood
estimate from part (g) represents.

The value ŝ = 6 is the value of s under which the observation X = 3 is more
likely than it is at any other value of s.

6.2 Hypothesis tests: in search of a distribution

When we do a hypothesis test, we need a test statistic: some random variable
with a distribution that we can specify exactly under H0 and that differs under
H1.

It is finding the distribution that is the difficult part.

• Weird coin: is my coin fair? Let X be the number of heads out of 10
tosses. X ∼ Binomial(10, p). We have an easy distribution and can do a
hypothesis test.

• Too many daughters? Do divers have more daughters than sons? Let X
be the number of daughters out of 190 diver children. X ∼ Binomial(190, p).
Easy.
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• Too long between volcanoes? Let X be the length of time between
volcanic eruptions. If we assume volcanoes occur as a Poisson process,
then X ∼ Exponential(λ). We have a simple distribution and test statistic
(X): we can test the observed length of time between eruptions and see if
it this is a believable observation under a hypothesized value of λ.

More advanced tests

Most things in life are not as easy as the three examples above.

Here are some observations. Do they come from a distribution (any distribu-
tion) with mean 0?

3.96 2.32 -1.81 -0.14 3.22 1.07 -0.52 0.40 0.51 1.48

1.37 -0.17 1.85 0.61 -0.58 1.54 -1.42 -0.85 1.66 1.54

Answer: yes, they are Normal(0, 4), but how can we tell?

What about these?

3.3 -30.0 -7.8 3.4 -1.3 12.6 -9.6 1.4 -6.4 -11.8

-8.1 8.1 -9.0 8.1 -13.7 -5.0 -6.6 -5.6 2.5 9.0

Again, yes they do (Normal(0, 100) this time), but how can we tell? The
unknown variance (4 versus 100) interferes, so that the second sample does not
cluster about its mean of 0 at all.

What test statistic should we use?

If we don’t know that our data are Normal, and we don’t know their underlying
variance, what can we use as our X to test whether µ = 0?

Answer: a clever person called W. S. Gossett (1876-1937) worked out an
answer. He called himself only ‘Student’, possibly because he (or his employers)
wanted it to be kept secret that he was doing his statistical research as part of
his employment at Guinness Brewery. The test that ‘Student’ developed is the
familiar Student’s t-test. It was originally developed to help Guinness decide
how large a sample of people should be used in its beer tastings!
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Student used the following test statistic for the unknown mean, µ:

T =
X − µ√∑n
i=1(Xi−X)2

n(n−1)

Under H0 : µ = 0, the distribution of T is known: T has p.d.f.

fT (t) =

(
Γ
(
n
2

)
√

(n− 1)π Γ
(
n−1

2

)
)(

1 +
t2

n− 1

)−n/2
for −∞ < t <∞.

T is the Student’s t-distribution, derived as the ratio of a Normal random vari-
able and an independent Chi-Squared random variable. If µ 6= 0, observations
of T will tend to lie out in the tails of this distribution.

The Student’s t-test is exact when the distribution of the original dataX1, . . . , Xn

is Normal. For other distributions, it is still approximately valid in large sam-
ples, by the Central Limit Theorem.

It looks difficult

It is! Most of the statistical tests in common use have deep (and sometimes
quite impenetrable) theory behind them. As you can probably guess, Student
did not derive the distribution above without a great deal of hard work. The
result, however, is astonishing. With the help of our best friend the Central
Limit Theorem, Student’s T -statistic gives us a test for µ = 0 (or any other
value) that can be used with any large enough sample.

The Chi-squared test for testing proportions in a contingency table also has a
deep theory, but once researchers had derived the distribution of a suitable
test statistic, the rest was easy. In the Chi-squared goodness-of-fit test, the
Pearson’s chi-square test statistic is shown to have a Chi-squared distribution
under H0. It produces larger values under H1.

One interesting point to note is the pivotal role of the Central Limit Theorem in
all of this. The Central Limit Theorem produces approximate Normal distribu-
tions. Normal random variables squared produce Chi-squared random variables.
Normals divided by Chi-squareds produce t-distributed random variables. A ra-
tio of two Chi-squared distributions produces an F -distributed random variable.
All these things are not coincidental: the Central Limit Theorem rules!


