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Chapter 1 : Probability

1.1 Introduction

Definition: A probability is a number between 0 and 1 representing how likely it
is that an event will occur.

Probabilities can be:

1. Frequentist (based on frequencies)

eg. number of times event occurs
number of opportunities for event to occur

or

2. Subjective: probability represents a person’s degree of belief that an event
will occur,
eg. I think there is an 80% chance it will rain today,
written as P(rain) = 0.80.

Regardless of how we obtain probabilities, we always combine and manipulate

them according to the same rules.

1.2 Sample Spaces

Definition: A random experiment is an experiment whose outcome is not known
until it is observed.

Definition: A sample space, S, is a set of outcomes of a random experiment.

Every possible outcome must be listed once and only once.
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Definition: A sample point is an element of the sample space.

For example, if the sample space is S = {s1, s2, s3}, then each si is a sample
point.

Examples:

Experiment: Toss a coin twice and observe the result.

Sample space: S = {HH, HT, TH, TT}
An example of a sample point is: HT

Experiment: Toss a coin twice and count the number of heads.

Sample space: S = {0, 1, 2}

Experiment: Toss a coin twice and observe whether the two tosses are the same
(e.g. HH or TT).

Sample space: S = {same, different}

Types of Sample Space

Definition: A sample space is finite if it has a finite number of elements.

Definition: (Informal definitions) A sample space is discrete if there are “gaps”
between the different elements, or if the elements can be “listed”, even if an
infinite list (eg. 1, 2, 3, . . .).
(See formal definition later.)

A sample space is continuous if there are no gaps between the elements, so the
elements cannot be listed (eg. the interval [0, 1]).
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Examples:

S = {0, 1, 2, 3} (discrete and finite)
S = {0, 1, 2, 3, . . .} (discrete, infinite)
S = {4.5, 4.6, 4.7} (discrete, finite)
S = {HH, HT, TH, TT} (discrete, finite)
S = {same, different} (discrete, finite)
S = [0, 1] = {all numbers between 0 and 1 inclusive} (continuous, infinite)

Example: Sampling with or without replacement.

We have a group of N people, e.g. students in this class, listed alphabetically.
Let xi be the name of student i, e.g. x3 = Fred

Experiment: choose one person at random.

Sample space: S = {x1, . . . , xN} (discrete, finite)

Experiment: choose two people at random, without replacement.
Sample space: (two possibilities)

1. Order matters, so (Fred, Jane) is different from (Jane, Fred).
S = {(xi, xj) : i, j = 1, 2, . . . , N , and i 6= j}.

2. Order doesn’t matter, so (Fred, Jane) is the same outcome as (Jane, Fred).
S = {(xi, xj) : i, j = 1, 2, . . . , N , and i < j.}

Experiment: choose two people at random, with replacement.

Sample space: (two possibilities)

1. Order matters: S = {(xi, xj) : i, j = 1, 2, . . . , N}

2. Order doesn’t matter: S = {(xi, xj) : i, j = 1, 2, . . . , N and i ≤ j}
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Example: Discrete infinite sample space.

Experiment: toss a coin until a Head appears, observe sequence of tosses.

Sample space: S = {H, TH, TTH, TTTH, . . .} (discrete, infinite)

S is infinite because there is no number of tails after which a head definitely
must appear.

Alternative sample space: count the number of tails before the first head.
S = {0, 1, 2, . . .} (discrete, infinite)

Question: is S = {0, 1, 2, (3 or more)} a possible sample space?
Answer:Yes. (Discrete, finite).

Question: is S = {1, 2, (3 or more)} a possible sample space?
Answer: No: outcome 0 is omitted.

Definition: An infinite sample space is countable if we can index the elements by
the natural numbers, 1,2,3,. . . . That is, for every natural number there is a unique
element of S, and for every element of S there is a unique natural number.
(In Mathematical language, there is a bijection from N to S).

.

In practice, this just means that we can write: S = {s1, s2, s3, . . .}.

Any countable sample space is discrete, because we can list the elements. This

gives us our formal definition of a discrete sample space:

Definition: A sample space is discrete if it is finite or countable.
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Continuous sample spaces

Any sample space that is not discrete is continuous: there are no gaps between

the elements. The most common example of a continuous sample space is an
interval on the real line.

Example:

Experiment: spin a pointer, and observe the angle θ at which it stops.

Sample space:

S = {θ : 0◦ ≤ θ < 360◦}
or S = [0◦, 360◦) (continuous).

Question: Why not θ = 360◦?
Answer: Because θ = 360◦ is the same as θ = 0◦: outcome must be listed only
once.

Other possible sample spaces:

S = (0◦, 360◦] (continuous)

or S = {[0◦, 90◦), [90◦, 180◦), [180◦, 360◦)} (discrete)

Example:

Experiment: install a light bulb, and observe the time taken before it fails.

Sample space: S = {t : t ≥ 0} = [0,∞).

Note: Never write a square bracket after ∞, because we can never reach ∞.

Write [0,∞) but not [0,∞].
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1.3 Events

Definition: An event is a subset of the sample space. That is, any collection of
outcomes forms an event.

Example: Toss a coin twice. Sample space:S = {HH, HT, TH, TT}

Let event A be the event that there is exactly one head.

We write: A =“exactly one head”

Then A = {HT, TH}.

A is a subset of S, as in the definition. We write A ⊂ S.

Definition: Event A occurs if we observe an outcome that is a member of the set A.

Note: S is a subset of itself, so S is an event. Because S includes all possible out-

comes of the experiment, event S occurs every time the experiment is performed.

The empty set, ∅ = {}, is also a subset of S. This is called the null event, or
the event with no outcomes.

Example:

Experiment: toss coin 3 times.
Sample space: S={HHH,HHT,. . . ,TTT}
Event A = “no more than one Head” = {HTT,THT,TTH,TTT}

Experiment: throw 2 dice.
Sample space: S = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), (2, 2), . . . , (2, 6), . . . , (6, 6)}
Event B = “sum of two faces is 5” = {(1, 4), (2, 3), (3, 2), (4, 1)}
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Combining Events

Let A and B be events on the same sample space S: so A ⊂ S and B ⊂ S.

Definition: The union of events A and B is written A ∪ B and is given by

A ∪ B = {s : s ∈ A or s ∈ B or both}

Think of A ∪ B as A or B or both.

On a Venn diagram, we show A ∪ B as follows:
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Example: Spin pointer. Sample space, S = [0◦, 360◦)
Let event A = “acute angle observed” = [0◦, 90◦)
Let event B= “angle observed is > 45◦” = (45◦, 360◦)
Then A ∪ B = [0◦, 90◦) ∪ (45◦, 360◦) = [0◦, 360◦).

Example: Pick a person in the class. Sample space, S ={all people in class}
Let event A = “person is a male”
Let event B= “person has a cellphone”

Then event A ∪ B occurs if the person picked is male, OR has a cellphone, OR
both.

Definition: The intersection of events A and B is written A ∩ B and is given by
A ∩ B = {s : s ∈ A AND s ∈ B}

Think of A ∩ B as “A and B”.

On a Venn diagram, we show A ∩ B as follows:
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Example: Spin pointer. Sample space, S = [0◦, 360◦).
Event A = [0◦, 90◦)
Event B = (45◦, 360◦)

Then A ∩ B = [0◦, 90◦) ∩ (45◦, 360◦) = (45◦, 90◦) (angle is acute AND > 45◦)

0 45 90 360

B

A and B

A

Example: Pick person in class. Sample space, S = {people in class}.
Event A = “person is male”
Event B = “person has cellphone”

Then event A ∩ B = {people in class who are male AND have a cellphone}

Question: Suppose I pick a female with a cellphone. Which of the following
events have occurred?

1) A No 2) B Yes
3) A ∪ B Yes 4) A ∩ B No

Definition: The complement of event A is written A and is given by

A = {s : s /∈ A}

That is, A is the event “not A”: whatever A was, it didn’t happen.

Venn diagram: (A shaded)
A

S

Example: Spin pointer: let A = “angle is acute” = [0◦, 90◦)
Then A = “angle is not acute”= [90◦, 360◦)

Example: Pick a person in the class: let A = “person is male”
Then A = person is not male” = {females in class}
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Question: Let A =“person is male” and let B =“person has a cellphone”.
Suppose I pick a male without a cellphone. Say whether the following

events have occurred:

1) A Yes. 2) B No.

3) A No. 4) B Yes.

5) A ∪ B = {females or cellphone owners or both}. No.

6) A ∩ B = {males without cellphones}. Yes.

7) A ∩ B = {males with cellphones}. No.

8) A ∩ B = everything outside A ∩ B. A ∩ B did not occur, so A ∩ B did occur.
Yes.

Question: What is the event S? S = ∅
Challenge: can you express A∩B using only a ∪ sign? Answer: A∩B = (A ∪ B)

More than two events

Venn diagrams are generally useful for up to 3 events, although they are not

used to provide formal proofs.

Example:
S

A B

C

(a) A ∪ B ∪ C

S

A B

C

(b) A ∩ B ∩ C
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Theorem 1.1: (Not proved here: these are results from Set Theory).

(i) ∅ = S and S = ∅

(ii) For any event A, A ∪ A = S and A ∩ A = ∅

(iii) For any events A and B, A∪B = B∪A and A∩B = B∩A (Commutative)

(iv) For any event A,

A ∪ S = S: A ∩ S = A: A ∪ ∅ = A: A ∩ ∅ = ∅:

A
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(v) For any A, B, and C:

(a) A∪(B∩C) = (A∪B)∩(A∪C) (b) A∩(B∪C) = (A∩B)∪(A∩C)

S

A B

C

S

A B

C

(vi) (a) (A ∪ B) = A ∩ B (b) (A ∩ B) = A ∪ B

A B

S

A B

S
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(vii) Distributive Laws: (extension of (v)):

For events A and B1, B2, . . . , Bn,

a) A ∪
(

n⋂

i=1

Bi

)

=

n⋂

i=1

(A ∪ Bi)

ie. A ∪ (B1 ∩ B2 ∩ . . . ∩ Bn) = (A ∪ B1) ∩ (A ∪ B2) ∩ . . . ∩ (A ∪ Bn)

b) A ∩
(

n⋃

i=1

Bi

)

=
n⋃

i=1

(A ∩ Bi)

ie. A ∩ (B1 ∪ B2 ∪ . . . ∪ Bn) = (A ∩ B1) ∪ (A ∩ B2) ∪ . . . ∪ (A ∩ Bn)

Note: Often a good way to show that two sets A and B are equal is to show that
A ⊆ B and B ⊆ A; thus A = B.

Fundamental Idea: the Partition

Definition: Two events A and B are mutually exclusive, or disjoint, if A∩B = ∅.

This means events A and B cannot happen together. If A happens, it excludes B
from happening, and vice-versa.
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Definition: Any number of events A1, A2, . . . , Ak are mutually exclusive if every
pair of the events is mutually exclusive: ie. Ai ∩ Aj = ∅ for all i, j with i 6= j.
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Definition: A partition of S is a collection of mutually exclusive events whose
union is S.

That is, sets B1, B2, . . . , Bk form a partition of S if

Bi ∩ Bj = ∅ for all i, j with i 6= j ,

and
k⋃

i=1

Bi = B1 ∪ B2 ∪ . . . ∪ Bk = S.

Examples:

B1, B2, B3, B4 form a partition of S:
S

PSfrag replacements
B1

B2

B3

B4

B1, . . . , B5 partition S:
S

PSfrag replacements
B1

B2

B3

B4
B5

B and B partition S for any event B:
S

PSfrag replacements BB
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Partitioning an event A

Any set A can be partitioned: it doesn’t have to be S.
If B1, . . . , Bk form a partition of S, then (A ∩ B1), . . . , (A ∩ Bk) form a partition
of A.

�������
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�������
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�������
�������

S

A
PSfrag replacements

B1

B2

B3

B4

We will see that this is very useful for finding the probability of event A.

1.4 Probability Distributions

Definition: Let S = {s1, s2, . . .} be a discrete sample space.

A discrete probability distribution on S is a set of real numbers {p1, p2, . . .}
associated with the sample points {s1, s2, . . .} such that:

1. 0 ≤ pi ≤ 1 for all i;

2.
∑

i

pi = 1

pi is called the probability of the event that the outcome is si.

We write: pi = P(si).

Although there are lots of choices for p1, p2, . . . that are valid (i.e. that fit the

definition), we usually aim for pi to be a measure of how likely outcome si is.
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Probability of an event in a discrete sample space

Definition: For a discrete sample space and probability distribution, the
probability of an event A is the sum of probabilities of the sample points
in A.

Thus if A = {s3, s5, s14}
then P(A) = p3 + p5 + p14

Notes:

i) P(S) = 1

ii) 0 ≤ P(A) ≤ 1 for any event A.

Equally likely outcomes

Sometimes, all the outcomes in a discrete finite sample space are equally likely.
This makes it easy to calculate probabilities. If:

i) S = {s1, . . . , sk};

ii) each outcome si is equally likely, so p1 = p2 = . . . = pk = 1
k ;

iii) event A = {s1, s2, . . . , sr} contains r possible outcomes,

then

P(A) =
r

k
=

# outcomes in A
# outcomes in S

.

Example: For a 3-child family, possible outcomes from oldest to youngest are:

S = {GGG, GGB, GBG, GBB, BGG, BGB, BBG, BBB}
= {s1, s2, s3, s4, s5, s6, s7, s8}

Let {p1, p2, . . . , p8} be a probability distribution on S. If every baby is equally

likely to be a boy or a girl, then all of the 8 outcomes in S are equally likely, so
p1 = p2 = . . . = p8 = 1

8 .
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Let event A be A = “oldest child is a girl”.

Then A ={GGG, GGB, GBG, GBB}.

Event A contains 4 of the 8 equally likely outcomes, so event A occurs with

probability P(A) = 4
8 = 1

2 .

Counting equally likely outcomes

To count the number of equally likely outcomes in an event, we often need
to use permutations or combinations. The number of ways of choosing r
objects from n distinct objects is:

1) when order matters (so (a,b,c) is a different choice from (b,a,c)):

#permutations = nPr = n(n − 1)(n − 2) . . . (n − r + 1) =
n!

(n − r)!
.

(n choices for first object, (n − 1) choices for second, etc.)

2) when order doesn’t matter (so (a,b,c) and (b,a,c) are the same choice):

#combinations = nCr =

(
n

r

)

=
nPr

r!
=

n!

(n − r)!r!
.

(because each of the nPr permutations is counted r! times if order doesn’t matter).

Example: (a) Tom has five elderly great-aunts who live together in a tiny bunga-

low. They insist on each receiving separate Christmas cards, and threaten to
disinherit Tom if he sends two of them the same picture. Tom has Christmas
cards with 12 different designs. In how many different ways can he select 5

different designs from the 12 designs available?

Number of ways of selecting 5 distinct designs from 12 is

12C5 =

(
12

5

)

=
12 !

(12 − 5)! 5!
= 792.
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b) The next Christmas, Tom buys a pack of 40 Christmas cards, featuring 10
different pictures with 4 cards of each picture. He selects 5 cards at random

to send to his great-aunts. What is the probability that at least two of the
great-aunts receive the same picture?

Looking for P(at least 2 cards the same) = P(A) (say).

Easiest to find P(all 5 cards are different) = P(A).

Number of outcomes in A is

(# ways of selecting 5 different designs) = 40 × 36 × 32 × 28 × 24 .

(40 choices for first card; 36 for second, because the 4 cards with the
first design are excluded; etc.
Note that order matters: e.g. we are counting choice 12345 separately
from 23154.)

Total number of outcomes is

(total # ways of selecting 5 cards from 40) = 40 × 39 × 38 × 37 × 36 .

(Note: order mattered above, so we need order to matter here too.)

So
P(A) =

40 × 36 × 32 × 28 × 24

40 × 39 × 38 × 37 × 36
= 0.392.

Thus

P(A) = P(at least 2 cards are the same design) = 1 − P(A) = 1 − 0.392 = 0.608.

Summary of discrete sample spaces

A discrete sample space can be written S = {s1, s2, s3, . . .}.
s1, s2, . . . are called sample points and they describe possible outcomes of the
random experiment.
An event A is a subset of the sample space, i.e. a collection of sample points.

A probability distribution on S is a set of numbers {p1, p2, . . .} such that
0 ≤ pi ≤ 1 for all i,

∑

i pi = 1, and each pi corresponds to a sample point

si. The probability of event A is P(A) =
∑

i : si∈A pi.
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Continuous sample spaces

For a continuous sample space S, we can usually think of both S and event A

as intervals on the real line.

We can no longer sum the probabilities of all outcomes in event A, because we
can’t count how many outcomes there are. [E.g. how many numbers are there

between 0 and 1? Impossible to say!]

However, if the outcome of the experiment is equally likely to be any point in
the interval S, then we find the probability of event A as

P(A) =
length of interval A

length of interval S

When the outcome is not equally likely to lie anywhere in the interval, we need

more advanced methods for determining probabilities. Much of this course is
devoted to solving this problem for continuous and discrete sample spaces.

1.5 Probability Axioms: the three fundamental statements of probability

Definition: Let S be a sample space (continuous or discrete). Let P be a function

from the set of all events in S to the real numbers: that is, for every event A,
there is a real number P(A). Then P is called a probability measure if it

satisfies the following axioms:

Axiom (AI) P(S) = 1.

Axiom (AII) P(A) ≥ 0 for all events A.

Axiom (AIII) If A1, A2, . . . , An are mutually exclusive events, then

P(A1 ∪ A2 ∪ . . . ∪ An) =

n∑

i=1

P(Ai).
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Axiom AIII also applies to infinite sequences of mutually exclusive events: if S
is infinite, and A1, A2, . . . , is an infinite series of mutually exclusive events

(i.e. Ai ∩ Aj = ∅ for any i 6= j), then

P(A1 ∪ A2 ∪ . . .) = P(
∞⋃

i=1

Ai) =
∞∑

i=1

P(Ai).

Axioms are statements that can be assumed without proof. Thus, if we are
told that P is a probability measure, then we can assume it satisfies Axioms AI
to AIII. Furthermore, all properties of P must be derivable using only the

three axioms.

The number P(A) is called the probability of event A.

Axiom AIII is widely used in probability calculations, so it is worth emphasizing;
e.g. for the special case n = 2 we have:

if A ∩ B = ∅ then P(A ∪ B) = P(A) + P(B)

Theorem 1.2: The probability measure P has the following properties.

(i) P(∅) = 0.

(ii) P(A) = 1 − P(A) for any event A.

(iii) P(A) ≤ 1 for any event A.

(iv) P(A) = P(A ∩ B) + P(A ∩ B) for any events A,B.

(v) P(A ∪ B) = P(A) + P(B) − P(A ∩ B) for any events A,B.

(vi) The Partition Theorem

If B1, B2, . . . , Bm form a partition of S, then for any event A,

P(A) =
∑m

i=1 P(A ∩ Bi).

(This generalizes part (iv)).
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Proof:

We must use only the Axioms, and Theorem 1.1.

i) A = A ∪ ∅; and A ∩ ∅ = ∅ (mutually exclusive).

So P(A) = P(A ∪ ∅) = P(A) + P(∅) (Axiom AIII)

⇒ P(∅) = 0.

ii) S = A ∪ A; and A ∩ A = ∅ (mutually exclusive).

So 1 = P(S)
︸ ︷︷ ︸

Axiom AI

= P(A ∪ A) = P(A) + P(A). (Axiom AIII)

iii) P(A) = 1 − P(A) ≤ 1 because P(A) ≥ 0 (Axiom AII)

iv) Special case of (vi).

v)

A ∪ B = (A ∩ S) ∪ (B ∩ S) Thm 1.1(iv)

=
[

A ∩ (B ∪ B)
]

∪
[

B ∩ (A ∪ A)
]

Thm 1.1(ii)

= (A ∩ B) ∪ (A ∩ B) ∪ (B ∩ A) ∪ (B ∩ A) Thm 1.1(v)

= (A ∩ B) ∪ (A ∩ B) ∪ (A ∩ B).

These 3 events are mutually exclusive:

eg. (A ∩ B) ∩ (A ∩ B) = A ∩ (B ∩ B) = A ∩ ∅ = ∅, etc.

So, P(A ∪ B) = P(A ∩ B) + P(A ∩ B) + P(A ∩ B) (Axiom AIII)

=
[

P(A) − P(A ∩ B)
︸ ︷︷ ︸

from (iv)

]

+
[

P(B) − P(A ∩ B)
︸ ︷︷ ︸

from (iv)

]

+ P(A ∩ B)

= P(A) + P(B) − P(A ∩ B).
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vi) Suppose B1, . . . , Bm are a partition of S:

then Bi ∩ Bj = ∅ if i 6= j, and
⋃m

i=1 Bi = S.

Thus, (A ∩ Bi) ∩ (A ∩ Bj) = A ∩ (Bi ∩ Bj) = A ∩ ∅ = ∅, for i 6= j,

ie. (A ∩ B1), . . . , (A ∩ Bm) are mutually exclusive also.

So,
m∑

i=1

P(A ∩ Bi) = P

(
m⋃

i=1

(A ∩ Bi)

)

(Axiom AIII)

= P

(

A ∩
m⋃

i=1

Bi

)

(Thm 1.1 (vii))

= P(A ∩ S)

= P(A) . �

In exercises, quote the Axioms and results from Theorems 1.1 and 1.2 without
proof.

Note: Part (v) can be extended to three or more events: e.g. for any A, B, and C,

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C) .

Example: In New Zealand, 52% of drivers are female. The probability of being

male and having driven while intoxicated is 15%. In total, 23% of people have
driven while intoxicated. 43% of drivers think that the risk of being caught

when drink-driving is low. Overall, 50% of drivers have either driven while
intoxicated, or believe that there is a low risk of being caught, or both.

First formulate events:

let F = “female” M = F = “male”
let D = “has driven while intoxicated”
let L = “thinks risk of being caught is low”

Next write down all the information given:
P(F ) = 0.52 P(L) = 0.43
P(M ∩ D) = 0.15 P(D ∪ L) = 0.50
P(D) = 0.23
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Find the probability that a New Zealand driver:

(a) is male P(M) = P(F ) = 1 − P(F ) = 1 − 0.52 = 0.48.

(b) is female and has driven while intoxicated

Want P(F ∩ D).

We know that P(F ∩ D) + P(F ∩ D) = P(D)

ie. P(F ∩ D) + P(M ∩ D) = P(D)

P(F ∩ D) + 0.15 = 0.23

so P(F ∩ D) = 0.08

(c) is male and/or has driven while intoxicated

P(M ∪ D) = P(M) + P(D) − P(M ∩ D)

= 0.48 + 0.23 − 0.15

= 0.56

(d) has driven while intoxicated, and believes that there is a low risk of being
caught.

Want P(D ∩ L) :

Now P(D ∪ L) = P(D) + P(L) − P(D ∩ L)

0.5 = 0.23 + 0.43 − P(D ∩ L)

P(D ∩ L) = 0.23 + 0.43 − 0.50

= 0.16

(e) has driven while intoxicated, and believes that the risk of being caught is
not low.

Want P(D ∩ L) :

Now P(D ∩ L) + P(D ∩ L) = P(D)

0.16 + P(D ∩ L) = 0.23

P(D ∩ L) = 0.07
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1.6 Conditional Probability

Suppose A and B are two events on the same sample space. There will often

be dependence between A and B: that is, if we know that B has occurred, this
changes our knowledge of the chance that A will occur.

Example: Toss a die once.

Let event A = “get a 6”
Let event B=“get an even number”
If the die is fair, then P(A) = 1

6 and P(B) =1
2

However, if we know that B has occurred, then there is an increased chance
that A has occurred:

P(A occurs given that B has occurred) = 1
3

(
result 6

result 2 or 4 or 6

)

Example: Probabilities from tables of counts.

The following are the numbers of deaths from heart disease in NZ in 1996.

Sex

Male Female Total

< 45 79 13 92

Age 45 − 64 772 216 988

65 − 74 1081 499 1580

74+ 1795 2176 3971

Total 3727 2904 6631

Let event A = “victim is female”

Let event B= “victim is <45”
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Suppose we choose a person at random from those in the table.

P(A) = P(female) = # female victims
total # victims = 2904

6631 = 0.44

But, if we choose people only from those under 45 years old, then:

P(victim is female, given that victim is < 45)

=
# female victims < 45

total # victims < 45
=

13

92
= 0.14.

So P(A happens, given that B has happened) = 0.14.

We write P(A |B) = 0.14. We have conditioned on event B.

Conditioning on event B means restricting attention
to the set for which B is true.

Think of P(A |B) as the chance of getting an A, from the set of B’s only.

From above,

P(A|B) =

(
number of the outcomes in B that are also in A

total number of outcomes in B

)

=

(
# of outcomes in A and B

# of outcomes in B

)

=
(# of outcomes in A and B)/(# of outcomes in S)

(# of outcomes in B)/(# of outcomes in S)

=
P(A ∩ B)

P(B)
.
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This is our definition of conditional probability:

Definition: Let A and B be two events. The conditional probability that event

A occurs, given that event B has occurred, is written P(A|B).

and is given by

P(A|B) =
P(A ∩ B)

P(B)

Read P(A |B) as “probability of A, given B”.

Note: P(A|B) gives P(A and B , from within the set of B’s only)

P(A ∩ B) gives P(A and B , from the whole sample space).

Multiplication Rule

For any events A and B,

P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)

Proof:

Immediate from the definitions:

P(A|B) =
P(A ∩ B)

P(B)
⇒ P(A ∩ B) = P(A|B)P(B) ,

and

P(B|A) =
P(B ∩ A)

P(A)
⇒ P(B ∩ A) = P(A ∩ B) = P(B|A)P(A). �
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The Multiplication Rule gives us a new statement of the Partition Theorem:
If B1, . . . , Bm partition S, then for any event A,

P(A) =
m∑

i=1

P(A ∩ Bi) =
m∑

i=1

P(A|Bi)P(Bi)

Both formulations of the Partition Theorem are very widely used, but especially

the conditional formulation
∑m

i=1 P(A|Bi)P(Bi).

Example: Two balls are drawn at random without replacement from a box con-
taining 4 white and 2 red balls.

Find the probability that

(i) they are both white,
(ii) the second ball is red.

Solution

Let event Wi = “ith ball is white” and Ri = “ith ball is red”.

i) P(W1 ∩ W2) = P(W2 ∩ W1) = P(W2|W1)P(W1)

Now P(W1) =
4

6
and P(W2|W1) =

3

5
.

W1

So P(both white) = P(W1 ∩ W2) =
3

5
× 4

6
=

2

5
.
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ii) Looking for P(2nd ball is red). We can’t find this without conditioning on
what happened in the first draw.

Event “2nd ball is red” is actually event {W1R2, R1R2} = (W1 ∩R2)∪ (R1 ∩R2).

So P(2nd ball is red) = P(W1 ∩ R2) + P(R1 ∩ R2) (mutually exclusive)
= P(R2|W1)P(W1) + P(R2|R1)P(R1)

=
2

5
× 4

6
+

1

5
× 2

6

=
1

3

W1 R 1

Note: Probability trees are often useful when events happen in sequence.

First Draw Second Draw

PSfrag replacements
P(W1) = 4

6

P(R1) = 2
6

P(W2|W1) = 3
5

P(R2|R1) = 2
5

P(W2|R1) = 4
5

P(R2|R1) = 1
5

W1

R1

W2

R2

W2

R2

Write conditional probabilities on the branches, and multiply to get probability

of an intersection: eg. P(W1 ∩ W2) =
4

6
× 3

5
, or P(R1 ∩ W2) =

2

6
× 4

5
.
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Two separate studies say . . .
You’re

Better

Off

with

AntiCough!

So you’re better off with AntiCough
. . . or are you???

Have a look at the figures:

AntiCough Other Medicine

Given to: 40 80

Cured: 34 64

%Cured: 85% 80%

AntiCough Other Medicine

Given to: 60 20

Cured: 39 12

%Cured: 65% 60%

S
t
u
d
y
1

S
t
u
d
y
2

Combine the studies . . . What happens?
Never believe what you read. . . This is Simpson’s Paradox. . . Never believe what you read. . . This is Sim
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Simpson’s paradox
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1.7 Bayes’ Theorem: inverting conditional probabilities

Consider P(B ∩ A) = P(A ∩ B).
Apply the multiplication rule to each side:

P(B|A)P(A) = P(A|B)P(B)

Thus, P(B|A) =
P(A|B)P(B)

P(A)
~

This is the simplest form of Bayes’ Theorem, named after Thomas Bayes (c.
1700), English clergyman and founder of Bayesian Statistics.

Bayes’ Theorem allows us to “invert” the conditioning, ie. to express P(B|A) in
terms of P(A|B).

This is very useful. For example, it might be easy to calculate,

P(later event|earlier event),

but we might only observe the later event and wish to deduce the probability that
the earlier event occurred,

P(earlier event|later event).

Full statement of Bayes’ Theorem:

Theorem 1.3: Let B1, B2, . . . , Bm form a partition of S. Then for any event A,
and for any j = 1, . . . , m,

P(Bj|A) =
P(A|Bj)P(Bj)

∑m
i=1 P(A|Bi)P(Bi)

(Bayes’ Theorem)

Proof:

Immediate from ~ (put B = Bj), and the Partition Rule which gives P(A) =
∑m

i=1 P(A|Bi)P(Bi). �
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Special case of Bayes’ Theorem when m = 2: use B and B as the partition of S:

then P(B|A) =
P(A|B)P(B)

P(A|B)P(B) + P(A|B)P(B)

Example: The case of the Perfidious Gardener.

Mr Smith owns a hysterical rosebush. It will die with probability 1/2 if watered,
and with probability 3/4 if not watered. Worse still, Smith employs a perfidious

gardener who will fail to water the rosebush with probability 2/3.

Smith returns from holiday to find the rosebush . . . DEAD!!!
What is the probability that the gardener did not water it?

Solution:

First step: formulate events

Let : D = “rosebush dies”

W = “gardener waters rosebush”

W = “gardener fails to water rosebush”

Second step: write down all information given

P(D|W ) = 1
2

P(D|W ) = 3
4

P(W ) = 2
3

(so P(W ) = 1
3
)

Third step: write down what we’re looking for

P(W |D)

Fourth step: compare this to what we know

Need to invert the conditioning, so use Bayes’ Theorem:

P(W |D) =
P(D|W )P(W )

P(D|W )P(W ) + P(D|W )P(W )
=

3/4 × 2/3

3/4 × 2/3 + 1/2 × 1/3
=

3

4

So the gardener failed to water the rosebush with probability 3
4.
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Example: The case of the Defective Ketchup Bottle.

Ketchup bottles are produced in 3 different factories, accounting for 50%, 30%,

and 20% of the total output respectively. The percentage of defective bottles
from the 3 factories is respectively 0.4%, 0.6%, and 1.2%. A statistics lecturer

who eats only ketchup finds a defective bottle in her door.
What is the probability that it came from Factory 1?

Solution:

1. Events:

let Fi = “bottle comes from Factory i” (i=1,2,3)
let D = “bottle is defective”

2. Information given:

P(F1) = 0.5 P(F2) = 0.3 P(F3) = 0.2

P(D|F1) = 0.004 P(D|F2) = 0.006 P(D|F3) = 0.012

3. Looking for:

P(F1|D) (so need to invert conditioning).

4. Bayes Theorem:

P(F1|D) =
P(D|F1)P(F1)

P(D|F1)P(F1) + P(D|F2)P(F2) + P(D|F3)P(F3)

=
0.004× 0.5

0.004× 0.5 + 0.006× 0.3 + 0.012× 0.2

=
0.002

0.0062

= 0.322
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Chains of Events

To find P(A1 ∩ A2 ∩ A3) we can apply the multiplication rule successively:

P(A1 ∩ A2 ∩ A3) = P(A3 ∩ (A1 ∩ A2))

= P(A3|A1 ∩ A2)P(A1 ∩ A2) (multiplication rule)

= P(A3|A1 ∩ A2)P(A2|A1)P(A1) (multiplication rule)

Remember as: P(A1 ∩ A2 ∩ A3) = P(A1)P(A2 |A1)P(A3 |A2 ∩ A1).

In general, for n events A1, A2, . . . , An, we have,

P(A1∩A2∩ . . .∩An) = P(A1)P(A2 |A1)P(A3 |A2∩A1) . . .P(An |An−1∩ . . .∩A1)

Example: A box contains w white balls and r red balls. Draw 3 balls without re-
placement. What is the probability of getting the sequence white, red, white?

Answer:

P(W1 ∩ R2 ∩ W3) = P(W1)P(R2|W1)P(W3|R2 ∩ W1)

=

(
w

w + r

)

×
(

r

w + r − 1

)

×
(

w − 1

w + r − 2

)

.
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1.8 Statistical Independence

Two events A and B are statistically independent if the occurrence of one does
not affect the occurrence of the other.

This means P(A|B) = P(A) and P(B|A) = P(B).

Now P(A|B) =
P(A ∩ B)

P(B)
,

so if P(A|B) = P(A) then P(A ∩ B) = P(A) × P(B).

We use this as our definition of statistical independence.

Definition: Events A and B are statistically independent if

P(A ∩ B) = P(A)P(B)

For more than two events, we say:

Definition: Events A1, A2, . . . , An are mutually independent if

P(A1 ∩ A2 ∩ . . . ∩ An) = P(A1)P(A2) . . .P(An), AND

the same multiplication rule holds for every subcollection of the events too.

Eg. events A1, A2, A3, A4 are mutually independent if

i) P(Ai ∩ Aj) = P(Ai)P(Aj) for all i, j with i 6= j;
AND

ii) P(Ai ∩ Aj ∩ Ak) = P(Ai)P(Aj)P(Ak) for all i, j, k that are all different;
AND

iii) P(A1 ∩ A2 ∩ A3 ∩ A4) = P(A1)P(A2)P(A3)P(A4).
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Notes: 1) If events are physically independent, they will also be statistically inde-
pendent.

2) If A and B are mutually exclusive, they are not usually independent.

“Mutually exclusive” means P(A ∩ B) = 0
“Independent” means P(A ∩ B) = P(A)P(B).

Example: Toss a fair coin and a fair die together. The coin and die are physically

independent.

Sample space: S = {H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}
- all 12 items are equally likely.

Let A= “heads” and B= “six”.
Then P(A) = P({H1, H2, H3, H4, H5, H6}) = 6

12
= 1

2

P(B) = P({H6, T6}) = 2
12 = 1

6

Now P(A ∩ B) = P(Heads and 6) = P({H6}) = 1
12

But P(A) × P(B) = 1
2 × 1

6 = 1
12 also,

So P(A ∩ B) = P(A)P(B) and thus A and B are statistically independent.

Example: A jar contains 4 balls: one red, one white, one blue, and one red, white
& blue. Draw one ball at random.

Let

A =“ball has red on it”, B =“ball has white on it”, C =“ball has blue on it”.

2 balls satisfy A, so P(A) = 2
4

= 1
2
. Likewise, P(B) = P(C) = 1

2
.

Now, P(A ∩ B) = 1
4 (one of 4 balls has both red and white on it).

But, P(A) × P(B) = 1
2
× 1

2
= 1

4
, so P(A ∩ B) = P(A)P(B).

Likewise, P(A ∩ C) = P(A)P(C), and P(B ∩ C) = P(B)P(C).
So A, B and C are pairwise independent.
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BUT, P(A ∩ B ∩ C) = 1
4 (one of 4 balls)

while P(A)P(B)P(C) = 1
2
× 1

2
× 1

2
= 1

8
6= P(A ∩ B ∩ C).

So A, B and C are NOT mutually independent, despite being pairwise inde-

pendent.

Notes: 1) If A and B are independent, then

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

= P(A) + P(B) − P(A)P(B)

Similarly, if A, B, and C are mutually independent, then

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C)

− P(B ∩ C) + P(A ∩ B ∩ C) (as always)

When independent,

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A)P(B)− P(A)P(C)

− P(B)P(C) + P(A)P(B)P(C) .

2) If A and B are independent, so are:

(i) A and B (i) A and B (iii) A and B.

Proof of (i):

P(A ∩ B) = P(A) − P(A ∩ B) (because B, B partition S)

= P(A) − P(A)P(B) if A,B independent
= P(A)(1 − P(B))

= P(A)P(B) ⇒ A, B are independent.

(ii), (iii) exercise.
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1.9 Random Variables

Definition: A random variable (r.v.) is a function from a sample space S to the
real numbers R.
We write X : S → R.

Example: Toss a coin 3 times. The sample space is

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

One example of a random variable is X : S → R such that, for sample point si,
we have X(si) = # heads in outcome si.

So X(HHH) = 3, X(THT ) = 1, etc.

Another example is Y : S → R such that Y (si) =

{
1 if 2nd toss is a head
0 otherwise

Then Y (HTH) = 0, Y (THH) = 1, Y (HHH) = 1, etc.

Another example is W : S → R such that W (si) = cosine(# tails in si).

Any function is a random variable as long as it is defined on all elements of S,
and takes only real values.

Note: The name ‘random variable’ is misleading, because we are looking at a
function on the sample space. This is neither random nor variable.

However, if we observe the outcome of a random experiment, and apply a

random variable (i.e. a real-valued function) to it, then we end up with what is
essentially a random real number. This helps to explain where the name comes

from.
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For example, suppose we toss a coin 3 times and observe the outcome.
Apply X : S → R, such that X(si) = # heads in outcome si.

The first time we do this, we get outcome THH (say)
so X(THH)=2.

The second time, we get outcome HTT
so X(HTT)=1.

and so on.

Thus the random variable produces random real numbers
as the ‘outcome’ of a random experiment.

Why do we use random variables?

A random variable allots a number to every outcome in the sample space. This
means that totally different sample spaces can be represented on the same

numerical scale. Using random variables gives us a way of describing many
different situations at once.

For example:

Expt 1: Let X = # heads from 4 tosses of a fair coin.
Expt 2: Let Y = # boys in a 4-child family.

X and Y have exactly the same behaviour as random variables, despite being

defined upon different sample spaces.

Random variables are the fundamental concept that we need in order to build
mathematical models of randomness in the real world.
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Probabilities for random variables

By convention, we use CAPITAL LETTERS for random variables (e.g. X), and

lower case letters to represent the values that the random variable takes (e.g.
x).

For a sample space S and random variable X : S → R, and for a real number x,

P(X = x) = P(outcome s is such that X(s) = x) = P({s : X(s) = x}).

Example: toss a fair coin 3 times. All outcomes are equally likely:

P(HHH) = P(HHT) = . . . = P(TTT) = 1/8.

Let X : S → R, such that X(s) = # heads in s.

Then P(X = 0) = P({TTT}) = 1/8

P(X = 1) = P({HTT, THT, TTH}) = 3/8

P(X = 2) = P({HHT, HTH, THH}) = 3/8

P(X = 3) = P({HHH}) = 1/8

Note that P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 1.

Definition: The cumulative distribution function (c.d.f.) of a r.v. X is given

by FX(x) = P(X ≤ x).

Example: X(s) = #heads in s, as above.

FX(0) = P(X ≤ 0) = 1
8

FX(1) = P(X ≤ 1) = 1
8 + 3

8

FX(2) = 1
2

+ 3
8

= 7
8

FX(3) = 7
8

+ 1
8

= 1.

PSfrag replacements

0 1 2 3
x

F (x)

1
8

1
2

7
8

1

Questions: what is FX(−1)? Ans: 0; FX(0.5)? Ans: 1/8;
FX(4)? Ans: 1.
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1.10 Problems

1. In New Zealand, more males are born than females: 51 percent of all babies born are
male. However, infant mortality is higher for males than for females: 55 percent of all
infant deaths are male. The infant mortality rate is 6.28 per thousand live births.

a) Define events M , F , and D for ‘baby is male’, ‘baby is female’, and ‘baby dies in
infanthood’. Express all information given above in terms of these events.

b) What is the probability that a male baby dies in infanthood?

c) What is the probability that a female baby dies in infanthood?

d) We are interested to know whether the higher death rate for males in their first year
balances out the higher birth rate for males: that is, what is the proportion of males
among babies that survive infanthood? Express this probability in terms of the events
M and D, and hence find the required probability.

Has the sex ratio been balanced by the higher death rate? Are you surprised?

2. The following figures come from a Western Australian study of hypertension and its
connections with weight and alcohol consumption. Alcohol consumption was classed as
Low (L), Medium (M), or High (H). A subject’s weight was classed as Average (A), or
Overweight (O). Each subject was diagnosed as suffering from hypertension (T ), or not
suffering from hypertension (T ).

The proportions in the sample are as follows:

i) average weight and with low, medium, and high alcohol consumptions respectively:
0.17, 0.33, 0.16. The probability of hypertension for these three categories is 0.13, 0.23,
and 0.31 respectively.

ii) overweight and with low, medium, and high alcohol consumptions respectively: 0.07,
0.17, 0.10. The probability of suffering hypertension for these three categories is 0.27,
0.37, and 0.40 respectively.

a) Express all information given above in terms of the events T , L, M , H, A, and O.

b) Do the events L, M , and H form a partition of the sample space? Explain why or why
not.

c) Do the events A and O form a partition of the sample space? Explain why or why not.

d) Do the events A∩L, A∩M , and A∩H form a partition of the sample space? Explain
why or why not.

e) Find P(A) and P(O).

f) Find P(T ).

g) Find P(T |L) and P(T |H).

h) Find P(T ∩ O), P(T |O), and P(T ∪ O) for the sample in the study. Describe these
events in words.
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3. The following probabilities are obtained from weather data for Auckland in February
2002. The weather for each day can be classified as ‘rain’ (R), or ‘dry’ (D). Given the
weather conditions for any specified day, the conditions on the next day are the same
with probability 4/5, and different with probability 1/5; and they do not depend upon
the conditions on any previous days. Suppose that on day 1 there is a 10% chance of
rain.

a) Formulate events Rn for ‘rain on day n’, and Dn for ‘dry on day n’. Using the
information above, state P(Rn |Rn−1), P(Rn |Dn−1), P(Dn |Rn−1), and P(Dn |Dn−1), for
n > 1.

b) Find P(R1 ∩ D2 ∩ R3 ∩ D4).

c) Let rn = P(Rn). Find r2 and r3.

d) Show that rn = 3
5
rn−1 + 1

5
.

e) By repeated substitution, show that

rn =

(
3

5

)n−1(

r1 −
1

2

)

+
1

2
= −

(
2

5

)(
3

5

)n−1

+
1

2
.

f) What is the probability that it will rain on the last day of February (day 28)? To what
extent does this depend upon the conditions on February 1st?

4. An elderly possum retires to live in Albert Park. Having no natural predators, the only
threat to its survival comes every day at sunset when the lights to the Sky Tower are
turned on. It will survive this experience with probability p, but with probability 1 − p
it will die of shock. This situation continues indefinitely: given that the possum is alive
at the start of a day, it survives to the end of the day with probability p and dies with
probability 1 − p.

Assume that the possum is alive at the start of day 1.

a) Let event A2 be the event that the possum is alive at the end of day 2. Find P(A2).

b) Let event D4 be the event that the possum has died by the end of day 4 (i.e. on or
before day 4). Find P(D4).

c) Find P(A2 |D4). [Hint: you might find it useful to draw a probability tree.]
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1.11 Key Probability Results for Chapter 1

1. If A and B are mutually exclusive (i.e. A ∩ B = ∅), then

P(A ∪ B) = P(A) + P(B).

2. Conditional probability: P(A |B) =
P(A ∩ B)

P(B)
for any A, B.

Or: P(A ∩ B) = P(A |B)P(B).

3. For any A, B, we can write

P(A |B) =
P(B |A)P(A)

P(B)
.

This is a simplified version of Bayes’ Theorem. It shows how to ‘invert’ the conditioning,
i.e. how to find P(A |B) when you know P(B |A).

4. Bayes’ Theorem slightly more generalized:

for any A, B,

P(A |B) =
P(B |A)P(A)

P(B |A)P(A) + P(B |A)P(A)
.

This works because A and A form a partition of the sample space.

5. Complete version of Bayes’ Theorem:

If sets A1, . . . , Am form a partition of the sample space, i.e. they do not overlap
(mutually exclusive) and collectively cover all possible outcomes (their union is the
sample space), then

P(Aj |B) =
P(B |Aj)P(Aj)

P(B |A1)P(A1) + . . . + P(B |Am)P(Am)

=
P(B |Aj)P(Aj)

∑m

i=1 P(B |Ai)P(Ai)
.
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6. Partition Theorem: if A1, . . . , Am form a partition of the sample space, then

P(B) = P(B ∩ A1) + P(B ∩ A2) + . . . + P(B ∩ Am) .

This can also be written as:

P(B) = P(B |A1)P(A1) + P(B |A2)P(A2) + . . . + P(B |Am)P(Am) .

These are both very useful formulations.

7. Chains of events:

P(A1 ∩ A2 ∩ A3) = P(A1) P(A2 |A1) P(A3 |A2 ∩ A1) .

8. Statistical independence:

if A and B are independent, then

P(A ∩ B) = P(A) P(B)

and
P(A |B) = P(A)

and
P(B |A) = P(B) .

9. Conditional probability measure:

If P(B) > 0, then we can treat P(· |B) just like any other probability measure:

e.g. if A1 and A2 are mutually exclusive, then P(A1 ∪ A2 |B) = P(A1 |B) + P(A2 |B)
(compare with P(A1 ∪ A2) = P(A1) + P(A2));

if A1,. . . ,Am partition the sample space, then P(A1 |B) + P(A2 |B) +. . .+ P(Am |B) = 1;

and P(A |B) = 1 − P(A |B) for any A.

(Note: it is not generally true that P(A |B) = 1 − P(A |B).)

The fact that P(· |B) is a probability measure is easily verified by checking that it satisfies
the Axioms AI, AII, and AIII.

10. Unions: For any A, B, C,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) ;

P(A∪B ∪C) = P(A) + P(B) + P(C)−P(A∩B)−P(A∩C)−P(B ∩C)+ P(A∩B ∩C) .

The second expression is obtained by writing P(A∪B∪C) = P

(

A∪(B∪C)
)

and applying

the first expression to A and (B ∪ C), then applying it again to expand P(B ∪ C).
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Chapter 2 : Discrete Probability

Distributions

2.1 Introduction

Recall that a random variable, X, assigns a real number to every possible
outcome of a random experiment. The random variable is discrete if the set of
real values it can take is finite or countable, eg. {0,1,2,. . . }.

Definition: The probability function, fX(x), for a discrete random variable X, is
given by,

fX(x) = P(X = x), for all possible outcomes x of X.

Example: Toss a fair coin once, and let X=number of heads. Then

X =

{
0 with probability 0.5,
1 with probability 0.5.

The probability function of X is given by

fX(x) =







0.5 if x=0
0.5 if x=1
0 otherwise

We write (eg.) fX(0) = 0.5, fX(1) = 0.5, fX(7.5) = 0, etc.
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Properties of the probability function

i) fX(x) ≥ 0 for all x; (probabilities are never negative)

ii)
∑

x
fX(x) = 1; (probabilities add to 1 overall)

iii) P (X ∈ A) =
∑

x∈A

fX(x);

eg. if X=value from one toss of a fair die, then
P(X ∈ {1, 2, 3}) = P(X = 1) + P(X = 2) + P(X = 3) = 1

6
+ 1

6
+ 1

6
= 1

2

Definition: The expected value, or mean, of a discrete random variable X,

can be written as either E(X), or E(X), or µX , and is given by

µX = E(X) =
∑

x

xfX(x) =
∑

x

xP(X = x) .

The expected value is a measure of the centre, or average, of the set of values that
X can take, weighted according to the probability of each value.

Example: suppose X =

{
1 with probability 0.9,
−1 with probability 0.1.

X takes only the values 1 and −1. What is the ‘average’ value of X?

Using 1+(−1)
2 = 0 would not be useful, because it ignores the fact that usually

X = 1, and only occasionally is X = −1.
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Instead, think of observing X many times, say 100 times.

Roughly 90 of these 100 times will have X = 1.
Roughly 10 of these 100 times will have X = −1

Take the average of the 100 values: it will be roughly

90 × 1 + 10 × (−1)

100
,

ie. 0.9 × 1 + 0.1 × (−1) = 0.8.

This is why we take the average as

E(X) = fX(1) × 1 + fX(−1) × (−1).

E(X) is the average (mean) value we would get if we observed X many times.

Expected value of a function of X

Let X be a random variable, and let g be a (nice) function from R → R.

Then g(X) is also a random variable.

Example:

X =

{
3 with probability 0.75,
8 with probability 0.25.

Let g : R → R such that g(x) =
√

x.
Then

g(X) =

{ √
3 with probability 0.75,√
8 with probability 0.25.

So the average of g(X) is: 0.75 ×
√

3 + 0.25 ×
√

8.
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Definition: For any function g, the expected value of g(X) is given by

E{g(X)} =
∑

x

g(x)fX(x) =
∑

x

g(x)P(X = x).

Theorem 2.1: Let a and b be constants, and let g(x), h(x) be functions. Then

i) E[aX + b] = aE(X) + b

ii) E[ag(X) + b] = aE[g(X)] + b

iii) E[ag(X) + bh(X)] = aE[g(X)] + bE[h(X)]

Proof:

Direct from definition of expectation of a function.

Eg. for (iii),

E[ag(X) + bh(X)] =
∑

x

[ag(x) + bh(x)]fX(x)

= a
∑

x

g(x)fX(x) + b
∑

x

h(x)fX(x)

= a E[g(X)] + b E[h(X)]. �

Note: Part (iii) is related to the important result

E(X1 + X2 + . . . + Xn) = E(X1) + E(X2) + . . . + E(Xn), for any X1, . . . , Xn.
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Variance

Definition: The variance of a random variable X is written as either Var(X) or σ2
X ,

and is given by

σ2
X = Var(X) = E

[
(X − µX)2

]
= E

[
(X − EX)2

]
.

Similarly, the variance of a function of X is Var(g(X)) = E

[(

g(X) − E(g(X))
)2
]

.

Note: The variance is the square of the standard deviation of X, so

sd(X) =
√

Var(X) =
√

σ2
X = σX .

The variance is a measure of how spread out are the values that X can take.
It is the average squared distance between a value of X and the central (mean)
value, µX .

Possible values of X

(central value)

PSfrag replacements

x1 x2 x3 x4 x5 x6

µX

x2 − µX x4 − µX

Var(X) = E

︸︷︷︸

(2)

[(X − µX)2

︸ ︷︷ ︸

(1)

]

(1) Take distance from observed values of X to the central point, µX . Square it
to balance positive and negative distances.

(2) Then take the average over all values X can take: ie. if we observed X many
times, find what would be the average squared distance between X and µX .

Note: The mean, µX , and the variance, σ2
X , of X are just numbers: there is nothing

random or variable about them.
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Example: Let X =

{
3 with probability 3/4,
8 with probability 1/4.

Then

E(X) = µX = 3 × 3

4
+ 8 × 1

4
= 4.25

Var(X) = σ2
X =

3

4
× (3 − 4.25)2 +

1

4
× (8 − 4.25)2

= 4.6875

When we observe X, we get either 3 or 8: this is random. But µX is fixed at 4.25,
and σ2

X is fixed at 4.6875, regardless of the outcome of X.

For a discrete random variable,

Var(X) = E
[
(X − µX)2

]
=
∑

x

(x − µX)2fX(x) =
∑

x

(x − µX)2
P(X = x).

This uses the definition of the expected value of a function of X:

Var(X) = E(g(X)) where g(X) = (X − µX)2.

Theorem 2.2: (important)

Var(X) = E(X2) − (EX)2 = E(X2) − µ2
X

Proof:

Var(X) = E
[
(X − µX)2

]
by definition

= E[ X2
︸︷︷︸
r.v.

−2 X︸︷︷︸
r.v.

µX
︸︷︷︸

constant

+ µ2
X︸︷︷︸

constant

]

= E(X2) − 2µXE(X) + µ2
X by Thm 2.1

= E(X2) − 2µ2
X + µ2

X

= E(X2) − µ2
X . �
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Note: E(X2) =
∑

x x2fX(x) =
∑

x x2
P(X = x) . This is not the same as (EX)2:

eg.

X =

{
3 with probability 0.75
8 with probability 0.25,

then µX = E(X) = 4.25, so µ2
X = (EX)2 = (4.25)2 = 18.0625.

But E(X2) = (32 × 3
4 + 82 × 1

4) = 22.75.

Thus

E(X2) 6= (EX)2 in general.

Theorem 2.3: If a and b are constants and g(x) is a function, then

i) Var[aX + b] = a2Var(X)

ii) Var[a g(X) + b] = a2Var[g(X)]

Proof: (part (ii))

Var(ag(X) + b) = E

[

{(ag(X) + b) − E(ag(X) + b)}2
]

= E

[

{ag(X) + b − aE(g(X)) − b}2
]

by Thm 2.1

= E

[

{ag(X) − aE(g(X))}2
]

= E

[

a2{g(X) − E(g(X))}2
]

= a2
E

[

{g(X) − E(g(X))}2
]

by Thm 2.1(i)

= a2Var[g(X)] .

Part (i) follows by putting g(X) = X. �
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Note: These are very different from the corresponding expressions for expectations
(Theorem 2.1). Variances are more difficult to manipulate than expectations.

Example: finding expectation and variance from the probability function

Define X by the following probability function:

x 0 1 2 3

fX(x) = P(X = x) 1
8

5
8

1
8

1
8

Then

E(X) =
3∑

x=0

xfX(x) = 0 × 1

8
+ 1 × 5

8
+ 2 × 1

8
+ 3 × 1

8

=
10

8
= 1.25

Var(X): First method, use E[(X − µX)2]:

Var(X) =
3∑

x=0

(x − 1.25)2fX(x)

= (0 − 1.25)2 × 1

8
+ (1 − 1.25)2 × 5

8
+ (2 − 1.25)2 × 1

8
+ (3 − 1.25)2 × 1

8
= 0.6875

Second method: use E(X2) − µ2
X : (usually easier)

E(X2) =
3∑

x=0

x2fX(x) = 02 × 1

8
+ 12 × 5

8
+ 22 × 1

8
+ 32 × 1

8

= 2.25

So Var(X) = 2.25− (1.25)2 = 0.6875 as before.
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Interlude:
orTRUE

FALSE ??Guess whether each of the
following statements is true or false.

1. Toss a fair coin 10 times. The probability of getting 8 or more heads is less

than 1%.

2. Toss a fair coin 200 times. The chance of getting a run of at least 6 heads or 6

tails in a row is less than 10%.

3. Consider a classroom with 30 pupils of age 5, and one teacher of age 50. The

probability that the pupils all outlive the teacher is about 90%.

4. Open the Business Herald at the pages giving share prices, or open an atlas at

the pages giving country areas or populations. Pick a column of figures.

share last sale

A Barnett 143
Advantage I 23
AFFCO 18
Air NZ 52

...
...

The figures are over 5 times more likely to begin with the digit 1 than with the
digit 9.

Answers:1.FALSEitis5.5%.2.FALSE:itis97%.3.FALSE:inNZtheprobabilityisabout50%.4.TRUE:infacttheyare6.5timesmorelikely.
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2.2 Distribution of transformed random variables

Suppose we know the distribution (i.e. probability function) of X.
How do we find the distribution of Y = g(X)?

Example: Let X be as follows:
x −1 0 1

fX(x) = P(X = x) 1
4

1
2

1
4

Let Y = 2X (so g(X)=2X).
Clearly, the probability function of Y is:

y -2 0 2

fY (y) = P(Y = y) 1
4

1
2

1
4

Thus

fY (−2) = P(Y = −2)

= P(2X = −2)

= P(X = −2

2
)

= P(X = −1)

=
1

4

Similarly, fY (0) = P(Y = 0) = P

(

X =
0

2

)

=
1

2
,

and fY (2) = P(Y = 2) = P

(

X =
2

2

)

=
1

4
.

So if Y = g(X) = 2X, then fY (y) = fX(y
2) = fX(g−1(y)).

This is true in general, as follows.
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General Result:

Suppose Y = g(X) and g is injective (one-to-one) : that is, there are no two
values x1 and x2 such that g(x1) = g(x2). Then the inverse function g−1 is

well-defined, and

fY (y) = fX(g−1(y))

If g is not injective, there may be more than one value of x such that g(x) = y.
In this case,

fY (y) =
∑

x:g(x)=y

fX(x)

Example: let X be as above:
x −1 0 1

fX(x) 1
4

1
2

1
4

Let Y = X2.

When

X = −1, Y = 1 : prob =
1

4

X = 0, Y = 0 : prob =
1

2

X = 1, Y = 1 : prob =
1

4
∴

y 0 1

fY (y) 1
2

1
4

+ 1
4

In this case, we have:

fY (0) =
∑

x:x2=0

fX(x) = fX(0) =
1

2
,

and fY (1) =
∑

x:x2=1

fX(x) = fX(−1) + fX(1) =
1

4
+

1

4
=

1

2
.
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2.3 Examples of Discrete Distributions

Part of the reason for looking at random variables is to be able to describe

several different situations all in the same way.

For example, toss a fair coin; let X =

{
0 if tail (probability 1/2),

1 if head (probability 1/2),

or spin a balanced pointer, and let Y =

{
0 if ≤ 180◦ (probability 1/2),
1 if > 180◦ (probability 1/2).

The situations are different, but the random variables X and Y behave in
exactly the same way.

For this reason, we have several ‘standard’ random variables which describe

common situations. We work out their properties, and can then apply the
results whenever we encounter these situations.

1. Binomial distribution

Definition: A random experiment is called a set of Bernoulli trials if it consists
of several trials such that:

i) Each trial has only 2 possible outcomes (usually called “Success” and “Fail-
ure”);

ii) The probability of success, p, remains constant for all trials;

iii) The trials are independent, ie. the event “success in trial i” does not depend
on the outcome of any other trials.

Examples: 1) Repeated tossing of a fair coin: each toss is a Bernoulli trial with
P(success) = P(head) = 1

2.
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2) Repeated tossing of a fair die: success = “6”, failure= “not 6”. Each toss is a
Bernoulli trial with P(success) = 1

6.

Definition: The random variable Y is called a Bernoulli random variable if it
takes only 2 values, 0 and 1.

The probability function is,

fY (y) =

{
p if y = 1
1 − p if y = 0

That is,

P(Y = 1) = P(“success”) = p,

P(Y = 0) = P(“failure”) = 1 − p.

Definition: Let X be the number of successes in n independent Bernoulli trials each
with probability of success = p. Then X has the Binomial distribution with
parameters n and p. We write X ∼ Bin(n, p), or X ∼ Binomial(n, p).

Thus X ∼ Bin(n, p) if X is the number of successes out of n independent
trials, each of which has probability p of success.

Properties of the Binomial distribution

i) Probability function

If X ∼ Binomial(n, p), then the probability function for X is

fX(x) = P(X = x) =

(
n

x

)

px(1 − p)n−x for x = 0, 1, . . . , n
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Explanation: An outcome with x successes (n − x) failures has probability,

px

︸︷︷︸

(1)

(1 − p)n−x

︸ ︷︷ ︸

(2)

where:
(1) succeeds x times, each with probability p
(2) fails (n − x) times, each with probability (1 − p).

There are
(

n

x

)

possible outcomes with x successes and (n − x) failures because

we must select x trials to be our “successes”, out of n trials in total.

Thus,

P(#successes= x) = (#outcomes with x successes) × (prob. of each such outcome)

=

(
n

x

)

px(1 − p)n−x

Note:

fX(x) = 0 if x /∈ {0, 1, 2, . . . , n}.

Check that
n∑

x=0

fX(x) = 1:

n∑

x=0

fX(x) =

n∑

x=0

(
n

x

)

px(1 − p)n−x = [p + (1 − p)]n (Binomial Theorem)

= 1n = 1

It is this connection with the Binomial Theorem that gives the Binomial Dis-

tribution its name.
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ii) Mean and variance of Bin(n, p)

If X ∼ Binomial(n, p), then

E(X) = µX = np

Var(X) = σ2
X = np(1− p)

We often write q = 1 − p, so Var(X) = npq.

iii) Shape

The shape of the Binomial distribution depends upon the values of n and p. For

small n, the distribution is almost symmetrical for values of p close to 0.5, but
highly skewed for values of p close to 0 or 1. As n increases, the distribution

becomes more and more symmetrical, and there is noticeable skew only if p is
very close to 0 or 1.

The probability functions for various values of n and p are shown below.

0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

80 90 100

PSfrag replacements

n = 10, p = 0.5 n = 10, p = 0.9 n = 100, p = 0.9

iv) Sum of independent Binomial random variables:

If X and Y are independent, and X ∼ Binomial(n, p), Y ∼ Binomial(m, p), then

X + Y ∼ Bin(n + m, p).
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Proof that E(X) = np and Var(X) = np(1 − p) for X ∼ Binomial(n, p)

E(X) =

n∑

x=0

xfX(x) =

n∑

x=0

x

(
n

x

)

px(1 − p)n−x =

n∑

x=0

x
( n!

(n − x)!x!

)

px(1 − p)n−x

But
x

x!
=

1

(x − 1)!
and also the first term xfX(x) is 0 when x = 0.

So, continuing,

E(X) =
n∑

x=1

n!

(n − x)!(x− 1)!
px(1 − p)n−x

Next: make n’s into (n − 1)’s, x’s into (x − 1)’s, wherever possible
eg.

n − x = (n − 1) − (x − 1), px = p · px−1

n! = n(n − 1)! etc.

This gives,

E(X) =
n∑

x=1

n(n − 1)!

[(n − 1) − (x − 1)]!(x− 1)!
p · p(x−1)(1 − p)(n−1)−(x−1)

= np
︸︷︷︸

what we want

n∑

x=1

(
n − 1

x − 1

)

px−1(1 − p)(n−1)−(x−1)

︸ ︷︷ ︸

need to show this sum = 1

Finally we let y = x − 1 and let m = n − 1.
When x = 1, y = 0; and when x = n, y = n − 1 = m.

So

E(X) = np

m∑

y=0

(
m

y

)

py(1 − p)m−y

= np(p + (1 − p))m (Binomial Theorem)

E(X) = np, as required.
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For Var(X), use the same ideas again.
For E(X), we used x

x! = 1
(x−1)! ; so instead of finding E(X2), it will be easier

to find E[X(X − 1)] = E(X2) − E(X) because then we will be able to cancel
x(x−1)

x! = 1
(x−2)! .

Here goes:

E[X(X − 1)] =
n∑

x=0

x(x − 1)

(
n

x

)

px(1 − p)n−x

=

n∑

x=0

x(x − 1)n(n − 1)(n − 2)!

[(n − 2) − (x − 2)]!(x− 2)!x(x− 1)
p2p(x−2)(1 − p)(n−2)−(x−2)

First two terms (x = 0 and x = 1) are 0 due to the x(x − 1) in the numerator.
Thus

E[X(X − 1)] = p2n(n − 1)

n∑

x=2

(
n − 2

x − 2

)

px−2(1 − p)(n−2)−(x−2)

= n(n − 1)p2
m∑

y=0

(
m

y

)

py(1 − p)m−y

︸ ︷︷ ︸

sum=1 by Binomial Theorem

if
{

m = n − 2,

y = x − 2.

So E[X(X − 1)] = n(n − 1)p2 .

Thus Var(X) = E(X2) − (E(X))2

= E(X2) − E(X) + E(X) − (E(X))2

= E[X(X − 1)] + E(X) − (E(X))2

= n(n − 1)p2 + np − n2p2

= np(1 − p). �

Note the steps: take out x(x− 1) and replace n by (n− 2), x by (x− 2) wherever
possible.
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2. Poisson distribution

So far, we have looked at the Binomial distribution, which arises in nature as
the number of successes in a sequence of identical, independent Bernoulli trials.

The Poisson distribution is another distribution that arises in nature, through

the so-called Poisson process. The Poisson process describes a physical situa-
tion that is guaranteed to produce a Poisson distribution — just as the number
of successes in repeated Bernoulli trials is guaranteed to follow a Binomial dis-

tribution. Roughly speaking, the Poisson process counts the number of events
occurring in a fixed time or space, when events occur independently and at a
constant average rate.

The Poisson distribution has one parameter, λ, which in a Poisson process
equals the average rate at which events occur.

Example: customers arriving at a bank. Suppose that customers arrive at an

average rate of 20 per hour, independently of each other.
If X= number of customers to arrive in a 1-hour period, we can use the Poisson
distribution with rate λ = 20 to model X.

We will define the Poisson process formally below.

The Poisson process is a mathematically exact situation that will always result
in a Poisson distribution. However, the Poisson distribution is also widely used
as a ‘subjective model’ in situations that are not mathematically exact. Statis-

ticians use subjective models when they need to describe the randomness in a
situation that has no known mathematical formulation. Essentially, they are

suggesting that the shape and variability of the distribution they are interested
in is well captured by a Poisson distribution.

The difference between an exact model and a subjective model is important.

Exact models, such as the Binomial distribution from Bernoulli trials, or the
Poisson distribution from the Poisson process, are quite rare in real life; it is
far more common for a subjective model to be required.

Example: Let X be the number of children of a randomly selected NZ woman.
There is no mathematical formulation that can describe X exactly. However, a
reasonable subjective model for X might be X ∼ Poisson(λ = 2.5).
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Properties of the Poisson distribution

i) Probability function

If X has a Poisson distribution with parameter λ, the probability function of
X is

fX(x) = P(X = x) =
λx

x!
e−λ for x = 0, 1, 2, . . .

The parameter λ is called the rate of the Poisson distribution. In the bank

example above, λ = 20 for the rate at which customers arrive. (20 per hour)

We write X ∼ Poisson(λ) (eg. X ∼ Poisson(20)).

ii) Mean and variance

The mean and variance of the Poisson(λ) distribution are both λ.

E(X) = Var(X) = λ when X ∼ Poisson(λ)

Notes:
1. It makes sense for E(X) = λ. If events occur at a constant average rate of λ
per unit time, then the mean of the number of events to occur in one unit of time
should indeed be λ.

2. The variance of the Poisson distribution increases with the mean (in fact,
variance =mean). This is very often the case in real life: there is more uncertainty
associated with larger numbers than with smaller numbers.

Despite this, the variance of the Poisson distribution is often too small to
describe real-life situations adequately. In real life, the variance of a pheno-
menon often increases faster than the mean.
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iii) Shape

The shape of the Poisson distribution depends upon the value of λ. For small λ,
the distribution has positive (right) skew. As λ increases, the distribution becomes
more and more symmetrical, until for large λ it has the familiar bell-shaped ap-
pearance.

The probability functions for various λ are shown below.
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iv) Sum of independent Poisson random variables

If X and Y are independent, and X ∼ Poisson(λ), Y ∼ Poisson(µ), then

X + Y ∼ Poisson(λ + µ).
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Proof that E(X) = Var(X) = λ for X ∼ Poisson(λ)

For X ∼ Poisson(λ), the probability function is fX(x) =
λx

x!
e−λ for x = 0, 1, 2, . . .

So

E(X) =

∞∑

x=0

xfX(x) =

∞∑

x=0

x

(
λx

x!
e−λ

)

=

∞∑

x=1

λx

(x − 1)!
e−λ (note that term for x = 0 is 0)

= λ

∞∑

x=1

λx−1

(x − 1)!
e−λ (writing everything in terms of x − 1)

= λ
∞∑

y=0

λy

y!
e−λ (putting y = x − 1)

= λ, because the sum=1 (sum of Poisson probabilities) .

So E(X) = λ, as required.

For Var(X), we use: Var(X) = E(X2) − (EX)2

= E[X(X − 1)] + E(X) − (EX)2

= E[X(X − 1)] + λ − λ2.

But E[X(X − 1)] =

∞∑

x=0

x(x − 1)
λx

x!
e−λ

=

∞∑

x=2

λx

(x − 2)!
e−λ (terms for x = 0 and x = 1 are 0)

= λ2
∞∑

x=2

λx−2

(x − 2)!
e−λ (writing everything in terms of x − 2)

= λ2
∞∑

y=0

λy

y!
e−λ (putting y = x − 2)

= λ2.
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So

Var(X) = E[X(X − 1)] + λ − λ2

= λ2 + λ − λ2

= λ, as required.

Poisson process with rate λ

We now define the Poisson process properly. Recall that the Poisson distribution

is used as a model in a wide range of situations where it is not mathematically
exact, but that the Poisson process is a single physical situation that does give

rise to an exact Poisson distribution.

Consider a sequence of events occurring over time (e.g. customers arriving at a
bank).

Let Xt be the number of events to have occurred by time t, ie. in the time interval
from time 0 to time t.

If the events occur according to a Poisson process, the distribution of Xt can

be shown to be Poisson for any t > 0. In intuitive terms, the conditions for a
Poisson process are as follows:

i) all events are independent;

ii) events occur at a constant average rate of λ;

iii) events cannot occur simultaneously.

When these conditions are satisfied, then the number of events to have occurred
by time t has distribution

Xt ∼ Poisson(λt) : so P(Xt = x) =
(λt)x

x!
e−λt (x = 0, 1, 2, . . .)

For a spatial Poisson process, XA = # occurrences in area of size A ∼ Poisson(λA).
The mathematical formulation of the Poisson process conditions is as follows.
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Definition: The random variables {Xt : t > 0} form a Poisson process with rate λ

if:

i) events occurring in any time interval are independent of those occurring in any
other disjoint time interval;

ii)

lim
δt↓0

(
P(exactly one event occurs in time interval[t, t + δt])

δt

)

= λ

iii)

lim
δt↓0

(
P(more than one event occurs in time interval[t, t + δt])

δt

)

= 0

Poisson approximation to the Binomial distribution

Let X ∼ Binomial(n, p) (so X is the number of successes out of n Bernoulli
trials, each with probability of success = p).

If:
i) n is large,

ii) p is small,

iii) np is moderately-sized,

then

X ∼ approx Poisson(λ = np).

So

Bin(n, p) → Poisson(λ = np) when n → ∞, p → 0 and λ = np is fixed.
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Poisson(λ = 4 × 0.5 = 2) Poisson(λ = 10 × 0.2 = 2) Poisson(λ = 100 × 0.02 = 2)

The figures show how the probability function of the Binomial(n, p) distribution
looks more like the Poisson(λ = n × p) distribution as n becomes large and p

becomes small, although np is fixed at the value 2.

Why the approximation works:

The Poisson distribution models the number of events to occur in a fixed time

interval, when events occur at a constant average rate. We can imagine splitting
the time interval into a large number n of tiny intervals. In each of the n tiny
intervals, there is a very small probability p that an event occurs (i.e. that a

“success” occurs).

Thus, the number of events to occur in the large time interval, which is Poisson,
is also approximately the number of successes in the n tiny intervals, which is

Binomial. The approximation gets better as the number of intervals, n, becomes
large and the probability p becomes small.
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Proof of the Poisson approximation to the Binomial

Let X ∼ Binomial(n, p), where np = λ (so p = λ
n).

Then

P(X = x) =

(
n

x

)

px(1 − p)n−x

=
n(n − 1) . . . (n − x + 1)

x!

(
λ

n

)x(

1 − λ

n

)n−x

=
1

x!

(n

n

)(n − 1

n

)

. . .

(
n − x + 1

n

)

︸ ︷︷ ︸

λx

(

1 − λ

n

)n

︸ ︷︷ ︸

(

1 − λ

n

)−x

︸ ︷︷ ︸

(→ 1 as n → ∞) (→ e−λ) (→ 1)

So as n → ∞ and p → 0 such that np = λ, we have

P(X = x) → λx

x!
e−λ,

which is the probability function for the Poisson(λ) distribution. �

3. Geometric distribution

Like the Binomial distribution, the Geometric distribution is defined in terms of
a sequence of Bernoulli trials. However, while the Binomial distribution counts
the number of successes out of a fixed number of Bernoulli trials, the Geometric

distribution counts the number of trials before the first success occurs.

Definition: Let X be the number of failures that occur before the first success in a se-
quence of Bernoulli trials with P(success) = p. Then X has the Geometric distri-
bution with parameter p. We write X ∼ Geometric(p).
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Properties of the Geometric distribution

i) Probability function

If X ∼ Geometric(p), the probability function of X is

fX(x) = P(X = x) = (1 − p)xp for x = 0, 1, 2, . . .

Note: P(X = x) = (1 − p)x

︸ ︷︷ ︸
need x failures

× p
︸︷︷︸

final trial must be a success

ii) Mean and variance

For X ∼ Geometric(p),

E(X) =
1 − p

p
=

q

p

Var(X) =
1 − p

p2
=

q

p2

iii) Shape

The shape of the Geometric distribution depends upon the value of p. For
small p, it is likely that there will be many failures before a success occurs, so

the distribution has a long tail. For large p, a success is likely to occur almost
immediately, so the distribution has a short tail. The geometric distribution is

always positively skewed (right skewed).

The probability functions for various p are shown below.
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iv) Sum of independent Geometric random variables

If X1, . . . , Xk are independent, and each Xi ∼ Geometric(p), then

X1 + . . . + Xk ∼ Negative Binomial(k, p). (see later)

Proof that E(X) = 1−p

p
and Var(X) = 1−p

p2
for X ∼ Geometric(p)

We use the following results:

∞∑

x=1

xqx−1 =
1

(1 − q)2
(for |q| < 1), (1)

and ∞∑

x=2

x(x − 1)qx−2 =
2

(1 − q)3
(for |q| < 1). (2)

Proof of (1) and (2):

Consider the infinite sum of a geometric progression:

∞∑

x=0

qx =
1

1 − q
(for |q| < 1).

Differentiate both sides with respect to q:

d

dq

( ∞∑

x=0

qx

)

=
d

dq

(
1

1 − q

)

∞∑

x=0

d

dq
(qx) =

1

(1 − q)2

∞∑

x=1

xqx−1 =
1

(1 − q)2
, as stated in (1).

Note that the lower limit of the summation becomes x = 1 because the term

for x = 0 vanishes.

The proof of (2) is obtained similarly, by differentiating both sides of (1) with
respect to q (Exercise).
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Now we can find E(X) and Var(X).

E(X) =
∞∑

x=0

xP(X = x)

=

∞∑

x=0

xpqx (where q = 1 − p)

= p
∞∑

x=1

xqx (lower limit becomes x = 1 because term in x = 0 is zero)

= pq

∞∑

x=1

xqx−1

= pq

(
1

(1 − q)2

)

(by equation (1))

= pq

(
1

p2

)

(because 1 − q = p)

=
q

p
, as required.

For Var(X), we use

Var(X) = E(X2) − (EX)2 = E {X(X − 1)} + E(X) − (EX)2 . (?)

Now

E{X(X − 1)} =

∞∑

x=0

x(x − 1)P(X = x)

=
∞∑

x=0

x(x − 1)pqx (where q = 1 − p)

= pq2
∞∑

x=2

x(x − 1)qx−2 (note that terms below x = 2 vanish)

= pq2

(
2

(1 − q)3

)

(by equation (2))

=
2q2

p2
.

Thus by (?),
Var(X) =

2q2

p2
+

q

p
−
(

q

p

)2

=
q(q + p)

p2
=

q

p2
,

as required, because q + p = 1.
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4. Negative Binomial distribution

Definition: Let X be the number of failures before the k’th success in a sequence of
Bernoulli trials, each with P(success) = p. Then X ∼ Negative Binomial with
parameters k and p. We write X ∼ NegBin(k, p).

Properties of the Negative Binomial distribution

i) Probability function

If X ∼ NegBin(k, p), the probability function of X is

fX(x) = P(X = x) =

(
k + x − 1

x

)

pk(1 − p)x for x = 0, 1, 2, . . .

Note: P(X = x) =

(
k + x − 1

x

)

︸ ︷︷ ︸
know that the last trial is a success:

need to choose (k − 1) other successes

and x failures out of (k − 1 + x) trials.

×
need k successes
︷︸︸︷

pk × (1 − p)x

︸ ︷︷ ︸
need x failures

ii) Mean and variance

For X ∼ NegBin(k, p),

E(X) =
k(1 − p)

p
=

kq

p

Var(X) =
k(1 − p)

p2
=

kq

p2

Proof: not needed, but note it follows naturally from the result X = Y1 + . . .+Yk,
where each Yi ∼ Geom(p).
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iii) Shape

The figure shows the shape of the Negative Binomial distribution for various

values of k and p.
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iv) Sum of independent Negative Binomial random variables

If X and Y are independent, and X ∼ NegBin(k, p), Y ∼ NegBin(m, p), then

X + Y ∼ NegBin(k + m, p).

Note: (Non-examinable). For the negative binomial distribution,

Var(X) =
E(X)

p
> E(X), because p < 1.

This means that the variance of the negative binomial distribution is always
greater than the mean. We can compare this with the Poisson distribution, for

which variance is always equal to the mean. The larger variance of the negative
binomial distribution makes it a popular choice to use instead of the Poisson

distribution in ‘subjective’ modelling situations, because in real life situations
there is often high variability.
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5. Hypergeometric distribution

The hypergeometric distribution is used when we are sampling without replace-
ment from a finite population.

Definition: Suppose we have N objects, of which M are “special”:
(eg. N balls in a jar, M red balls, rest not red.)
Draw n balls without replacement.
Let X= number of the n balls that are “special”.

Then X ∼ Hypergeometric(N, M, n).

Properties of the Hypergeometric distribution

i) Probability function

If X ∼ Hypergeometric(N, M, n), the probability function of X is

fX(x) = P(X = x) =
(M

x )(
N−M
n−x )

(N
n)

for x = max(0, n + M − N) to x = min(n, M)

Explanation: there are
(
M
x

)
ways of choosing x special objects from the M special

objects available.
For each of these ways, there are

(
N−M
n−x

)
ways of choosing (n − x) non-special

objects from the (N − M) available.
So the total number of ways of choosing x special objects and (n−x) non-special
objects is

(
M
x

)(
N−M
n−x

)
.

Total number of ways of choosing n objects from N is
(
N
n

)
.

So

P(X = x) =
(M

x )(N−M

n−x )
(N

n)
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Note: x must be at least n − (N − M)(the number of special
objects needed to make up a sample of size n after all N−M non-special objects

have been selected). Similarly, x cannot be more than n or M .

See this more easily by noting that we need 0 ≤ x ≤ M(# red balls)
and 0 ≤ n − x ≤ N − M(# other balls).

ii) Mean and variance

For X ∼ Hypergeometric(N, M, n),

E(X) = np

Var(X) = np(1 − p)
(

N−n
N−1

) where p = M
N .

iii) Shape

The Hypergeometric distribution is similar to the Binomial distribution when
n/N is small. For n/N < 0.1 we often approximate the Hypergeometric(N, M, n)

distribution by the Binomial(n, p = M
N ) distribution.
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Note: The Hypergeometric distribution is used for survey sampling and opinion
polls, because these involve sampling without replacement from a finite popula-
tion.

The Binomial distribution is used when the population is sampled with replace-
ment.

As noted above,

Hypergeometric(N, M, n) → Binomial(n, M
N

) as N → ∞.

2.4 The Distribution Function, FX(x)

We have defined the probability function, fX(x), as fX(x) = P(X = x)

The cumulative distribution function, or just distribution function, written as
FX(x), provides an alternative way of describing the distribution of X.

Definition: The (cumulative) distribution function (c.d.f.) is

FX(x) = P(X ≤ x) for −∞ < x < ∞

Either the distribution function, FX(x), or the probability function, fX(x), is

sufficient to specify the distribution of X completely.

Example: Let X ∼ Binomial(2, 1
2).

x 0 1 2

fX(x) = P(X = x) 1
4

1
2

1
4

So FX(x) = P(X ≤ x) =







0 if x < 0
0.25 if 0 ≤ x < 1

0.25 + 0.5 = 0.75 if 1 ≤ x < 2
0.25 + 0.5 + 0.25 = 1 if x ≥ 2.
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F (x)

FX(x) gives the cumulative probability up to and including point x.

So
FX(x) =

∑

y≤x

fX(y)

Note that FX(x) is a step function: it jumps by amount fX(y) at every point
y with positive probability.

Note: As well as using the probability function to find the distribution function,

we can also do the reverse:

fX(x) = P(X = x) = P(X ≤ x) − P(X ≤ x − 1) (if X takes integer values)
= FX(x) − FX(x − 1).
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Properties of the distribution function

1) F (−∞) = 0, F (+∞) = 1 (These are true because values are strictly be-
tween −∞ and ∞).

2) FX(x) is a non-decreasing function of x: that is,

if x1 < x2, then FX(x1) ≤ FX(x2).

3) P(a < X ≤ b) = FX(b) − FX(a) if b > a.

Proof: P(X ≤ b) = P(X ≤ a) + P(a < X ≤ b)

PSfrag replacements

a b

X ≤ b

a < X ≤ bX ≤ a

So FX(b) = FX(a) + P(a < X ≤ b)

⇒ FX(b) − FX(a) = P(a < X ≤ b).

4) F is right-continuous: that is,

limh↓0 F (x + h) = F (x).

79



2.5 Independent Random Variables

Definition: Random variables X and Y are statistically independent if

P(X = x and Y = y) = P(X = x)P(Y = y) for any x and y.

There are two useful results for independent random variables:

1) If X and Y are independent random variables, then

E(XY ) = (EX)(EY )

2) If X and Y are independent random variables, then

Var(X + Y ) = Var(X) + Var(Y )

These results are not necessarily true if X and Y are not independent.

Proof of (1) and (2): See Chapter 4.
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Chapter 3: Continuous Random Variables

3.1 Introduction

A continuous random variable can take values anywhere in some interval of the
real line, e.g. in the interval [0, 1]. Quantities that are commonly modelled with

continuous random variables are time, weight, height, etc.

Recall that, for a discrete random variable X, the probability function lists all
values that X can take, and gives their probabilities:

eg.
x 0 1 2

fX(x) = P(X = x) 0.1 0.2 0.7
etc.

For a continuous random variable X, it is impossible to list all the values that
X can take. It is also impossible to think of the probability that X takes any
one specific value: e.g. even between the values 0.9999999 and 1.0000001 there

are so many values that the probability of each is infinitesimally small. In fact,
we write P(X = x) = 0 for any x, when X is continuous.

Thus, for continuous random variables, the probability function is meaningless.

Instead, for continuous random variables, we work with intervals:
eg. P(X = 1) = 0,
but P(0.999 ≤ X ≤ 1.001) can be > 0.

To find the probability that X lies in a given interval, we use the distribution function,
FX(x), or its derivative, called the probability density function: fX(x) = dFX

dx
.
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Recall the properties of the distribution function:

i) F (−∞) = 0, F (+∞) = 1;

ii) F (x) is a non-decreasing function of x;

iii) P(a < X ≤ b) = P(X ∈ (a, b]) = F (b) − F (a);

iv) F is right continuous.

When X is a discrete random variable, FX(x) is a step function.

PSfrag replacements

x

FX(x)

When X is a continuous r.v., FX(x) is a continuous function.

PSfrag replacements

x

FX(x)

0

1

Property (iii) of FX enables us to use the distribution function to calculate the

probability that X lies in an interval:

P(a < X ≤ b) = P(X ∈ (a, b]) = FX(b) − FX(a)

Note that when X is continuous, P(X = a) = 0,
so P(a ≤ X ≤ b) = P(X = a) + P(a < X ≤ b) = P(a < X ≤ b).
So P(X ∈ [a, b]) = P(X ∈ (a, b]) = P(X ∈ [a, b)) = P(X ∈ (a, b)).

Thus we can write
P(a ≤ X ≤ b) = FX(b) − FX(a)

Endpoints are not important for continuous r.v’s (not true for discrete r.v’s).
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The distribution function FX(x) characterizes the random behaviour of X.

Another tool for characterizing the random behaviour of X is the probability
density function, fX(x).

Definition: Let X be a continuous random variable with distribution function FX(x).
The probability density function (p.d.f.) of X is defined as

fX(x) = dFX

dx = F ′
X(x).

Use of the probability density function to calculate probabilities

Let X be a continuous random variable with probability density function fX(x).
Then

P(a ≤ X ≤ b) = P(X ∈ [a, b]) =
∫ b

a fX(x) dx

This means that we can calculate probabilities by integrating the p.d.f.

Proof:

∫ b

a

fX(x) dx =

∫ b

a

dFX

dx
dx =

[

FX(x)
]b

a
= FX(b)−FX(a) = P(a ≤ X ≤ b).

Note: When X is discrete, we use the probability function, fX(x) = P(X = x).

When X is continuous, we use the probability density function,
fX(x) = d

dxFX(x) = d
dxP(X ≤ x).

Both discrete and continuous r.v.s have the same definition for the

distribution function, FX(x) = P(X ≤ x).
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Example 1: Let FX(x) =

{
1 − e−x x ≥ 0

0 x < 0

Then FX(−∞) = 0;
FX(∞) = 1 − e−∞ = 1 − 0 = 1.

FX(x) is non-decreasing and continuous:

PSfrag replacements

x

FX(x)

0
0

1

So FX(x) is a valid distribution function for a continuous r.v. X.
(In fact, X is said to have an Exponential(1) distribution: see later.)

Probability density function: fX(x) = d
dx

(1 − e−x) = e−x for x ≥ 0.

PSfrag replacements

x

fX(x)

0

1

We interpret this as follows:

i)

PSfrag replacements

x

fX(x)

0

1

a b

Area under p.d.f. from a to b equals P(a ≤ X ≤ b).

ii) X is more likely to take values close to 0 (where fX(x) is larger), and less
likely to take large values (where fX(x) is smaller).
However, we can NOT say that P(X = 0) = 1, even though fX(0) = 1. The
probability density function is never used in this way.
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Example 2: Let FX(x) =







0 for x < 0
x for 0 ≤ x ≤ 1
1 for x > 1.

Then FX(−∞) = 0; FX(∞) = 1; and
FX(x) is non-decreasing and continuous:PSfrag replacements

x

FX(x)

0
0 1

1

So FX(x) is a valid distribution function for a continuous r.v. X.
(In fact, X is said to have a Uniform[0,1] distribution: see later.)

Probability density function :







fX(x) = dFX

dx = d
dx(x) = 1 for 0 ≤ x ≤ 1,

fX(x) = 0 when x < 0 or x > 1.

PSfrag replacements

x

fX(x)

0
0 1

1

Interpretation: X is equally likely to take any value between 0 and 1.
[The p.d.f. gives an intuitive impression of what the distribution looks like.]

Example 3: Let FX(x) =







0 for x < 1,

0.5 for 1 ≤ x < 2,
1 for x ≥ 2.

��

������

PSfrag replacements

x

FX(x)

0
1

1

2

1
2

FX(x) is not continuous, so is not a distribution function for a continuous ran-
dom variable. It is a distribution function for a discrete random variable with
probability function:

x 1 2

fX(x) 0.5 0.5
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Properties of the probability density function

If f(x) is the p.d.f. for a continuous random variable, then

i) f(x) ≥ 0 for all x.

ii)

∫ ∞

−∞
f(x)dx = 1.

iii) Distribution function, F (x) =

∫ x

−∞
f(y) dy.

iv) P(a < X ≤ b)=P(a < X < b)=P(a ≤ X < b)=P(a ≤ X ≤ b) =

∫ b

a

f(x)dx.

Proof:

i) Because the distribution function F (x) is non-decreasing, its derivative, f(x),

is always non-negative.

ii) By the Fundamental Theorem of Calculus,

∫ b

a

f(x) dx = F (b) − F (a).

So

∫ ∞

−∞
f(x)dx = F (∞) − F (−∞) = 1 − 0 = 1.

[This is saying that the total area under the p.d.f. curve is equal to the total
probability that X takes a value between −∞ and +∞, which is 1.]

iii) By the Fundamental Theorem of Calculus,

∫ x

−∞
f(y)dy = F (x) − F (−∞) = F (x) − 0 = F (x).

iv) P(a < X ≤ b) = F (b) − F (a) =

∫ b

a

f(x) dx, by previous arguments.

It is more difficult to prove rigorously that P(X = a) = 0, in order to show that
P(a < X ≤ b) = P(a ≤ X ≤ b), etc. This is beyond the scope of this course. �
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Note: It is not necessarily true that f(x) ≤ 1 for all x : e.g. consider the p.d.f.

f(x) =







0 for x < 0,
2 for 0 ≤ x ≤ 0.5,

0 for x > 0.5.

This is a valid p.d.f.:
∫ ∞

−∞
f(x) dx =

∫ 0.5

0

2 dx =
[

2x
]0.5

0
= 1.
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PSfrag replacements

x

fX(x)

0
0

2

0.5

Expected value of a continuous random variable

Definition: The expected value, or expectation, or mean, of a continuous r.v.
X is defined as

µX = E(X) =

∫ ∞

−∞
xfX(x) dx,

where fX(x) is the probability density function.
Similarly, for any (nice) function g(X),

E(g(X)) =

∫ ∞

−∞
g(x)fX(x) dx.

Note: Compare these with the definitions for discrete random variables:

E(X) =
∑

x xfX(x), E(g(X)) =
∑

x g(x)fX(x), where fX(x) is the probability
function of X.

The expectation of a continuous random variable can be manipulated in exactly

the same way as that of a discrete random variable:

Theorem 3.1: If a and b are constants, and g(x), h(x) are functions, then

i) E(aX + b) = aE(X) + b

ii) E(ag(X) + b) = aE(g(X)) + b

iii) E(ag(X) + bh(X)) = aE(g(X)) + bE(h(X)).
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Proof: (part (iii): parts (i) and (ii) are special cases).

E(ag(X) + bh(X)) =

∫ ∞

−∞
(ag(x) + bh(x))fX(x)dx

= a

∫ ∞

−∞
g(x)fX(x)dx + b

∫ ∞

−∞
h(x)fX(x)dx

= aE(g(X)) + bE(h(X)). �

Expectation is a linear operator exactly because integration is.

Variance of a continuous random variable

Variance was defined in Chapter 2 as

Var(X) = σ2
X = E[(X − µX)2] = E(X2) − µ2

X = E(X2) − (EX)2

For a continuous random variable, we can either compute the variance using

Var(X) = E[(X − µX)2] =

∫ ∞

−∞
(x − µX)2fX(x)dx,

or

Var(X) = E(X2) − µ2
X =

∫ ∞

−∞
x2fX(x)dx− µ2

X .

The second expression is usually easier (although not always).

The properties of variance for continuous r.v.s are exactly the same as for
discrete r.v.s. The proof of the following theorem is exactly the same as that

for Theorem 2.3.

Theorem 3.2: If a and b are constants, and g(x) is a function, then

i) Var(aX + b) = a2Var(X)

ii) Var(ag(X) + b) = a2Var(g(X)).

Proof : see Theorem 2.3. �

88



Interlude: Guess the Mean, Median, and Variance

For any distribution:

• the mean is the average that would be obtained if a large number of
observations were drawn from the distribution;

• the median is the half-way point of the distribution: every observation
has a 50-50 chance of being above the median or below the median;

• the variance is the average squared distance of an observation from

the mean.

Given the probability density function of a distribution, we should be able to
guess roughly the distribution mean, median, and variance . . . but it isn’t easy!
Have a go at the examples below. As a hint:

• the mean is the balance-point of the distribution. Imagine that the p.d.f.

is made of cardboard and balanced on a rod. The mean is the point where
the rod would have to be placed for the cardboard to balance.

• the median is the half-way point, so it divides the p.d.f. into two equal

areas of 0.5 each.

• the variance is the average squared distance of observations from the
mean; so to get a rough guess (not exact), it is easiest to guess an average

distance from the mean and square it.

x

0 50 100 150 200 250 300

0.
0

0.
00

4
0.

00
8

0.
01

2

f(x)

Guess the mean, median, and variance.

(answers overleaf)

89



Answers:

x

0 50 100 150 200 250 300

0.
0

0.
00

4
0.

00
8

0.
01

2

f(x)

median (54.6)

mean (90.0)

variance = (118)  = 139242

Notes: The mean is larger than the median. This always happens when the dis-
tribution has a long right tail (positive skew) like this one.

The variance is huge . . . but when you look at the numbers along the horizontal
axis, it is quite believable that the average squared distance of an observation

from the mean is 1182. Out of interest, the distribution shown is a Lognormal
distribution.

Example 2: Try the same again with the example below. Answers are written
below the graph.

x

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f(x)

Answers:Median=0.693;Mean=1.0;Variance=1.0.
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3.2 Examples of Continuous Distributions

In Chapter 2 we looked at several examples of discrete distributions. Most

of these were mathematically exact distributions arising from fully-specified
situations: for example, the Binomial, Geometric, and Negative Binomial dis-

tributions (from sequences of Bernoulli trials); the Hypergeometric distribution
(sampling without replacement from a finite population); and the Poisson dis-
tribution (from the Poisson process). In addition, these distributions can also

be used as ‘subjective models’ in other situations that are not mathematically
exact. The Poisson distribution and the Negative Binomial distribution are

both widely used as subjective models, simply because they have shape and
variance properties that could realistically describe many real-world situations.

In the case of continuous distributions, it is quite rare to have mathematically

exact situations, and in almost all cases the distributions are used primarily
as ‘subjective models’. (Examples of mathematically exact situations are the
Exponential distribution from the Poisson process (see later), and the Normal

distribution from the Central Limit Theorem, but these are quite unusual.)

To form a subjective model of a situation, we:

• select a probability distribution whose properties could reasonably fit the
situation;

• use observed data to estimate the parameters of the probability distribu-

tion (e.g. the parameter λ for a Poisson distribution, or k and p for the
Negative Binomial distribution.)

The result is the ‘best’ set of parameters, assuming that the model is correct

in the first place. Choosing a good model (probability distribution) is a funda-
mentally important part of the procedure, but one which is often overlooked in
the applied sciences. For example, many scientists automatically assume that

their observations follow a Normal distribution (symmetric and bell-shaped),
when this is highly inappropriate.

The aim of this section is to introduce some continuous distributions that are

widely used in modelling, to show how different distributions provide flexibility
in shape and properties. Although the final conclusion obtained from a statis-

tical model is usually the mean of the selected distribution, it is the shape and
variance that are most important (and most often forgotten) when selecting a
good model.
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1. Uniform Distribution

X has a Uniform distribution on the interval [a, b] if X is equally likely
to fall anywhere in the interval [a, b].

We write X ∼ Uniform[a, b], or X ∼ U[a, b].

Equivalently, X ∼ Uniform(a, b), or X ∼ U(a, b).

Probability density function, fX(x)

If X ∼ U [a, b], then

fX(x) =







1

b − a
if a ≤ x ≤ b,

0 otherwise.

��
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PSfrag replacements

x

fX(x)

a b

1
b−a

(Check area under p.d.f. is 1:
area of rectangle = base × height = (b − a) × 1

b−a = 1.)

Distribution function, FX(x)

FX(x) =

∫ x

−∞
fY (y) dy =

∫ x

a

1

b − a
dy if a ≤ x ≤ b

=

[
y

b − a

]x

a

=
x − a

b − a
if a ≤ x ≤ b.

Thus

FX(x) =







0 if x < a,
x−a
b−a if a ≤ x ≤ b,

1 if x > b.
�������
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x

FX(x)

a b

1

0
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Mean and variance:

If X ∼ U [a, b], E(X) =
a + b

2
, Var(X) =

(b − a)2

12

Proof : E(X) =

∫ ∞

−∞
xf(x) dx =

∫ b

a

x

(
1

b − a

)

dx =
1

b − a

[
x2

2

]b

a

=

(
1

b − a

)

· 1

2
(b2 − a2)

=

(
1

b − a

)
1

2
(b − a)(b + a)

=
a + b

2
.

Var(X) = E[(X − µX)2] =

∫ b

a

(x − µX)2

b − a
dx =

1

b − a

[
(x − µX)3

3

]b

a

=

(
1

b − a

){
(b − µX)3 − (a − µX)3

3

}

But µX = EX = a+b
2

, so b − µX = b−a
2

and a − µX = a−b
2

.
So,

Var(X) =

(
1

b − a

){
(b − a)3 − (a − b)3

23 × 3

}

=
(b − a)3 + (b − a)3

(b − a) × 24

=
(b − a)2

12
. �

Example: let X ∼ Uniform[0, 1]. Then

fX(x) =

{
1 if 0 ≤ x ≤ 1
0 otherwise.

µX = E(X) = 0+1
2 = 1

2 (half-way through interval [0, 1]).

σ2
X = Var(X) = 1

12(1 − 0)2 = 1
12.
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2. Exponential Distribution

The Exponential distribution has one parameter, λ, which must be positive.

We write X ∼ Exponential(λ), or X ∼ Exp(λ).

Probability density function, fX(x)

For X ∼ Exp(λ), fX(x) =

{
λe−λx for x > 0

0 for x ≤ 0.

l=2

l=1

Distribution function, FX(x)

FX(x) =

{
0 for x < 0

1 − e−λx for x ≥ 0.

Exercise: check FX(x) =
∫ x

−∞ fX(y) dy = 1 − e−λx.
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Mean and variance:

For X ∼ Exp(λ), E(X) = 1
λ and Var(X) = 1

λ2 .

Proof : E(X) =
∫∞
−∞ xfX(x) dx =

∫∞
0 xλe−λx dx.

Integration by parts: recall that
∫

udv
dx dx = uv −

∫
v du

dx dx.

Let u = x, so du
dx = 1, and let dv

dx = λe−λx, so v = −e−λx.

Then E(X) =

∫ ∞

0

xλe−λx dx =

∫ ∞

0

u
dv

dx
dx

=
[

uv
]∞

0
−
∫ ∞

0

v
du

dx
dx

=
[

− xe−λx
]∞

0
−
∫ ∞

0

(−e−λx) dx

= 0 +
[ −1

λ
e−λx

]∞
0

= −1
λ × 0 −

(−1
λ × e0

)

∴ E(X) = 1
λ .

Variance: Var(X) = E(X2) − (EX)2 = E(X2) − 1
λ2 .

Now E(X2) =

∫ ∞

−∞
x2fX(x) dx =

∫ ∞

0

x2λe−λx dx.

Let u = x2, so du
dx = 2x, and let dv

dx = λe−λx, so v = −e−λx.

Then E(X2) =
[

uv
]∞

0
−
∫ ∞

0

v
du

dx
dx =

[

− x2e−λx
]∞

0
+

∫ ∞

0

2xe−λx dx

= 0 +
2

λ

∫ ∞

0

λxe−λx dx

=
2

λ
× E(X) =

2

λ2
.

95



So

Var(X) = E(X2) − (EX)2

=
2

λ2
−
(

1

λ

)2

Var(X) =
1

λ2
. �

Exponential Distribution arising from the Poisson Process

Suppose that {Yt : t > 0} forms a Poisson process with rate λ.

[Recall: this means that Yt = # events to have occurred by time t,
and Yt ∼ Poisson(λt).]
Let X = time we have to wait from time 0 to time of the first event.

What is the distribution of X?

To find this, we can calculate the distribution function of X:

FX(x) = P(X ≤ x) = 1 − P(X > x)

= 1 − P(have to wait longer than time x before the first event)
= 1 − P(there are no events in time from 0 to x)

= 1 − P(Yx = 0)

(where Yx = # events to have occurred by time x, and Yx ∼ Poisson(λx))

= 1 − (λx)0

0!
e−λx

FX(x) = 1 − e−λx if x ≥ 0.

Clearly, FX(x) = 0 if x < 0.

Thus FX(x) is the distribution function of the Exponential(λ) distribution, and so
X ∼ Exponential(λ).
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So if {Yt}t>0 is a Poisson process with rate λ, then
X = (time taken until first event) ∼ Exponential(λ).

Note: 1) We do not have to start at time t = 0. It can be shown that if

X = (time taken from time s to next subsequent event), for any s > 0,
or

X = (time taken from kth event to (k + 1)th event), for k = 1, 2, 3, . . .,

then X ∼ Exponential(λ).

Conversely, if the waiting time between events is Exponential(λ), then the

events form a Poisson process with rate λ.

Note: 2) The Poisson process is used to model many situations, e.g. customers
arriving at a shop, earthquakes, volcanic eruptions, outbreaks of war or disease,

and so on. The exponential distribution can therefore be used to model the
waiting time between these events, e.g. time before the next customer arrives,

or time before the next earthquake, etc.

The Memoryless Property of the Exponential Distribution

The Exponential distribution is famous for its property of ‘memorylessness’.

Suppose we have already waited time x0 for an event.
How much longer do we have to wait?

Let X ∼ Exponential(λ). Then

P(X > x) = 1 − P(X ≤ x) = 1 − FX(x) = e−λx.

Looking for the probability of waiting at least x more time, given that we have
waited x0 so far.

P(X > x0 + x|X > x0) =
P(X > x0 + x)

P(X > x0)
=

e−λ(x0+x)

e−λx0
= e−λx if x ≥ 0.
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But this is equal to P(X > x): so P(X > x0 + x|X > x0) = P(X > x),

i.e. P( wait at least x more time, given we have already waited x0 time)
= P(wait at least x time, starting from 0).

We say that the Exponential distribution is memoryless: it forgets the time
already waited.

For example, if bus arrivals follow a memoryless distribution, then even if you

have already waited 5 hours for a bus, you still expect to wait the same amount
more time as you did when you first started.

Similarly, if the lifetime of a lightbulb has a memoryless distribution, then
given that the lightbulb has already lasted 2 years, it still has exactly the same

lifetime distribution as a new lightbulb.

Notes: 1) It is not necessarily desirable for a lifetime distribution to be memoryless.
“Old is as good as new”, but put a different way, “new is as bad as old”. A
memoryless lightbulb is quite likely to fail almost immediately.

PSfrag replacements f(x)

x0

2) The Exponential distribution is the only memoryless distribution.

3. Gamma Distribution

The Gamma distribution has two parameters, k and λ, where k > 0 and λ > 0.
We write X ∼ Gamma(k, λ).

Probability density function, fX(x)

For X ∼ Gamma(k, λ), fX(x) =

{
λk

Γ(k)
xk−1e−λx if x ≥ 0,

0 otherwise.
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Here, Γ(k), called the Gamma function of k, is simply a constant that ensures
fX(x) integrates to 1, i.e.

∫∞
0 fX(x)dx = 1. (see below).

Gamma p.d.f.s

PSfrag replacements

k = 2

k = 5

k = 1

Notice: right skew
(long right tail);

flexibility in shape
controlled by the 2

parameters

Distribution function, FX(x)

There is no closed form for the distribution function of the Gamma distribution.

If X ∼ Gamma(k, λ), then FX(x) can can only be calculated by computer.

PSfrag replacements

k = 5
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The Gamma Function, Γ(k)

Recall that Γ(k) is a constant that is defined to ensure that

∫ ∞

0

fX(x) dx =

∫ ∞

0

λk

Γ(k)
xk−1e−λx dx = 1.

Definition: For any k > 0, the Gamma function of k is defined as

Γ(k) =

∫ ∞

0

yk−1e−y dy

Check that this makes
∫

∞

0
fX(x) dx = 1:

∫ ∞

0

fX(x) dx =

∫ ∞

0

1

Γ(k)
λkxk−1e−λx dx

=

∫ ∞

0

λ(λx)k−1e−λx dx

Γ(k)
.

Change variable: let y = λx, then dx
dy = 1

λ .

Then

∫ ∞

0

fX(x) dx =

∫ ∞

0

λ yk−1e−y

(
1

λ

)

dy

Γ(k)

=

∫ ∞

0

yk−1e−y dy
∫ ∞

0

yk−1e−y dy

by definition of Γ(k),

= 1. as required. �
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Properties of the Gamma function, Γ(k)

1. Γ(k) = (k − 1)Γ(k − 1) for all k ≥ 1.

2. When k is an integer, Γ(k) = (k − 1)!

3. Γ(1
2) =

√
π.

Proof:

1. Γ(k) =

∫ ∞

0

yk−1e−y dy

=
[

− yk−1e−y
]∞

0
+

∫ ∞

0

(k − 1)yk−2e−y dy

= 0 + (k − 1)Γ(k − 1) .

2. For k ∈ Z, we have:

Γ(k) = (k − 1)Γ(k − 1)

= (k − 1)(k − 2)Γ(k − 2)

=
...

= (k − 1)(k − 2) . . . (3)(2)(1)Γ(1).

Now Γ(1) =

∫ ∞

0

y0e−y dy =
[

− e−y
]∞

0
= 1, so Γ(k) = (k − 1)!.

3. Proof not required. �

Mean and variance of the Gamma distribution:

For X ∼ Gamma(k, λ), E(X) = k
λ and Var(X) = k

λ2
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Proof that E(X) = k
λ

and Var(X) = k
λ2

EX =

∫ ∞

0

xfX(x) dx =

∫ ∞

0

x · λkxk−1

Γ(k)
e−λx dx

=

∫∞
0 (λx)ke−λx dx

Γ(k)

=

∫∞
0 yke−y( 1

λ) dy

Γ(k)
(letting y = λx, dx

dy = 1
λ)

=
1

λ
· Γ(k + 1)

Γ(k)

=
1

λ
· k Γ(k)

Γ(k)
by Property (1) overleaf,

=
k

λ
.

Var(X) = E(X2) − (EX)2 =

∫ ∞

0

x2fX(x) dx − k2

λ2

=

∫ ∞

0

x2λkxk−1e−λx

Γ(k)
dx − k2

λ2

=

∫∞
0 ( 1

λ)(λx)k+1e−λx dx

Γ(k)
− k2

λ2

=
1

λ2
·
∫∞

0 yk+1e−y dy

Γ(k)
− k2

λ2

[

where y = λx,
dx

dy
=

1

λ

]

=
1

λ2
· Γ(k + 2)

Γ(k)
− k2

λ2

=
1

λ2

(k + 1)k Γ(k)

Γ(k)
− k2

λ2

=
k

λ2
. �
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Note: The Gamma(k, 1) distribution is sometimes called the unscaled Gamma
distribution with parameter k.
and the Gamma(k, λ) distribution is sometimes called the scaled Gamma dis-
tribution with parameters k and λ.

If X ∼ Gamma(k, λ), it can be shown that λX ∼ Gamma(k, 1).

Relationship between the Gamma distribution and the Exponential

distribution

The Gamma(k, λ) distribution arises in nature as the sum of k independent
Exponential r.v’s:

that is, if X1, . . . , Xk ∼ Exponential(λ)and are independent
then X1 + X2 + . . . + Xk ∼ Gamma(k, λ).

This is proved later in the course.

Special Case: When k = 1,

Gamma(1, λ) = Exponential(λ)(the sum of a single Exponential r.v.)
We can see this immediately, as the p.d.f. of Gamma(1, λ) is

f(x) =
λ1

Γ(1)
x1−1e−λx = λe−λx, which is the same as the pdf of Exp(λ).

Gamma distribution arising from the Poisson process

Recall that the waiting time between events in a Poisson process with rate λ

has the Exponential(λ) distribution.

That is, if Xi =time waited between event i− 1 and event i, then Xi ∼ Exp(λ).
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Now the time waited from time 0 to the time of the kth event is

X1 + X2 + . . . + Xk, the sum of k independent Exponential(λ) r.v’s.

Thus the time waited until the kth event in a Poisson process with rate λ has

the Gamma(k, λ) distribution.

[There are some similarities between the Exponential(λ) distribution and the
(discrete) Geometric(p) distribution. Both distributions describe the ‘waiting

time’ before an event. In the same way, the Gamma(k, λ) distribution is similar
to the (discrete) Negative Binomial(k, p) distribution, as they both describe the
‘waiting time’ before the kth event.]

Relationship between the Gamma distribution and the Chi-squared

distribution

The Chi-squared distribution with ν degrees of freedom, χ2
ν, is a special case of

the Gamma distribution.

χ2
ν = Gamma(k = ν

2 , λ = 1
2).

So if Y ∼ χ2
ν , then E(Y ) = k

λ
= ν, and Var(Y ) = k

λ2 = 2ν.

4. Beta Distribution

The Beta distribution has two parameters, α and β. We write X ∼ Beta(α, β).

P.d.f.
f(x) =

{
1

B(α, β)
xα−1(1 − x)β−1 for 0 < x < 1,

0 otherwise.

The function B(α, β) is the Beta function and is defined by the integral

B(α, β) =

∫ 1

0

xα−1(1 − x)β−1 dx, for α > 0, β > 0.

It can be shown that B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
.
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5. Normal Distribution

The Normal distribution is the familiar bell-shaped distribution. It has two

parameters, the mean, µ, and the variance, σ2.

We write X ∼ Normal(µ, σ2) or X ∼ N(µ, σ2).

Probability density function, fX(x)

fX(x) =
1√

2πσ2
e{−(x−µ)2/2σ2} for −∞ < x < ∞ and −∞ < µ < ∞, σ2 > 0.

m

s=2

s=4

Distribution function, FX(x)

There is no closed form for the distribution function of the Normal distribution.

If X ∼ Normal(µ, σ2), then FX(x) can can only be calculated by computer.
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Note: To show that

∫ ∞

−∞
fX(x) dx =

∫ ∞

−∞

1√
2πσ2

e{−(x−µ)2/(2σ2)} dx = 1,

the following result is used:

FACT:

∫ ∞

−∞
e−y2

dy =
√

π.

(Proved in Calculus courses.)

Mean and Variance

For X ∼ Normal(µ, σ2), E(X) = µ, Var(X) = σ2 .

Proof:

E(X) =

∫ ∞

−∞
xfX(x) dx =

∫ ∞

−∞
x

1√
2πσ2

e−(x−µ)2/2σ2

dx

[Let z = x−µ
σ : then x = σz + µ and dx

dz = σ.]

Thus E(X) =

∫ ∞

−∞
(σz + µ) · 1√

2πσ2
· e−z2/2 · σ dz

=

∫ ∞

−∞

σz√
2π

· e−z2/2 dz

︸ ︷︷ ︸

this is an odd function of z
(i.e. g(−z) = −g(z)), so it
integrates to 0 over range

−∞ to ∞.

+ µ

∫ ∞

−∞

1√
2π

e−z2/2 dz

︸ ︷︷ ︸

p.d.f. of N(0, 1) integrates to 1.

∴ E(X) = 0 + µ × 1

= µ.
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For Var(X),

Var(X) = E
{
(X − µ)2

}

=

∫ ∞

−∞
(x − µ)2 1√

2πσ2
e−(x−µ)2/(2σ2) dx

= σ2

∫ ∞

−∞

1√
2π

z2 e−z2/2 dz

(

putting z =
x − µ

σ

)

= σ2

{
1√
2π

[

−ze−z2/2
]∞

−∞
+

∫ ∞

−∞

1√
2π

e−z2/2 dz

}

(integration by parts)

= σ2 {0 + 1}

= σ2. �

Linear transformations and Sums of Normal random variables

1. If X ∼ Normal(µ, σ2), then for any constants a and b,

aX + b ∼ Normal(aµ + b, a2σ2).

In particular, if Z =

(
X − µ

σ

)

, then Z ∼ Normal(0, 1).

(

Prove this by putting a =
1

σ
and b = −µ

σ
.

)

Z ∼ Normal(0, 1) is referred to as the standard Normal random variable.

Proof: see section 3.3.

2. If X1, X2, . . . , Xn are independent, and Xi ∼ Normal(µi, σ
2
i ) for

i = 1, . . . , n, then

a1X1 + a2X2 + . . . + anXn ∼ N(a1µ1 + . . . + anµn, a2
1σ

2
1 + . . . + a2

nσ
2
n)

Proof: see Chapter 5.
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The Central Limit Theorem (CLT)

The Central Limit Theorem (CLT) is one of the most fundamental results in
statistics. In its simplest form, it states that if a large number of indepen-

dent random variables are drawn from any distribution, then the distribution
of their sum (or alternatively their average) always converges to the Normal

distribution.

Theorem (The Central Limit Theorem):

Let X1, . . . , Xn be independent r.v’s with mean µ and variance σ2, from ANY
distribution.
(eg. Xi ∼ Bin(n, p) for each i, so µ = np and σ2 = np(1 − p).

Then the sum Sn = X1 + . . . + Xn =
∑n

i=1 Xi has a distribution
that tends to Normal as n → ∞.

E(Sn) =
∑n

i=1 E(Xi) = nµ

Var(Sn) = Var(
n∑

i=1

Xi)

=
n∑

i=1

Var(Xi) because X1, . . . , Xn are independent (see end of Chapter 2)

= nσ2

So Sn = X1 + X2 + . . . + Xn → Normal(nµ, nσ2) as n → ∞.

Alternatively, Xn =
X1 + X2 + . . . + Xn

n
=

Sn

n
→ N

(

µ,
σ2

n

)

as n → ∞.

A more general form of CLT states that, if X1, . . . , Xn are independent, and

E(Xi) = µi, Var(Xi) = σ2
i (not necessarily all equal), then

Zn =

∑n
i=1(Xi − µi)
√∑n

i=1 σ2
i

→ Normal(0, 1) as n → ∞.

For the present, it is sufficient to remember the principle that large sums of
independent r.v’s tend towards a Normal distribution, whatever the distribution
of the original r.v’s.
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Example: Normal approximation to the Binomial

Let Y ∼ Binomial(n, p).

We can think of Y as the sum of n Bernoulli random variables:

Y = X1+X2+. . .+Xn, where Xi =

{
1 if trial i is a “success” (probability = p),
0 otherwise (probability = 1 − p)

So Y = X1 + . . .+Xn and each Xi has µ = E(Xi) = p, σ2 = Var(Xi) = p(1−p).

Thus by the CLT,

Y = X1 + X2 + . . . + Xn → Normal(nµ, nσ2)

= Normal(np, np(1− p)).

Thus,

Bin(n, p) → Normal
(

np
︸︷︷︸

mean of Bin(n,p)

, np(1 − p)
︸ ︷︷ ︸

var of Bin(n,p)

)

as n → ∞ with p fixed.

The Binomial distribution is therefore well approximated by the Normal distri-

bution when n is large, for any fixed value of p.

[Compare this with the Poisson approximation to the Binomial, section 2.3,
which had Bin(n, p) → Poisson(n × p) as n → ∞, p → 0 and np held fixed.]

The Normal distribution is also a good approximation to the Poisson(λ) distri-

bution when λ is large:

Poisson(λ) → Normal(λ, λ)when λ is large.
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We will return to the CLT in more detail in Chapter 5 (including a sketch
proof).

3.3 Finding the distribution of g(X)

Suppose we know the distribution of X. Let Y = g(X). Our aim is to find the
distribution of Y .

We look at two techniques:

1. Direct use of the distribution function.

2. Change of Variable technique when g(x) is a monotone function.

1. Use of the distribution function to find the distribution of Y = g(X)

Let FX(x) = P(X ≤ x) be the distribution function of X.
Let FY (y) = P(Y ≤ y) be the distribution function of Y = g(X).

Now FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ∈ g−1((−∞, y])),
where g−1((−∞, y]) = {x : g(x) ∈ (−∞, y]}.

That is, the probability that Y ≤ y is the probability that X takes a value x
that satisfies g(x) ≤ y. We can use this approach if it is reasonably easy to find
the set g−1(−∞, y].
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Example 1: Let X ∼ Uniform(0, 1).

Then fX(x) =
1

1 − 0
= 1 for 0 < x < 1,

FX(x) =

∫ x

0

fX(y) dy = x for 0 < x < 1. ~

Let Y = − log(X). We want to find the distribution of Y .

Distribution function,

FY (y) = P(Y ≤ y) = P(− log(X) ≤ y)

= P(log(X) ≥ −y)

= P(X ≥ e−y)

= 1 − FX(e−y). ~~

If y > 0, then 0 < e−y < 1, and FX(e−y) = e−y. (by ~)
So FY (y) = 1 − e−y if y > 0. (by ~~)
If y ≤ 0, then e−y ≥ 1 so FX(e−y) = 1, and FY (y) = 0. (by ~~)

Thus FY (y) =

{
1 − e−y if y > 0,
0 otherwise,

and therefore Y = − log(X) ∼ Exponential(1).

Example 2: Let X have any distribution, with distribution function FX(x).
Let Y = X2.

Clearly, Y ≥ 0, so FY (y) = 0 if y < 0.

For y ≥ 0, FY (y) = P(Y ≤ y)

= P(X2 ≤ y)

= P(−√
y ≤ X ≤ √

y)

= FX(
√

y) − FX(−√
y) .

PSfrag replacements
Y

X
0

y

√
y−√

y
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So

FY (y) =

{
0 if y < 0,

FX(
√

y) − FX(−√
y) if y ≥ 0.

So the p.d.f. of Y is

fY (y) =
d

dy
FY =

d

dy
(FX(

√
y)) − d

dy
(FX(−√

y))

= 1
2y

− 1
2F ′

X(
√

y) + 1
2y

− 1
2F ′

X(−√
y)

=
1

2
√

y

(

fX(
√

y) + fX(−√
y)
)

for y ≥ 0.

∴ fY (y) =
1

2
√

y

(

fX(
√

y) + fX(−√
y)
)

for y ≥ 0, whenever Y = X2.

Special case: let X ∼ Normal(0, 1). Then fX(x) = 1√
2π

e−x2/2. By the result

above, Y = X2 has p.d.f.

fY (y) =
1

2
√

y
· 1√

2π
(e−y/2 + e−y/2)

=
1√
2π

y−1/2e−y/2 for y ≥ 0.

But any distribution with p.d.f. of the form (constant)× (yk−1e−λy) is Gamma(k, λ).

Here, k − 1 = −1
2 , so k = 1

2 , and λ = 1
2.

So if X ∼ N(0, 1) then Y = X2 ∼ Gamma(k = 1
2 , λ = 1

2).

But this is the Chi-Squared distribution with ν = 1 degrees of freedom.

So if X ∼ N(0, 1), then Y = X2 ∼ χ2
1.
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2. Change of Variable technique for monotone functions

Let g(x) be a (1–1) function (‘one-to-one’), i.e. for every y there is a unique x
such that g(x) = y.

This means that the inverse function, g−1(y), is well-defined as a function for a

certain range of y.

When g : R → R, as it is here, then g can only be (1–1) if it is monotone (ie.
g is an increasing function, or g is a decreasing function.

Change of Variable formula

Let g : R → R be a monotone function and let Y = g(X). Then the p.d.f. of
Y = g(X) is

fY (y) = fX(g−1(y))
∣
∣
∣

d
dyg

−1(y)
∣
∣
∣

Easy way to remember

Write y = y(x)(= g(x))
∴ x = x(y)(= g−1(y))

Then fY (y) = fX(x(y))
∣
∣
∣
dx
dy

∣
∣
∣

Proof: Separate into cases where g is increasing and where g is decreasing.

i) g increasing

g is increasing if u < w ⇔ g(u) < g(w). ~

Note that putting u = g−1(x), and w = g−1(y), we obtain

g−1(x) < g−1(y) ⇔ g(g−1(x)) < g(g−1(y))

⇔ x < y,

so g−1 is also an increasing function.
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Now

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) put

{
u = X,
w = g−1(y)

in ~ to see this.

= FX(g−1(y)).

So pdf of Y is

fY (y) =
d

dy
FY (y)

=
d

dy
FX(g−1(y))

= F ′
X(g−1(y))

d

dy
(g−1(y)) (Chain Rule)

= fX(g−1(y))
d

dy
(g−1(y))

Now g is increasing, so g−1 is also increasing (by overleaf), so d
dy(g

−1(y)) > 0,
and thus fY (y) = fX(g−1(y))| d

dy(g
−1(y))| as required.

ii) g decreasing, i.e. u > w ⇐⇒ g(u) < g(w). (?)

(Putting u = g−1(x) and w = g−1(y) gives g−1(x) > g−1(y) ⇐⇒ x < y,
so g−1 is also decreasing.)

FY (y) = P(Y ≤ y) = P(g(X) ≤ y)

= P(X ≥ g−1(y)) (put u = X, w = g−1(y) in (?))

= 1 − FX(g−1(y)).

Thus the p.d.f. of Y is

fY (y) =
d

dy

(

1 − FX(g−1(y))
)

= −fX

(

g−1(y)
) d

dy

(

g−1(y)
)

.

This time, g is decreasing, so g−1 is also decreasing, and thus

− d

dy

(

g−1(y)
)

=

∣
∣
∣
∣

d

dy

(

g−1(y)
)
∣
∣
∣
∣
.

So once again,

fY (y) = fX

(

g−1(y)
)
∣
∣
∣
∣

d

dy

(

g−1(y)
)
∣
∣
∣
∣
. �
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Working for change of variable questions

1) Show you have checked g(x) is monotone over the required range.

2) Write y = y(x) for x in <range of x>.

3) Thus x = x(y) for y in <range of y>.

4) Then
∣
∣
∣
dx

dy

∣
∣
∣ = <expression involving y>.

5) So fY (y) = fX(x(y))
∣
∣
∣
dx

dy

∣
∣
∣ by Change of Variable formula,

= . . . . Quote range of values of y as part of the FINAL answer.

Note: There should be no x’s left in the answer!

x(y) and
∣
∣
∣
dx

dy

∣
∣
∣ are expressions involving y only.

Example 1: Let X ∼ Uniform(0, 1), and let Y = − log(X).

(Same example as before).

1) y(x) = − log(x) is monotone decreasing, so we can apply the Change of
Variable formula.

2) Let y = y(x) = − log x for 0 < x < 1.

3) Then x = x(y) = e−y for − log(0) > y > − log(1), ie. 0 < y < ∞.

4)

∣
∣
∣
∣

dx

dy

∣
∣
∣
∣
=

∣
∣
∣
∣

d

dy
(e−y)

∣
∣
∣
∣
=
∣
∣−e−y

∣
∣ = e−y for 0 < y < ∞.
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5) So

fY (y) = fX(x(y))

∣
∣
∣
∣

dx

dy

∣
∣
∣
∣

for 0 < y < ∞

= fX(e−y)e−y for 0 < y < ∞.

But X ∼ Uniform(0, 1), so fX(x) = 1 for 0 < x < 1,
⇒ fX(e−y) = 1 for 0 < y < ∞.

Thus fY (y) = fX(e−y)e−y = e−y for 0 < y < ∞.

Note: In change of variable questions, you lose a mark for:
1. not stating g(x) is monotone over the required range of x;

2. not giving the range of y for which the result holds, as part of the final
answer. (eg. fY (y) = . . . for 0 < y < ∞).

Example 2: Linear transformation of a Normal random variable

Let X ∼ Normal(µ, σ2), and let Y = aX + b.

1) y(x) = ax+ b is monotone, so we can apply the Change of Variable technique.

2) Let y = y(x) = ax + b for −∞ < x < ∞.

3) Then x = x(y) = y−b
a for −∞ < y < ∞.

4)
∣
∣
∣
∣

dx

dy

∣
∣
∣
∣
=

∣
∣
∣
∣

1

a

∣
∣
∣
∣
=

1

|a| .

5)

So fY (y) = fX(x(y))

∣
∣
∣
∣

dx

dy

∣
∣
∣
∣

= fX

(
y − b

a

)
1

|a| . ♣

But X ∼ N(µ, σ2), so fX(x) = 1√
2πσ2

e−(x−µ)2/2σ2
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Thus fX

(
y − b

a

)

=
1√

2πσ2
e−(y−b

a
−µ)2/2σ2

=
1√

2πσ2
e−(y−(aµ+b))2/2a2σ2

Returning to ♣,

fY (y) = fX

(
y − b

a

)

· 1

|a| =
1√

2πa2σ2
e−(y−(aµ+b))2/2a2σ2

for −∞ < y < ∞.

But this is the pdf of a Normal(aµ + b, a2σ2) r.v., so

if X ∼ N(µ, σ2), then aX + b ∼ N(aµ + b, a2σ2)

This proves the assertion in Section 3.2.

Example 3: Proof that if X ∼ Gamma(k, λ), then λX ∼ Gamma(k, 1)

Let X ∼ Gamma(k, λ), and let Y = λX.

1) y(x) = λx is monotone increasing (for λ > 0) so we can apply the Change of
Variable technique.

2) Let y = y(x) = λx for 0 ≤ x < ∞.

3) Then x = x(y) = 1
λy for 0 ≤ y < ∞.

4)

∣
∣
∣
∣

dx

dy

∣
∣
∣
∣
=

1

λ
for 0 ≤ y < ∞.

5) Thus fY (y) = fX(x(y))

∣
∣
∣
∣

dx

dy

∣
∣
∣
∣
= fX

(
1

λ
y

)

· 1

λ
for 0 ≤ y < ∞. ♠
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Now X ∼ Gamma(k, λ), so fX(x) =
λkxk−1e−λx

Γ(k)
(for 0 ≤ x < ∞),

hence fX

(
1

λ
y

)

= λk · yk−1

λk−1
· e−λ·y/λ

Γ(k)
=

λyk−1e−λ·y/λ

Γ(k)
.

Returning to ♠,

fY (y) = fX

(
1

λ
y

)

·
(

1

λ

)

=
λyk−1e−y

Γ(k)
· 1

λ
for 0 ≤ y < ∞

∴ fY (y) =
yk−1e−y

Γ(k)
for 0 ≤ y < ∞.

This is the pdf of Gamma(k, 1),
so if X ∼ Gamma(k, λ), then Y = λX ∼ Gamma(k, 1), as claimed in §3.2.

3.4 Generating random numbers from continuous probability distributions

It is quite straightforward to generate random (or pseudo-random) numbers

from a Uniform(0, 1) distribution: for example, most calculators have a random
number generator (button marked RAN or RND or similar).

What if we want to generate a sample of random numbers from a different

distribution, e.g. Exponential or Normal?
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Histograms show samples of size 100 from the distributions indicated.
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The following result is often helpful.

Theorem 3.3: Let F be a distribution function. Suppose F is strictly increasing

on some interval (a, b) with F (a) = 0, F (b) = 1, and a, b ∈ R. Then F−1(u) is
a well-defined function for 0 < u < 1.

Now let U ∼ Uniform(0, 1) and let Y = F−1(U).
Then Y is a random variable with distribution function F .

Proof:

If U ∼ Uniform(0, 1), then FU(u) = u for 0 < u < 1,
ie. P(U ≤ u) = u for 0 < u < 1.

Let Y = F−1(U). We want to show that the distribution function of Y is F ,
ie. that P(Y ≤ y) = F (y).

LHS: P(Y ≤ y) = P(F−1(U) ≤ y)

= P(U ≤ F (y))

= F (y) by ~, because P(U ≤ u) = u for any u ∈ (0, 1).

So Y has distribution function F , as required. �

This is quite a powerful result:

if U ∼ U(0, 1), then Y = F−1(U) has distribution function F .
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The Theorem tells us that to generate a sample y1, y2, . . . , yn from a distribution
with distribution function F , simply:

i) generate u1, u2, . . . , un as random numbers from the U(0, 1) distribution (eg.
using a calculator);

ii) find the function F−1, and compute y1 = F−1(u1), . . . , yn = F−1(un). The
sample y1, y2, . . . , yn are then a sample from the required distribution.

Example: The following random numbers are drawn from the Uniform(0, 1) dis-

tribution:
0.98 0.77 0.38 0.66 0.24

Use these numbers to find a sample of size 5 from the Exponential(3) distribu-
tion.

For the Exponential(3) distribution, F (y) = 1 − e−3y (y ≥ 0).
Write u = F (y) = 1 − e−3y.
Then

1 − u = e−3y,

− log(1 − u) = 3y,

y = −1
3 log(1 − u) .

So the inverse function is F−1(u) = −1
3 log(1 − u).

Given numbers u1 = 0.98, u2 = 0.77, . . . , u5 = 0.24, we can construct
y1 = −1

3 log(1−u1), . . . , y5 = −1
3 log(1−u5) as a sample from the Exponential(3)

distribution.

The required sample is

y1 = 1.304 y2 = 0.490 y3 = 0.159 y4 = 0.360 y5 = 0.091.
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The figure shows a histogram of 1000 random numbers u1, . . . , u1000 generated
from the Uniform(0, 1) distribution, and the same 1000 numbers transformed

using yi = −1
3 log(1−ui). The distribution of y1, . . . , y1000 has the characteristic

Exponential shape, as it should.
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Corollary : The Theorem stated that if U ∼ Uniform(0, 1), then Y = F −1(U) has

distribution function F . An alternative statement is:

if Y is a r.v. with strictly increasing distribution function FY ,
then FY (Y ) ∼ Uniform(0, 1).

Proof:

Let X = FY (Y ).

FX(x) = P(X ≤ x) = P(FY (Y ) ≤ x)

= P(Y ≤ F−1
Y (x)) because FY is strictly increasing

= FY (F−1
Y (x)) by definition of FY

∴ FX(x) = x, for 0 < x < 1.

But FX(x) = x is the distribution function of the Uniform(0, 1) distribution, so
we must have X = FY (Y ) ∼ U(0, 1). �
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The Hazard Function (non-examinable)

If Xis a random variable representing the lifetime of some object (e.g. a human),
then the hazard function for X is defined as

hazard function, h(x) =
fX(x)

1 − FX(x)
.

The hazard function may be thought of as the instantaneous death rate at age

x, i.e.:

P(dies in interval (x, x + δx) | has survived until age x) = h(x)δx.

Example: If X ∼ Exponential(λ), then h(x) =
λe−λx

1 − (1 − e−λx)
= λ = constant.

So the Exponential distribution describes the lifetime of an object that does
not age: its death rate is constant (λ) at all ages.

Endnote . . . which lifetime distribution?
You have been given the choice of three distributions for your lifetime:

1. Uniform(60, 100): 2. 90 − Exponential
(

1
10

)
: 3. True NZ distribution
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f(x
)
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Which are you going to choose . . . ?
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Chapter 4: Multivariate Distributions

4.1 Discrete Bivariate Distributions

Suppose X and Y are discrete random variables. If there is dependence
between X and Y , we might be interested in their joint behaviour.

Definition: The joint probability function, fX,Y (x, y), of X and Y is given by

fX,Y (x, y) = P(X = x and Y = y)

We often write

f(x, y) = P(X = x, Y = y)

We can also write

fX(x) = P(X = x)

where X = (X, Y ) is a vector of random variables X and Y ,
and x = (x, y) is a vector of observations: X = x, Y = y.

fX,Y (x, y) is called a bivariate probability function, because it involves two ran-
dom variables, X and Y . (Bivariate = two variables).

Properties of the joint probability function

i) f(x, y) ≥ 0 for all x and y;

ii)
∑

x

∑

y f(x, y) = 1.
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Example: A milkman delivers bottles of milk and boxes of eggs to a house. He
gets a daily note to say how many milk bottles and egg boxes are required.

Let X = number of egg boxes.

and Y = number of milk bottles.

Suppose the joint probability function of X and Y is as follows:

y (milk bottles)

fX,Y (x, y) 0 1 2 3 Total

x 0 0.05 0.05 0.10 0 0.20

(egg 1 0.05 0.10 0.25 0.10 0.50

boxes) 2 0 0.15 0.10 0.05 0.30

Total 0.10 0.30 0.45 0.15 1

We interpret this as follows:

P(X = 0, Y = 0) = fX,Y (0, 0) = 0.05 (no eggs, no milk)
P(X = 2, Y = 1) = fX,Y (2, 1) = 0.15 (2 eggs, 1 milk)

We will use this example in the following definitions.

Bivariate Distribution Function

Definition: Let X and Y be discrete random variables. The bivariate distribution

function is FX,Y (x, y) = P(X ≤ x, Y ≤ y).

It is given by,

FX,Y (x, y) =
∑

{x∗:x∗≤x}

∑

{y∗:y∗≤y}
P(X = x∗, Y = y∗)

=
∑

x∗≤x

∑

y∗≤y

fX,Y (x∗, y∗).
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Example: In the milkman example,

FX,Y (1, 2) = P(# egg boxes ≤ 1 and # milk bottles ≤ 2)

= P(X ≤ 1, Y ≤ 2).

y

fX,Y (x, y) 0 1 2 3 Total

0 0.05 0.05 0.10 0 0.20

x 1 0.05 0.10 0.25 0.10 0.50

2 0 0.15 0.10 0.05 0.30

Total 0.10 0.30 0.45 0.15 1

We sum all the entries that satisfy x ≤ 1 and y ≤ 2:

FX,Y (1, 2) = 0.05 + 0.05 + 0.10 + 0.05 + 0.10 + 0.25

= 0.6

Marginal probability functions

Given a joint probability function fX,Y (x, y), we can find the individual proba-
bility functions of X and Y , fX(x) and fY (y).

These are called the marginal probability functions.

Definition: Let X be a discrete random variable. The marginal probability

function of X is given by fX(x) = P(X = x).

The marginal probability function is exactly the same as the univariate probability
function for X that we defined in Chapter 2. The term “marginal” is usually used
when there is the possibility of confusion with a joint probability function.
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Finding the marginal probability functions using fX,Y (x, y)

Consider the milkman example again:

y

fX,Y (x, y) 0 1 2 3 Total

0 0.05 0.05 0.10 0 0.20

x 1 0.05 0.10 0.25 0.10 0.50

2 0 0.15 0.10 0.05 0.30

Total 0.10 0.30 0.45 0.15 1

The overall probability that X = 0 is the sum of all table entries that have x = 0:
that is, the row total for x = 0, 0.20.

Similarly, the probability that Y = 2 is the column total for y = 2, 0.45.

The marginal probabilities are therefore obtained by looking in the margins of
the table.

In fact, we are implicitly using the Partition Theorem:

P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1)

+ P(X = 0, Y = 2) + P(X = 0, Y = 3) (row total)

- because events {Y = 0}, {Y = 1}, {Y = 2} and {Y = 3} form a partition of the
sample space Ω = {(x, y) : x = 0, 1, 2; y = 0, 1, 2, 3}.

Similarly,

P(Y = 2) = P(X = 0, Y = 2) + P(X = 1, Y = 2) + P(X = 2, Y = 2) (column total)

- because events {X = 0}, {X = 1} and {X = 2} form a partition of Ω.

126



In general, the marginal probability functions are given by:

P(X = x) =
∑

y

P(X = x, Y = y)

ie. fX(x) =
∑

y

fX,Y (x, y) (marginal probability function of X)

Similarly, fY (y) =
∑

x

fX,Y (x, y) (marginal probability function of Y )

Example: In the milkman example,

Marginal probability function of X is
x 0 1 2

fX(x) 0.20 0.50 0.30

Marginal probability function of Y is
y 0 1 2 3

fY (y) 0.10 0.30 0.45 0.15

Note: sum=1 in each case.

Conditional probability functions

Definition: Let X and Y be discrete random variables. The conditional probability

function of X, given that Y takes the value y, is:

fX |Y (x|y) = P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)
=

fX,Y (x, y)

fY (y)
if fY (y) > 0.

Similarly,

fY |X(y|x) =
fX,Y (x, y)

fX(x)
if fX(x) > 0.

Note: The conditional probability function fX |Y (x | y) is a function of x. Usually,
y is a single fixed number, eg. fX |Y (x|Y = 5) or fX |Y (x|Y = −6).
x is variable and ranges over all values that X can take.
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Example: For the milkman, the conditional probability function of X, given that
Y = 2, is:

x 0 1 2

fX |Y (x | 2) 0.1
0.45 = 2

9
0.25
0.45 = 5

9
0.1
0.45 = 2

9

Thus x ranges from 0 to 2, while y stays fixed at 2.
Note that the sum=1:

∑

x fX |Y (x|y) = 1.

Exercise: Show that the conditional probability function of Y , given that X = 0,
is:

y 0 1 2 3

fY |X(y | 0) 0.25 0.25 0.5 0

Example: An insect lays eggs on a leaf. Let X be the number of eggs the insect
lays, and suppose that X ∼ Poisson(λ).

Suppose also that every egg laid survives to maturity with probability p,

independently of other eggs.

Let Y be the number of eggs surviving to maturity.

a) Find the joint probability function of X and Y , fX,Y (x, y).

b) Find the marginal probability function of Y , fY (y).

Hence name the distribution of Y .

Solution

a) We are told that, given a fixed number x of eggs, they survive to maturity
independently with probability p.
Thus, given x eggs to start with,
Y = (# surviving to maturity) ∼ Binomial(x, p).
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This is therefore the conditional distribution of Y given that X = x.

Y |(X = x) ∼ Binomial(x, p) ie. Y |X ∼ Binomial(X, p).

So fY |X(y|x) = P(Y = y|X = x) =

(
x

y

)

py(1 − p)x−y (1)

(for y = 0, 1, . . . , x).

Looking for fX,Y (x, y) = P(X = x, Y = y)

= P(Y = y|X = x)P(X = x)

= fY |X(y|x)fX(x). (2)

We know that X ∼ Poisson(λ), so fX(x) = λx

x! e
−λ.

Thus from (1) and (2),

fX,Y (x, y) =

(
x

y

)

py(1 − p)x−y · λx

x!
e−λ

=
x!

(x − y)!y!
py(1 − p)x−y · λx

x!
e−λ

fX,Y (x, y) =
py(1 − p)x−yλxe−λ

(x − y)!y!
for x = 0, 1, 2, . . . and y = 0, 1, 2, . . . , x
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b) Marginal probability function of Y :

fY (y) =

∞∑

x=y

fX,Y (x, y) (note that x︸︷︷︸
# eggs

≥ y
︸︷︷︸

# surviving eggs

: fX,Y (x, y) = 0 if x < y.)

=
∞∑

x=y

py(1 − p)x−yλxe−λ

(x − y)!y!

=
py

y!
e−λ

∞∑

x=y

(1 − p)x−yλx

(x − y)!
(taking all terms not involving x out of the sum)

=
py

y!
e−λ

∞∑

m=0

(1 − p)mλm+y

m!
(where m=x-y)

=
(λp)y

y!
e−λ

∞∑

m=0

{λ(1 − p)}m

m!

=
(λp)y

y!
e−λ · eλ(1−p)

fY (y) =
(λp)y

y!
e−λp for y = 0, 1, 2, . . .

But this is a Poisson probability, with parameter (λp).
So the marginal distribution of Y is Y ∼ Poisson(λp).

This is a general result:

Let X = number of objects. Suppose that X ∼ Poisson(λ).
For each object, let P(object is ‘special’) = p, and let all objects be independent.

Let Y = number of special objects. Then Y ∼ Poisson(λp).

However, note that X and Y are not independent.
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Note: Conditional probability functions have all the usual properties of probability
functions:

ie. fX |Y (x|y) ≥ 0 for all x, y

and
∑

x

fX |Y (x|y) =
∑

x

fX,Y (x, y)

fY (y)
=

1

fY (y)

∑

x

fX,Y (x, y)

=
1

fY (y)
· fY (y)

∴
∑

x

fX |Y (x|y) = 1

Independence of discrete random variables

Definition: Let X and Y be discrete random variables. X and Y are statistically
independent if and only if

fX,Y (x, y) = fX(x)fY (y) for all x, y.

Notes:

1. Compare with the definition of statistical independence for events A and B:

A and B are independent if and only if P(A ∩ B) = P(A)P(B).

2. Check that the definition of independence ensures that

P(X = x|Y = y) = P(X = x) for all x, y. (Exercise).

Theorem 4.1: Discrete random variables X and Y are independent if and only if

fX,Y (x, y) can be written as the product of a function of x only and a function of
y only: that is, if and only if there exist functions g and h such that,

fX,Y (x, y) = g(x)h(y) for ALL x, y.

If fX,Y (x, y) = g(x)h(y), then the marginal probability functions are

fX(x) = g(x)
∑

u g(u), fY (y) = h(y)
∑

u h(u)
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Proof:

We need to show that:

(i) X and Y are independent ⇒ fX,Y (x, y) = g(x)h(y);

(ii) fX,Y (x, y) = g(x)h(y) ⇒ X and Y are independent.

Proof of (i):

By the definition of independence,

X and Y are independent ⇒ fX,Y (x, y) = fX(x)fY (y) for all x and y.

(i) follows by putting g(x) = fX(x) and h(y) = fY (y).

Proof of (ii):

Suppose that fX,Y (x, y) = g(x)h(y) for some functions g and h and for all x, y.

Now the marginal probability function of X is given by

fX(x) =
∑

y

fX,Y (x, y) =
∑

y

g(x)h(y) = g(x)
∑

y

h(y) = g(x)H, (a)

say, where H =
∑

y h(y).

Similarly,

fY (y) =
∑

x

fX,Y (x, y) =
∑

x

g(x)h(y) = h(y)
∑

x

g(x) = h(y)G, (b)

where G =
∑

x g(x).

Results (a) and (b) give g(x) =
fX(x)

H
and h(y) =

fY (y)

G
, so

fX,Y (x, y) = g(x)h(y) =
fX(x)

H

fY (y)

G
=

fX(x)fY (y)

GH
.

This shows that the joint probability function fX,Y (x, y) is proportional to
fX(x)fY (y), which is close to the result that we need for demonstrating in-

dependence. We must now show that GH = 1, so that fX,Y (x, y) is equal to
fX(x)fY (y).
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By definition of G and H,

GH =
∑

x

g(x)
∑

y

h(y) =
∑

x

∑

y

g(x)h(y) =
∑

x

∑

y

fX,Y (x, y) = 1,

because fX,Y (x, y) is the joint probability function so it must sum to 1.

Thus

fX,Y (x, y) =
fX(x)fY (y)

GH
=

fX(x)fY (y)

1
= fX(x)fY (y) for all x, y,

and so X and Y are independent.

Further, because GH = 1, we have H = 1
G and G = 1

H . So from (a) and (b),

the marginals are:

fX(x) = g(x)H =
g(x)

G
=

g(x)
∑

u g(u)
,

and

fY (y) = h(y)G =
h(y)

H
=

h(y)
∑

u h(u)
,

as required. �

4.2 Expectation over a joint distribution

Recall from Chapter 2 that if X is a univariate discrete random variable, then

E(g(X)) =
∑

x g(x)fX(x).

How do we calculate expectations over a joint distribution? For example, if X1

and X2 are jointly distributed discrete random variables, what is E(X1/
√

X2) ?

Definition: Suppose that X = (X1, X2, . . . , Xk) is a k-variate discrete random vari-

able: that is, each Xi is a univariate discrete random variable. Let the function
g : R

k → R be a scalar function on R
k (i.e. g takes scalar

values in R). Then the expectation of g(X) is

E(g(X)) =
∑

x
g(x)fX(x)

Note: This is a scalar sum , not a vector sum.
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Example: If X = (X, Y ) is a discrete bivariate random variable, and g : R
2 → R,

then

E(g(X, Y )) =
∑

x

∑

y g(x, y)fX,Y (x, y).

For example, E

(
X√
Y

)

=
∑

x

∑

y

x√
y
fX,Y (x, y).

Properties of expectation

i) If X = (X1, X2, . . . , Xk) is a k-variate discrete random variable, then for any
constants a and b and any functions g and h,

E(ag(X) + bh(X)) = aE(g(X)) + bE(h(X)).

Proof:

E(ag(X) + bh(X)) =
∑

x

(ag(x) + bh(x))fX(x)

= a
∑

x

g(x)fX(x) + b
∑

x

h(x)fX(x)

= aE(g(X)) + bE(h(X))

ii) For any discrete random variables X and Y ,

E(X + Y ) = E(X) + E(Y ).

Consequently, for any discrete random variables X1, . . . , Xk,

E(X1 + X2 + . . . + Xk) = E(X1) + E(X2) + . . . + E(Xk).

Note that we do not require X1, . . . , Xk to be independent.
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Proof:

E(X + Y ) =
∑

x

∑

y

(x + y)fX,Y (x, y)

=
∑

x

x
∑

y

fX,Y (x, y) +
∑

y

y
∑

x

fX,Y (x, y)

=
∑

x

xfX(x) +
∑

y

yfY (y)

= E(X) + E(Y )

iii) If X and Y are independent discrete random variables, and g, h are functions,
then

E(XY ) = (EX)(EY )

and
E(g(X)h(Y )) = E(g(X)) · E(h(Y ))

Note that this result DOES require X and Y to be INDEPENDENT.

Proof:

E(XY ) =
∑

x

∑

y

xyfX,Y (x, y)

=
∑

x

∑

y

xyfX(x)fY (y) if X, Y independent
(so fX,Y (x, y) = fX(x)fY (y))

=

(
∑

x

xfX(x)

)(
∑

y

yfY (y)

)

= (EX)(EY ).

Proof for E(g(X)h(Y )) similar. This proves the assertion made in section 2.5.

Example: (milkman example).

X = number of egg boxes.

Y = number of milk bottles.

y

fX,Y (x, y) 0 1 2 3 Total

0 0.05 0.05 0.10 0 0.20

x 1 0.05 0.10 0.25 0.10 0.50

2 0 0.15 0.10 0.05 0.30

Total 0.10 0.30 0.45 0.15 1
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Suppose the milkman wants to know the expected number of items (egg boxes
plus milk bottles) he is to deliver to a house.

Total number of items = X + Y .

Working directly from the definition of expectation,

E(X + Y ) =
∑

x

∑

y

(x + y)fX,Y (x, y)

= (0 + 0) × 0.05 + (0 + 1) × 0.05 + (0 + 2) × 0.10 + (0 + 3) × 0

+ (1 + 0) × 0.05 + (1 + 1) × 0.10 + . . . + (2 + 3) × 0.05

= 2.75

Exercise: Verify that E(X + Y ) = E(X) + E(Y ) in this example.

4.3 Covariance and correlation between two random variables

Recall that the variance of a random variable X is Var(X) = E((X − µX)2).

When we have two random variables, X and Y , we often wish to quantify the
relationship between them. One tool for doing this is the covariance. The

covariance measures the linear association between X and Y .

Definition: The covariance between random variables X and Y is given by

cov(X, Y ) = E[(X − µX)(Y − µY )] where µX = E(X), µY = E(Y )

Immediate from the definition is the alternative result:

cov(X, Y ) = E(XY ) − µXµY = E(XY ) − E(X)E(Y ).
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Proof:

cov(X, Y ) = E((X − µX)(Y − µY ))

= E(XY − µY X − µXY + µXµY )

= E(XY ) − µY E(X) − µXE(Y ) + µXµY

= E(XY ) − µXµY − µXµY + µXµY

= E(XY ) − µXµY .

Intuitive explanation of covariance

If cov(X, Y ) is positive, then E((X − µX)(Y − µY )) > 0. This means that
(X − µX) and (Y − µY ) will tend on the whole to be either both positive
or both negative (so that their product is positive on average).
Thus a positive covariance tends to suggest a positive association between X

and Y : if X is larger than average (X − µX > 0), then Y will often be larger
than average too (Y − µY > 0). Similarly, if X is smaller than average, then Y
will often be smaller than average too.

By contrast, if cov(X, Y ) < 0, then when X − µX > 0 we will often have

Y − µY < 0, and vice versa. This indicates a negative association between X
and Y .

Notes: 1. X and Y are both random, but they might have no, some, or complete

dependence on each other.

2. It is usually easiest to calculate cov(X, Y ) using the formula
cov(X, Y ) = E(XY ) − µXµY . Recall that E(XY ) =

∑

x

∑

y xyfX,Y (x, y).

Covariance of independent random variables

When X and Y are independent, then cov(X, Y ) = 0.

The converse is NOT TRUE:

X, Y independent ⇒ cov(X, Y ) = 0, but cov(X, Y ) = 0 ; X, Y independent.
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Proof:

When X and Y are independent, E(XY ) = (EX)(EY ) from page 13. Thus
cov(X, Y ) = E(XY ) − (EX)(EY ) = 0.

Conversely, consider the following joint distribution:

(X, Y ) =







(1, 0) with probability 1/4
(0, 1) with probability 1/4

(−1, 0) with probability 1/4

(0,−1) with probability 1/4

Now E(X) =
∑

x xP(X = x) = 1 × 1
4 + 0 × 1

4 + (−1) × 1
4 + 0 × 1

4 = 0.

Similarly, E(Y ) = 0.
Also, E(XY ) = 0 because XY = 0 with probability 1.
So cov(X, Y ) = E(XY ) − (EX)(EY ) = 0.
However, P(X = 0 and Y = 0) = 0, but P(X = 0)P(Y = 0) = 1

2 × 1
2 = 1

4.
So P(X = 0, Y = 0) 6= P(X = 0)P(Y = 0), so X and Y are not independent.

Intuitively, cov(X, Y ) = 0 when X and Y are independent because whether X

is above average or below average has no effect on the value of Y .

Using the covariance to find the variance of a sum

The covariance is particularly useful for finding Var(X + Y ).

Theorem 4.2: For any random variables X and Y , and constants a, b:

i) Var(X + Y ) = Var(X) + Var(Y ) + 2cov(X, Y ). LEARN!

ii) Var(X − Y ) = Var(X) + Var(Y ) − 2cov(X, Y ).

iii) Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2ab cov(X, Y ). LEARN!
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iv) For constants a1, . . . , an,

Var

(
n∑

i=1

aiXi

)

=
n∑

i=1

a2
i Var(Xi) + 2

n∑

i=1

∑

j>i

aiajcov(Xi, Xj).

Memory Aid: Remember these results by thinking of (X + Y )2, (X − Y )2, and
(aX + bY )2. Whenever you see an X2 or Y 2, replace by Var(X) and Var(Y ).
Whenever you see XY , replace by cov(X, Y ).
eg. (aX + bY )2 = a2X2 + b2Y 2 + 2abXY

 Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2ab cov(X, Y ).

Note: When X and Y are independent, cov(X, Y ) = 0. Thus

Var(X + Y ) = Var(X) + Var(Y ) when X, Y independent.

This proves the assertion in section 2.5.

Proof of Theorem 4.2:

Sufficient to prove (iii). (i) and (ii) follow directly and (iv) with some extra work.

iii) Var(aX + bY ) = E

{

aX + bY − E(aX + bY )
}2

= E{aX + bY − a µX
︸︷︷︸

EX

−b µY
︸︷︷︸

EY

}2

= E{a(X − µX) + b(Y − µY )}2

= E{a2(X − µX)2 + b2(Y − µY )2 + 2ab(X − µX)(Y − µY )}
= a2

E(X − µX)2 + b2
E(Y − µY )2 + 2abE{(X − µX)(Y − µY )}

= a2Var(X) + b2Var(Y ) + 2ab cov(X, Y ).
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Correlation between two random variables

Let X and Y be random variables. The correlation between X and Y is closely

related to the covariance, but it is scaled to be a number between -1 and 1.

Definition: The correlation between X and Y (also called the correlation coefficient,

or ρXY ) is given by

corr(X, Y ) = ρXY =
cov(X, Y )

σXσY
=

cov(X, Y )
√

Var(X)Var(Y )

(

σX =
√

Var(X), σY =
√

Var(Y )
)

.

The correlation measures linear association between X and Y .

Theorem 4.3: The correlation coefficient ρXY has the following properties:

i) −1 ≤ ρXY ≤ 1.

ii) ρ2
XY = 1 ⇐⇒ Y = aX + b for some constants a and b, where a > 0 if

ρXY = 1, a < 0 if ρXY = −1.

iii) If X and Y are independent, then ρXY = 0. However, if ρXY = 0 it is NOT
necessarily true that X and Y are independent.
(ρXY = 0 is necessary but not sufficient for independence.)

Proof:

i) Let Z = Y − aX, where a is any constant.

Now for any random variable Z, we know that Var(Z) ≥ 0. Thus

Var(Z) = Var(Y − aX) = Var(Y ) + a2Var(X) − 2a cov(X, Y ) ≥ 0.
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Rearrange this to form a quadratic in a:

Var(Z) = a2σ2
X − 2a cov(X, Y ) + σ2

Y ≥ 0.

Divide by σXσY :

Var(Z)

σXσY
=

(
σX

σY

)

a2 − (2ρXY ) a +
σY

σX
≥ 0. (∗)

Equation (*) holds for all values of a.

Now if a quadratic in a is always ≥ 0, the quadratic never crosses the a-axis; so
it must have either no real roots or exactly one real root. Recall that the number

of roots of a quadratic is determined by the discriminant: for a quadratic in x,
the standard equation is ax2 + bx + c = 0 and the discriminant is b2 − 4ac. The
equation has no real roots if and only if the discriminant is < 0. The equation

has exactly one real root if and only if the discriminant equals 0.

No real roots : discriminant < 0 One real root : discriminant = 0

Expression (*) therefore indicates that the discriminant of the quadratic in (*)

must be ≤ 0, so that the quadratic has either no real roots or exactly one real
root. This gives

discriminant = (2ρXY )2 − 4

(
σX

σY

)(
σY

σX

)

≤ 0

4ρ2
XY − 4 ≤ 0

ρ2
XY ≤ 1.

Thus −1 ≤ ρXY ≤ 1, as required.

ii) We must show both that ρ2
XY = 1 ⇒ Y = aX + b,

and that Y = aX + b ⇒ ρ2
XY = 1.

141



Suppose that ρ2
XY = 1, so that ρXY = ±1. Recall that Z = Y − aX, and that

(from (*) overleaf),

Var(Z)

σXσY
=

(
σX

σY

)

a2 − (2ρXY ) a +
σY

σX
. (∗)

We can solve this equation to see if there are any values of a that make Var(Z) =

0. If so, then Z = Y − aX must be constant at these values of a.

Solving the quadratic (*), we find that Var(Z) = 0 implies that

a =
2ρXY ±

√

4ρ2
XY − 4

2σX/σY

=
2ρXY ±

√
4 × 1 − 4

2σX/σY
(because ρ2

XY = 1)

=
σY

σX
ρXY .

Thus, when ρXY = ±1 and a =
(

σY

σX

)

ρXY , then Var(Z) = Var(Y − aX) = 0,

so Y − aX is constant and thus Y = aX + b for some constant b, as required.

Conversely, suppose that Y = aX + b. Then Var(Y ) = σ2
Y = a2σ2

X . Also,

cov(X, Y ) = E(XY ) − E(X)E(Y ) = E

(

X(aX + b)
)

− E(X)E(aX + b)

= a E(X2) + b E(X) − E(X)
(

aE(X) + b
)

= a
(

E(X2) − (EX)2
)

+ b
(

EX − EX
)

= a
(

Var(X)
)

= a σ2
X .

Thus

ρ2
XY =

cov(X, Y )2

σ2
Xσ2

Y

=
a2σ4

X

σ2
X (a2σ2

X)
= 1,

as required.

Thus ρ2
XY = 1 ⇐⇒ Y = aX + b for some constants a and b, as required.
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iii) We showed on page 137 that

X, Y independent ⇒ cov(X, Y ) = 0,

but
cov(X, Y ) = 0 ⇒6= X, Y independent.

But ρXY =
cov(X, Y )

σXσY
, so it follows that

X, Y independent ⇒ ρXY = 0, but ρXY = 0 ⇒6= X, Y independent.

4.4 Conditional Expectation and Conditional Variance

Suppose that we fix Y at the value y. We have seen that we can find the
conditional distribution of X given that Y = y: for example X | (Y = y) has

probability function fX |Y (x | y).

We can also find the expectation and variance of X with respect to this condi-
tional distribution. That is, if we know that the value of Y is y, then we can
find the mean value of X given that Y takes the value y, and also the variance

of X given that Y = y.

Definition: Let X and Y be discrete random variables. The conditional expectation
of X, given that Y = y, is

µX |Y =y = E(X|Y = y) =
∑

x

xfX |Y (x|y).

E(X |Y = y) is the mean value of X, when Y is fixed at y.

Conditional expectation as a random variable

The unconditional expectation of X, E(X), is just a number:
eg. EX = 2 or EX = 5.8 (in case you need examples of numbers).

The conditional expectation, E(X |Y = y), is a number depending on y:
eg. usually E(X|Y = 2) will be different from E(X|Y = 3).
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We can therefore regard E(X |Y = y) as a function of y, say E(X|Y=y) = h(y).

To evaluate this function, h(y) = E(X |Y = y), we:

i) fix Y at the chosen value y;

ii) evaluate the expectation of X when Y is fixed at this value.

However, we could also evaluate the function at a random value of Y :

i) observe a random value of Y ;

ii) fix Y at that observed random value;

iii) evaluate E(X|Y = observed random value).

We obtain a random variable: E(X|Y ) = h(Y ).
The randomness comes from the randomness in Y , not in X.

Conditional expectation, E(X|Y ), is a random variable
with randomness inherited from Y , not X.

Example:

Suppose Y =

{
1 with probability 1/8
2 with probability 7/8

and X|Y =

{
2Y with probability 3/4
3Y with probability 1/4

Then X|(Y = 1) =

{
2 with probability 3/4

3 with probability 1/4

so, E(X|Y = 1) = 2 × 3
4 + 3 × 1

4 = 9
4.

Then X|(Y = 2) =

{
4 with probability 3/4

6 with probability 1/4

so, E(X|Y = 2) = 4 × 3
4 + 6 × 1

4 = 18
4 .
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Thus E(X|Y = y) =

{
9/4 if y = 1
18/4 if y = 2,

so it is a number depending on y.

Now E(X|Y ) =

{
9/4 if Y = 1 (probability 1/8)
18/4 if Y = 2 (probability 7/8)

So E(X|Y ) =

{
9/4 with probability 1/8

18/4 with probability 7/8

ie. E(X|Y ) is a random variable, but the randomness is inherited from Y , not
from X.

The conditional variance is found in a similar manner:

Definition: Let X and Y be random variables. The conditional variance of X,
given Y , is given by

Var(X|Y ) = E(X2|Y ) − [E(X|Y )]2 = E{(X − µX |Y )2|Y }

As with expectation, Var(X|Y = y) is a number depending on y (a function of
y), while Var(X|Y ) is a random variable with randomness inherited from Y .

Conditional expectation is an extremely useful tool for finding the uncondi-
tional expectation of X (see Theorem 4.4 below). Just like the Partition The-
orem, it is useful because it is often easier to specify conditional probabilities

than to specify overall probabilities.

145



Theorem 4.4: Formulae for conditional expectation and variance.

If all the expectations below are finite, then for ANY random variables X and

Y , we have:

i) E(X) = EY [E(X|Y )] Formula for Conditional Expectation: LEARN!

Note that we can pick any r.v. Y , to make the expectation as easy as we can.

ii) E(g(X)) = EY [E(g(X)|Y )] for any function g.

iii) Var(X) = EY [Var(X|Y )] + VarY [E(X|Y )]

Formula for Conditional Variance: LEARN!

Notes: 1. EY and VarY denote expectation over Y and variance over Y .
ie. the expectation or variance is computed over the randomness due to the r.v. Y

(see example above).

2. The same formulae hold for discrete and continuous random variables.
(See Theorem 4.7.)

Proof later: first some examples.
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Examples of conditional expectation

Example 1:

Let Y ∼ Geometric(p): so E(Y ) = 1−p
p .

Let (X|Y ) ∼ Poisson(λY ): so E(X|Y ) = Var(X|Y ) = λY .

Then E(X) = EY [E(X|Y )]

= EY (λY )

= λEY (Y )

∴ E(X) =
λ(1 − p)

p

Example 2: Sum of a random number of random variables

Let N ∼ Poisson(λ), and consider the sum X1 + X2 + . . . + XN , where each
Xi ∼ NegBin(k, p), and X1, X2, . . . are independent of N .
This is a sum of a random number (N) of random variables (X1, X2, . . .).

Then E

{
N∑

i=1

Xi

}

= EN

{

E

(
N∑

i=1

Xi |N
)}

= EN

{

N × k(1 − p)

p

}

NXi’s added together, each with mean k(1−p)
p

.

=
k(1 − p)

p
E(N)

E

{
N∑

i=1

Xi

}

=
k(1 − p)

p
λ because N ∼ Poisson(λ), so EN = λ.
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General result: sum of a random number of random variables

If X1, X2, . . . each have the same mean µ, and if N is independent of X1, X2, . . ..
then

E

{
N∑

i=1

Xi

}

= (EN) × µ.

Example 3: Insect eggs on a leaf again: see example on page 128.

Recall X = # eggs laid on a leaf ∼ Poisson(λ), so EX = Var(X) = λ
and Y = # eggs surviving to maturity
and (Y |X) ∼ Binomial(X, p): so E(Y |X) = Xp, Var(Y |X) = Xp(1 − p).

Then E(Y ) = EX [E(Y |X)]

= EX(Xp)

= pEX(X)

E(Y ) = pλ

Var(Y ) = EX(Var(Y |X)) + VarX(E(Y |X))

= EX(Xp(1 − p)) + VarX(Xp)

= p(1 − p)E(X) + p2Var(X)

= p(1 − p)λ + p2λ

Var(Y ) = pλ

So E(Y ) = Var(Y ) = pλ, and this supports the earlier finding that Y ∼ Poisson(pλ).
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Example 3 cont. . .

Calculating the covariance and correlation using conditional expectation:

cov(X, Y ) = E(XY ) − (EX)(EY ). We know that EX = λ, EY = λp.
To find E(XY ), once again use the formula for conditional expectation:

E(XY ) = EX [E(XY |X)] = EX [XE(Y |X)],

because, conditional on X, we can take X outside the expectation like a constant.

But E(Y |X) = Xp, so E(XY ) = EX(X × Xp) = pE(X2).

Trick for calculating E(X2): use

Var(X) = E(X2) − (EX)2

⇒ E(X2) = Var(X) + (EX)2

Thus E(XY ) = pE(X2) = p(Var(X) + (EX)2) = p(λ + λ2).

So cov(X, Y ) = E(XY ) − (EX)(EY )

= p(λ + λ2) − λ × pλ

cov(X, Y ) = pλ

Finally, corr(X, Y ) = ρXY =
cov(X, Y )

√

Var(X)Var(Y )

=
pλ√

λ × pλ

=
p√
p

⇒ corr(X, Y ) =
√

p.
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Proof of Theorem 4.4:

(i) is a special case of (ii).

(ii) Wish to show that E(g(X)) = EY

(

E(g(X) |Y )
)

, for any function g.

Begin at RHS:

EY

[

E(g(X)|Y )
]

= EY

[
∑

x

g(x)P(X = x|Y )

]

=
∑

y

[
∑

x

g(x)P(X = x|Y = y)

]

P(Y = y)

=
∑

y

∑

x

g(x)P(X = x|Y = y)P(Y = y)

=
∑

x

g(x)
∑

y

P(X = x|Y = y)P(Y = y)

=
∑

x

g(x)P(X = x) (partition rule)

= E(g(X)).

(iii) Wish to prove Var(X) = EY [Var(X|Y )] + VarY [E(X|Y )]

Begin at RHS:

EY [Var(X|Y )] + VarY [E(X|Y )]

= EY

{

E(X2|Y ) − (E(X|Y ))2
}

+ EY

{

[E(X|Y )]2
}

︸ ︷︷ ︸

by definitions

−
[

EY (E(X|Y ))
︸ ︷︷ ︸

E(X) by part (i)

]2

= EY {E(X2|Y )}
︸ ︷︷ ︸

E(X2) by part (i)

−EY {[E(X|Y )]2} + EY {[E(X|Y )]2} − (EX)2
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giving

RHS = EY [Var(X|Y )] + VarY [E(X|Y )]

= E(X2) − (EX)2

= Var(X) as required.

4.5 Examples of discrete multivariate distributions

1. Multinomial distribution

Recall the Binomial distribution from Chapter 2:

• n independent trials;

• 2 possible outcomes per trial;

• P(success) = constant = p ;

• X = number of successes. Then X ∼ Binomial(n, p)

and P(X = x) =

(
n

x

)

px(1 − p)n−x.

Now consider the following situation:

• n independent trials;

• k possible outcomes per trial;

• P(outcome i) = pi (constant) where
k∑

i=1

pi = 1.

• X = (X1, . . . , Xk), where Xi = # trials with outcome i. Then X = (X1, . . . , Xk)

has a Multinomial distribution with parameters n = # trials, p1, . . . , pk.
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We write:

X ∼Multinomial (n; p1, . . . , pk).

Example: Throwing paper darts in lectures. Each dart:

• hits the lecturer with probability 0.2;

• hits another student with probability 0.5;

• self-destructs with probability 0.3.

Throw 7 darts.
Let X = (X1, X2, X3) =(# hit lecturer, # hit another student, # self destructed)

Then X ∼ Multinomial (7; 0.2, 0.5, 0.3).

Probability function for Multinomial distribution

fX(x) = P(X1 = x1, . . . , Xk = xk) =
n!

x1! . . . xk!
px1

1 px2

2 . . . pxk

k

for xi = 0, . . . , n ∀i, and
k∑

i=1

xi = n,

and where pi ≥ 0∀i,
k∑

i=1

pi = 1.

Notes:

1)
∑

x1

∑

x2

. . .
∑

xk

f(x1, . . . , xk) = (p1 + . . . + pk)
n = 1n = 1.

2) The marginal distributions are Xi ∼ Binomial(n, pi), because we can reduce
the situation to 2 outcomes: “i” and “not i”.
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3) Similarly, Xi + Xj ∼ Binomial(n, pi + pj) if i 6= j.

4) Because Xi ∼ Binomial(n, pi), we have E(Xi) = npi, Var(Xi) = npi(1 − pi).

Example: Blood types in New Zealand have the following frequencies:

A B AB O Total

Maori 0.51 0.04 0.02 0.43 1

Non-Maori 0.40 0.10 0.03 0.47 1

Given a random sample of size 30 from each population, find the probability

that: #(A) = 10 #(B) = 4 #(AB) = 1 #(O) = 15.

Solution: For Maori population, X ∼Multinomial(30; 0.51, 0.04, 0.02, 0.43)

fX(10, 4, 1, 15) =
30!

10!4!1!15!
(0.51)10(0.04)4(0.02)1(0.43)15

= 0.00045

For non-Maori population, X ∼Multinomial(30; 0.40, 0.10, 0.03, 0.47)

fX(10, 4, 1, 15) =
30!

10!4!1!15!
(0.40)10(0.10)4(0.03)1(0.47)15

= 0.0088

Covariance and correlation of Xi, Xj

If X ∼ Multinomial(n ; p1, p2, . . . , pk), then

cov(Xi, Xj) = −npipj corr(Xi, Xj) = −
√

pipj

(1 − pi)(1 − pj)

Note: Negative correlation makes sense: the more outcomes that fall into category
i, the fewer there are to fall into category j.
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2. Multivariate Hypergeometric distribution

Recall the Hypergeometric distribution from Chapter 2:

• N balls in a jar;

• 2 colours: M balls black, (N − M) balls white;

• Sample n balls without replacement;

• X = number of black balls in the sample of size n.

Then X ∼Hypergeometric(N, M, n). P(X = x) =

(
M
x

)(
N−M
n−x

)

(
N
n

) .

The multivariate hypergeometric distribution is similar, but there are balls

of k different colours instead of just 2 different colours.

Multivariate hypergeometric distribution:

• N balls in a jar;

• k colours: Mi balls with colour i, where
k∑

i=1

Mi = N .

• Sample n balls without replacement.

• Let X=(X1, X2, . . . , Xk) where Xi = #balls of colour i in sample of size n.

Then X ∼ Multivariate Hypergeometric (N ; M1, . . . , Mk; n).

Probability function:

P(X1 = x1, . . . , Xk = xk) =

∏k
i=1

(
Mi

xi

)

(
N
n

) for xi = 0, . . . , Mi ∀i.

Marginal distributions:

The marginal distribution of Xi is Hypergeometric (N, Mi, n).
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4.6 Continuous joint distributions

The random vector X = (X1, X2, . . . , Xn) has a continuous joint distribution if
X1, X2, . . . , Xn are each continuous random variables, and they interact ‘nicely’.

We define this formally below.

Joint distribution functions and probability density functions

Definition: Let X = (X1, X2, . . . , Xk) be a random vector. The joint distribution

function of X is

FX(x) = FX(x1, . . . , xk) = P(X1 ≤ x1, . . . , Xk ≤ xk).

Definition: Let X = (X1, X2, . . . , Xk) be a random vector with joint distribu-
tion function F (x1, x2, . . . , xk) = P(X1 ≤ x1, . . . , Xk ≤ xk). Then X has a
continuous joint distribution if F is continuous, and if the partial derivative

∂kF
∂x1...∂xk

exists, except possibly on a (k − 1) -dimensional subset of R
k.

Definition: Let X = (X1, X2, . . . , Xk) have a continuous joint distribution. The
joint probability density function of X , or simply joint density of X, is

given by

fX(x) = fX(x1, . . . , xk) =
∂kF (x1, . . . , xk)

∂x1 . . . ∂xk
(partial derivative)

The joint density is used to find probabilities by integration. In the univariate
case, for a set A ⊆ R (i.e. A = (a, b) for some a and b), we have

P(X ∈ A) =

∫

A

fX(x) dx.

In the multivariate case, we have for A ⊆ R
k,

P(X ∈ A) =

∫ ∫

. . .

∫

A

fX(x1, . . . , xk) dxk . . . dx2 dx1.
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Properties of the joint density function

i) fX(x1, . . . , xk) ≥ 0 for all x1, . . . , xk.

ii)
∫∞
−∞ . . .

∫∞
−∞ fX(x1, . . . , xk)dxk . . . dx1 = 1 (total probability=1)

iii)

FX(x1, . . . , xk) =

∫ x1

−∞
. . .

∫ xk

−∞
fX(y1, . . . , yk) dyk . . . dy1

(immediate from definitions)

iv) For any reasonable region A ⊆ R
k,

P((X1, . . . , Xk) ∈ A) =

∫

A

fX(x1, . . . , xk)dxk . . . dx1

Practical use of the joint density.

Conversely, the conditions required for f(x1, . . . , xk) to be a valid joint density

are:

i) f(x1, . . . , xk) ≥ 0 for all x1, . . . , xk.

ii)
∫∞
−∞ . . .

∫∞
−∞ f(x1, . . . , xk)dxk . . . dx1 =

∫

Rk f(x1, . . . , xk)dxk . . . dx1 = 1

Example 1: Let X ∈ R
2 have joint density f(x, y) =

{
1 (0 ≤ x ≤ 1, 0 ≤ y ≤ 1),

0 otherwise.

a) Show that f(x, y) is a valid joint density.

b) Find the joint distribution function, F (x, y).

c) Find P(X + Y ≤ 1).
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a) i) f(x, y) ≥ 0 ∀x, y by definition.

ii) Check
∫∞
−∞
∫∞
−∞ f(x, y) dy dx = 1:

∫∞
−∞
∫∞
−∞ f(x, y) dy dx =

∫ 1

0

∫ 1

0 1 dy dx

=
∫ 1

0

[

y
]1

0
dx

=
∫ 1

0 1 dx

=
[

x
]1

0
= 1.

So f(x, y) is a valid p.d.f. by (i) and (ii).

PSfrag replacements

0

1

1
x

y
Region where f(x, y) > 0

b) F (x, y) =

∫ x

−∞

∫ y

−∞
f(u, v) dv du

=

∫ x

0

∫ y

0

1 dv du for
{

0 ≤ x ≤ 1,

0 ≤ y ≤ 1

=

∫ x

0

y du

= y
[

u
]x

0

F (x, y) = xy for
{

0 ≤ x ≤ 1,
0 ≤ y ≤ 1.

c) To find P(X +Y ≤ 1), we need to do a double integration of the joint density
over the correct region. Follow the following steps:

1) Draw the area where fX,Y (x, y) > 0:
this shows where we have
to restrict our attention.

2) We need to find the region where BOTH
fX,Y (x, y) > 0 AND x + y ≤ 1. Draw on the diagram
the boundary line for x + y ≤ 1: ie. the line x + y = 1.

PSfrag replacements

0

1

1
x

y
Region where f(x, y) > 0

PSfrag replacements

0

1

1
x

y Line x + y = 1
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3) Work out which side of the line corresponds to x + y ≤ 1.

(Note: this requires care! People often make mistakes at this stage because it
seems easy.)

If in doubt, pick a point on one side of the line and test the condition:
e.g. (x, y) = (0, 0) ⇒ x + y < 1, so we want the area below the line.

Shade this area.
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4) We need to find the limits of integration that match this area. Select one
variable, x or y, to “lead”: x is often more natural, but it can be easier to use y
instead if the area follows the y-axis but not the x-axis, eg.
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Here we select x. First find the range of values of x that lie inside the shaded

area:

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������PSfrag replacements

0

1

1
x

y

0 ≤ x ≤ 1.

This gives the outer limits of integration:

∫ 1

x=0

To find the inner limits of integration, we need to see how y varies for any
given value of x.

Fix a typical value of x, and mark it on the diagram. Find the range of values

of y that lie in the shaded area, for this fixed value of x. This gives
the inner limits of integration (the limits for y).
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(fixed value)

y=1−x because it lies on the line x+y=1

PSfrag replacements

0

1

1x
x

y
x + y = 1

So as x ranges from 0 to 1,

y ranges from 0 to 1 − x.

So the limits of integration are
∫ 1

x=0

∫ 1−x

y=0

.

158



5) Perform the integration using the limits just obtained:

P(X + Y ≤ 1) =

∫ 1

x=0

∫ 1−x

y=0

fX,Y (x, y) dy dx

=

∫ 1

x=0

∫ 1−x

y=0

1 dy dx

=

∫ 1

x=0

[

y
]1−x

y=0
dx

=

∫ 1

x=0

(1 − x) dx

=
[

x − x2

2

]1

0

P(X + Y ≤ 1) =
1

2

Example 2: Suppose (X, Y ) have joint density fX,Y (x, y) =

{
e−x−y (x, y ≥ 0),
0 otherwise.

a) Find FX,Y (x, y).

b) Find P(X ≤ Y ).

a) FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v) dv du =

∫ x

0

∫ y

0

e−u−v dv du for x, y ≥ 0

=

∫ x

0

∫ y

0

e−ue−v dv du

=

∫ x

0

e−u
{∫ y

0

e−v dv
}

du

=

∫ x

0

e−u
[

− e−v
]y

0
du

=

∫ x

0

e−u(1 − e−y) du

= (1 − e−y)
[

− e−u
]x

0

FX,Y (x, y) = (1 − e−y)(1 − e−x) for x, y ≥ 0.
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b) Looking for P(X ≤ Y ): boundary line x = y.

PSfrag replacements

0
x

y
line x = y

f(x, y) > 0 for all x, y ≥ 0.

Select variable y to “lead”, because area follows the y-axis.

PSfrag replacements

0 x

y line x = y

x = 0

x = y

y ranges from 0 to ∞:
∫ ∞

y=0

.

For fixed y, x ranges from 0 to y:
∫ ∞

y=0

∫ y

x=0

.

So P(X ≤ Y ) =

∫ ∞

y=0

∫ y

x=0

f(x, y) dx dy

=

∫ ∞

y=0

∫ y

x=0

e−x−y dx dy

=

∫ ∞

y=0

e−y
[

− e−x
]y

x=0
dy

=

∫ ∞

y=0

e−y(1 − e−y) dy

=

∫ ∞

y=0

(e−y − e−2y) dy

=
[

− e−y +
1

2
e−2y

]∞

0

= e0 − 1

2
e0

P(X ≤ Y ) =
1

2
.

Makes sense by the symmetry of X and Y .
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Marginal and Conditional Densities

All the concepts for discrete random variables have continuous analogues,
although the ideas can be less intuitive in the continuous case.

For simplicity, we restrict attention to bivariate random vectors: X = (X, Y ).

Definition: Suppose that X = (X, Y ) has a continuous joint distribution with joint
density f(x, y). The marginal p.d.f. of X , or the marginal density of X,

is

fX(x) =

∫ ∞

−∞
f(x, y) dy

Similarly, the marginal density of Y is

fY (y) =

∫ ∞

−∞
f(x, y) dx

Note: Compare with the discrete case: fX(x) =
∑

y

f(x, y).

To get from discrete to continuous, replace probability functions by pdfs, and re-
place

∑
’s with

∫
’s. The idea is the same: eliminate all but the required argument

through summing / integration.

Definition: If X = (X, Y ) has a continuous joint distribution, then the conditional

density of X given Y is defined as

fX |Y (x|y) =
fX,Y (x, y)

fY (y)
as long as fY (y) > 0.

Justifications:

To justify results for continuous random variables, we generally use the dis-
tribution function. The distribution function gives us probabilities, which we

understand how to manipulate. Working directly with the probability density
function is harder, because it is difficult to conceptualize how it should behave.
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Justification of the marginal density:

Consider the distribution function of X:

FX(x) = P(X ≤ x) = P(X ≤ x and −∞ < Y < ∞)

= FX,Y (x,∞) (by definition of FX,Y )

=

∫ x

−∞

∫ ∞

−∞
fX,Y (u, y) dy du

=

∫ x

−∞
g(u) du, say, where g(u) =

∫ ∞

−∞
fX,Y (u, y) dy .

Thus X has marginal density

fX(x) = F
′

X(x) = g(x) =

∫ ∞

−∞
f(x, y) dy .

Similarly, Y has marginal density fY (y) =
∫∞
−∞ f(x, y) dx.

Justification of the conditional density:

The exact meaning of the conditional density fX |Y (x | y) is hard to understand.

We cannot work with conditional probabilities of the form P(X ≤ x |Y = y),
because the event {Y = y} has probability zero so we cannot condition on it.
Instead, we must resort to limiting arguments.

Define the limiting conditional distribution function as

FX |Y (x | y) = lim
h→0

P(X ≤ x | y − h ≤ Y ≤ y + h)

= lim
h→0

{∫ x

−∞
∫ y+h

y−h fX,Y (u, v) dv du
∫ y+h

y−h fY (v) dv

}

= lim
h→0

{∫ x

−∞ 2hfX,Y (u, y) du

2hfY (y)

}

,

because

∫ y+h

y−h

fX,Y (u, v) dv → 2hf(u, y) and

∫ y+h

y−h

fY (v) dv → 2hfY (y) as h → 0.

So FX,Y (x | y) =

∫ x

−∞ fX,Y (u, y) du

fY (y)
. Taking the derivative to find the conditional

p.d.f., we obtain

fX |Y (x | y) =
d

dx

(

FX |Y (x | y)
)

=
fX,Y (x, y)

fY (y)
, as long as fY (y) > 0.
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Notes: 1. These justifications are not rigorous proofs. For a full treatment, Mea-
sure Theory is needed.

2. When calculating marginal and conditional densities, great attention must

be paid to the limits of integration, just as for calculating probabilities.

Example 1: Let (X, Y ) have joint density fX,Y (x, y) =

{
λ2e−λy (0 ≤ x ≤ y),
0 otherwise.

a) Find the marginal p.d.f. of X, fX(x).

b) Find the marginal p.d.f. of Y , fY (y).

c) Find the conditional density, fX |Y (x | y).

Solution

a) fX(x) =
∫∞
−∞ fX,Y (x, y) dy

=
∫∞

x λ2e−λy dy because fX,Y (x, y) = 0 if y < x.

=
[

− λ2

λ e−λy
]∞

x

= (−λe−∞ + λe−λx)

fX(x) = λe−λx for x ≥ 0. So X ∼ Exponential(λ).

PSfrag replacements

0 x

y

y = x

y = x

fixed x

0 ≤ x ≤ y

b) fY (y) =
∫∞
−∞ fX,Y (x, y) dx

=
∫ y

0 λ2e−λy dx because fX,Y (x, y) = 0 if x > y.

= λ2e−λy
[

x
]y

0

fY (y) = λ2ye−λy for y ≥ 0.

PSfrag replacements

0 x

y
y = x

x = 0
x = y

fixed y

So Y ∼ Gamma(k = 2, λ).
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c) fX |Y (x|y) =
fX,Y (x, y)

fY (y)
=

λ2e−λy

λ2ye−λy
for 0 ≤ x ≤ y.

fX |Y (x|y) =
1

y
for 0 ≤ x ≤ y.

Thus (X|Y ) ∼ Uniform[0, Y ].

PSfrag replacements

0 xy

1
y

f(x|y)

Example 2: Let (X, Y ) have joint density

fX,Y (x, y) =







x + y for 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; x + y ≤ 1;
2 − x − y for 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; x + y > 1;

0 otherwise.

a) Find the marginal p.d.f. of X, fX(x).

b) Find the marginal p.d.f. of Y , fY (y).

c) Find the conditional density, fX |Y (x | y).

Solution First draw picture:

PSfrag replacements

0
x

y

1

1

x + y = 1

f(x, y) = x + y

f(x, y) = 2 − x − y

a)
fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy where fX,Y (x, y) =







0 for y < 0

0 for y > 1
x + y for 0 ≤ y ≤ 1 − x

2 − x − y for 1 − x < y ≤ 1

=

∫ 1−x

0

(x + y) dy +

∫ 1

1−x

(2 − x − y) dy

=
[

xy +
y2

2

]1−x

0
+
[

2y − xy − y2

2

]1

1−x

= x(1 − x) +
(1 − x)2

2
+
(

2 − x − 1

2

)

−
(

2(1 − x) − x(1 − x) − (1 − x)2

2

)

fX(x) = −x2 + x +
1

2
for 0 ≤ x ≤ 1.
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b) By symmetry, X and Y have the same marginal distribution, because x and y
are treated identically in fX,Y (x, y).
Thus fY (y) = −y2 + y + 1

2
(0 ≤ y ≤ 1).

c) fX |Y (x|y) =
fX,Y (x, y)

fY (y)
=







x + y

−y2 + y + 1
2

if x + y ≤ 1

2 − x − y

−y2 + y + 1
2

if x + y > 1.

for x, y ∈ [0, 1].

4.7 Independence of continuous random variables

Recall that discrete random variables X and Y are statistically independent

if and only if

P(X = x, Y = y) = fX,Y (x, y) = fX(x)fY (y) = P(X = x)P(Y = y) .

The analogous definition holds for continuous random variables.

Definition: Let (X, Y ) be jointly continuous random variables with joint density

fX,Y and marginal densities fX and fY . Then X and Y are statistically
independent if and only if

fX,Y (x, y) = fX(x)fY (y) for all x, y.

Theorem 4.5: X and Y are statistically independent if and only if

FX,Y (x, y) = FX(x)FY (y) for all x, y, where F denotes distribution function.
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Proof:

First suppose that FX,Y (x, y) = FX(x)FY (y). Then

fX,Y (x, y) =
∂2

∂x∂y

(

FX,Y (x, y)
)

=
∂2

∂x∂y

(

FX(x)FY (y)
)

=

(
∂FX(x)

∂x

)(
∂FY (y)

∂y

)

= fX(x)fY (y).

Thus X and Y are statistically independent, by definition.

Conversely, suppose that X and Y are statistically independent.
Then fX,Y (x, y) = fX(x)fY (y). Thus

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v) dv du =

∫ x

−∞

∫ y

−∞
fX(u)fY (v) dv du

=

(∫ x

−∞
fX(u) du

)(∫ y

−∞
fY (v) dv

)

= FX(x) FY (y),

as required. �

Theorem 4.6:

Continuous random variables X and Y are independent if and only if their joint
density fX,Y (x, y) can be written as a product fX,Y (x, y) = g(x)h(y) for some
functions g and h, and for ALL x, y ∈ R.
If fX,Y (x, y) = g(x)h(y), then the marginal densitites are

fX(x) =
g(x)

∫∞
−∞ g(u) du

, fY (y) =
h(y)

∫∞
−∞ h(u) du

.

Proof:

As for discrete case (Theorem 4.1), but with sums
∑

x

∑

y replaced by integrals
∫∞
−∞
∫∞
−∞. �
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Using the joint density to determine whether X and Y are independent

The following is a common exam question:

Let fX,Y (x, y) =

{
. . . . . . for (x, y) ∈ region A,

0 otherwise.

Are X and Y independent?

Solution:

We use Theorem 4.6, but to do this we need to find a single expression for
fX,Y (x, y) that holds for all (x, y) ∈ R

2.

Define the indicator function: I{(x, y) ∈ A} =

{
1 for (x, y) ∈ A
0 otherwise.

Solve the question by seeing if fX,Y (x, y)I{(x, y) ∈ A} can factorize into g(x)h(y).
Sometimes, it is possible to factorize I{(x, y) ∈ A} = I{x ∈ Ax}I{y ∈ Ay},
eg. I{0 ≤ x ≤ 1, 0 ≤ y ≤ 1} = I{0 ≤ x ≤ 1}I{0 ≤ y ≤ 1}.

Other times we cannot factorize I{(x, y) ∈ A},
eg. I{0 ≤ x ≤ y ≤ 1} cannot be factorized.

Example 1: Let fX,Y (x, y) =

{
1 for 0 ≤ x ≤ 1; 0 ≤ y ≤ 1;
0 otherwise.

Then

fX,Y (x, y) = 1 × I{0 ≤ x ≤ 1} × I{0 ≤ y ≤ 1}
= g(x) × h(y) for x, y ∈ R.

So X and Y are independent.
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Example 2: Let fX,Y (x, y) =

{
e−x−y for x, y ≥ 0,
0 otherwise.

Then

fX,Y (x, y) = e−x−y × I{x ≥ 0} × I{y ≥ 0}
= (e−xI{x ≥ 0})(e−yI{y ≥ 0})
= g(x) × h(y) for x, y ∈ R.

So X and Y are independent.

Example 3: Let fX,Y (x, y) =

{
λ2 e−λy for 0 ≤ x ≤ y,

0 otherwise.

Then fX,Y (x, y) = λ2e−λy I{0 ≤ x ≤ y}
︸ ︷︷ ︸

does not factorize

So X and Y are NOT independent.

Example 4: Let (X, Y ) have joint density

fX,Y (x, y) =







x + y for 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; x + y ≤ 1;
2 − x − y for 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; x + y > 1;

0 otherwise.

This gives,

fX,Y (x, y) =
{

(x + y)I{x + y ≤ 1} + (2 − x − y)I{x + y ≥ 1}
}

× I{0 ≤ x ≤ 1} × I{0 ≤ y ≤ 1}

Thus X and Y are NOT independent.
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4.8 Expectation of jointly continuous random variables

Definition: Let X1, X2, . . . , Xk be jointly continuous random variables with joint
density f(x1, . . . , xk). Let g : R

k → R be a (nice enough) function. Then

E(g(X1, . . . , Xk)) =

∫ ∞

x1=−∞
. . .

∫ ∞

xk=−∞
g(x1, . . . , xk)f(x1, . . . , xk)dxk . . . dx1

Example: for two variables,

E(g(X, Y )) =

∫ ∞

x=−∞

∫ ∞

y=−∞
g(x, y)f(x, y) dy dx.

Properties of expectation for continuous random variables

All properties of expectation are exactly the same for continuous random vari-
ables as they are for discrete random variables. For proofs of the statements

below, see the proofs for the discrete case on page 134, and replace sums
∑

x

with integrals
∫∞
−∞ where necessary.

i) If X = (X1, X2, . . . , Xk) is a k-variate continuous random variable, then for

any constants a and b and any functions g and h, (g : R
k → R, h : R

k → R),

E(ag(X) + bh(X)) = aE(g(X)) + bE(h(X)).

ii) For any continuous random variables X and Y ,

E(X + Y ) = E(X) + E(Y ).

Consequently, for any continuous random variables X1, . . . , Xk,

E(X1 + . . . + Xk) = E(X1) + . . . + E(Xk).

Note that we do not require X1, . . . , Xk to be independent.

iii) If X and Y are independent, and g, h are functions, (g, h : R
k → R), then

E(XY ) = (EX)(EY )
and

E(g(X)h(Y )) = E(g(X))E(h(Y ))

Note that this result DOES require X and Y to be INDEPENDENT.
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Covariance of continuous random variables:

cov(X, Y ) = E[(X − µX)(Y − µY )] = E(XY ) − (EX)(EY ) as before.

Note: E(XY ) =

∫ ∞

x=−∞

∫ ∞

y=−∞
xyfX,Y (x, y) dy dx.

Correlation:

corr(X, Y ) =
cov(X, Y )

√

Var(X)Var(Y )
as before.

Conditional expectation:

E(X|Y = y) =

∫ ∞

−∞
xfX |Y (x|y) dx.

Similarly, E(g(X)|Y = y) =

∫ ∞

−∞
g(x)fX |Y (x|y) dx.

Recall that E(g(X))|Y = y) is a function of y (a number depending on y), while
E(g(X)|Y ) is a random variable, with randomness inherited from Y (not X).

Theorem 4.7: Formulae for conditional expectation and variance.

(Exactly the same as for the discrete case, Theorem 4.4.)
If all expectations below are finite, then for ANY random variables X and Y :

i) EX = EY

{

E(X|Y )
}

.

ii) E(g(X)) = EY

{

E(g(X)|Y )
}

.

iii) Var(X) = EY

(

Var(X|Y )
)

+ VarY
(

E(X|Y )
)

.

Proof:

Exactly as for Theorem 4.4, with sums
∑

replaced by integrals
∫

. �
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Interlude: What is a bivariate density?

To build a mental picture of a bivariate density, we must think in 3 dimensions.

The joint density f(x, y) is a surface.

The height of the surface at point (x, y)
tells you “how likely” point (x, y) is,
compared with other points. The higher the
surface at point (x, y), the more likely it is.

Probabilities are given by volumes underneath the surface.

Total probability =

∫ ∫

f(x, y) dy dx = 1 means that the total volume under-

neath the surface is 1.

To calculate (say) P(X > 3
4), calculate the volume underneath the surface cor-

responding to the region x > 3/4 :

∫ 1

x=3/4

∫ 1

y=0

f(x, y) dy dx.

This is not the same as the area of the

shaded region x > 3
4.

PSfrag replacements

0
x

y

1

1

3
4

x > 3
4
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Example: Lost Dog

Your dog is lost somewhere in Central Auckland and it knows how to climb

stairs and use the lift. Where do you spend most time looking for it?

172



4.9 Change of Variable Technique for Continuous Bivariate Distributions

Recall that if X is a univariate random variable, and Y = g(X) where
g : R → R is a (1 − 1) function, then the p.d.f. of Y is

fY (y) = fX(x(y))
∣
∣
∣
dx
dy

∣
∣
∣.

Now suppose we have X = (X, Y ): a random vector in R
2.

Suppose U = (U, V ) = (g1(X, Y ), g2(X, Y )) = g(X).

If g(X) = U is smooth and (1− 1) over some region, then the inverse function

g−1(U) = X exists, and we can apply the change of variable
technique in 2 dimensions to find the joint density of U = (U, V ).

Definition: Jacobian.

Let x = (x, y).
Let u = (u, v) = (u(x, y), v(x, y)) be a (1 − 1) transformation of x over some
region.

We can write x = (x(u, v), y(u, v)) for the inverse transformation.

Define the matrix J =





∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v



.

Then the Jacobian of the transformation is

Jacobian = detJ = det





∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v
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Theorem 4.8: Change of Variable formula in 2 dimensions.

If U = (U, V ) is a smooth, (1-1) function of X = (X, Y ) over some region, then
the joint density of U = (U, V ) is given by

fU(u) = fX(x(u))| detJ | where J is the Jacobian of the transformation,

or in other words,

fU,V (u, v) = fX,Y (x(u, v), y(u, v))

∣
∣
∣
∣
∣
∣

det





∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v





∣
∣
∣
∣
∣
∣

Proof: Not required.

Important Note: Applying the Change of Variable formula is easy: the difficult

part is working out the correct region in the (u, v) plane.

Examples: how to work out the region

1. Write down the equations of all lines bounding the region in the (x, y) plane.
Rewrite each equation in terms of u and v.
Sketch the resulting lines in the (u, v) plane.

2. A mathematical description of the region is needed: it is not enough just to

shade it on a diagram.

First try to use the mathematical description of the (x, y) region,
eg. 0 < x < y < 1.
Translate it directly in terms of u and v and see if it gives a neat mathematical
expression.
If not, work from scratch, using your sketch.
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Example 1: Suppose the (x, y) region is 0 < x < y < 1. Let u = x, v = log(y).

1) Sketch region in (x, y) plane.

���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������

PSfrag replacements

0
x

y

1

1

x = 0

y = 1

y = x

2) Invert the transformation: u = x ⇒ x = u, v = log y ⇒ y = ev.

3) Rewrite the equations of all bounding lines:

y = 1 ⇒ ev = 1 ⇒ v = log 1 = 0.

x = 0 ⇒ u = 0.

y = x ⇒ ev = u ⇒ v = log u.

4) Sketch new region in (u, v) plane:

PSfrag replacements

(0, 0) (1, 0)
u

v
v = log u

(0,−∞)

Transform points to decide
which area to shade:

���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

x

y

PSfrag replacements

(0, 0)

(0, 1) (1, 1)

Use boundary points, or one
single inside point is enough.

5) Look for mathematical description:
first try 0 < x < y < 1 ⇒ 0 < u < ev < 1

→ gives
0 < u < 1
log u < v < 0.
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Example 2: Suppose the (x, y) region is 0 < x < y < 1 again. Let

u =
x + y

2
, v =

x − y

2
.

1) Sketch region in (x, y) plane:

(*)(1/2,3/4) add point (*) at step (4)

PSfrag replacements

y

x

x = 0

y = 1

y = x

2) Invert transformation: u =
x + y

2
⇒ x = u + v

v =
x − y

2
⇒ y = u − v

3) Rewrite equations of bounding lines:

y = 1 ⇒ u − v = 1 ⇒ v = u − 1.

x = 0 ⇒ u + v = 0 ⇒ v = −u.

y = x ⇒ u + v = u − v ⇒ 2v = 0 ⇒ v = 0.

4) Sketch in (u, v) plane:

−1/2
(*)

PSfrag replacements

v = u − 1

v = 0

v = −u

1
0

−1

5) Look for mathematical description:
first try 0 < x < y < 1 ⇒ 0 < u + v < u − v < 1: too complicated for easy
understanding.

Instead, look directly at sketch: Alternative:

0 < u < 1
max(−u, u− 1) < v < 0.

−1/2 < v < 0
−v < u < v + 1.
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Examples of the Change of Variable technique

Example 1: Let (X, Y ) have joint density f(x, y) =

{
1 (0 < x < 1, 0 < y < 1),

0 otherwise.

a) Find the joint density of U = (U, V ) = (X + Y, Y ).

b) Use your answer to (a) to find the marginal p.d.f. of U = X + Y .

Solution:

a) Let u = u(x, y) = x + y

v = v(x, y) = y for 0 < x < 1, 0 < y < 1.

This is a (1 − 1) transformation. (Must state this).

Sketch:

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

PSfrag replacements

y

x

x = 0

y = 1

y = 0

x = 1

1

10

Invert transformation: x = x(u, v) = u − v

y = y(u, v) = v.

New Sketch:

Line equations:

y = 1 ⇒ v = 1

y = 0 ⇒ v = 0
x = 1 ⇒ u − v = 1, v = u − 1

x = 0 ⇒ u − v = 0, v = u.

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

PSfrag replacements
v = u − 1

v = 0

v = −u

1

1
0

−1

v
v = u

v = 1

u

Region:

0 < v < 1
v < u < v + 1
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Now change variable:

| detJ | =

∣
∣
∣
∣
∣
∣

det





∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
det

(
1 −1
0 1

)∣
∣
∣
∣
= 1.

So fU,V (u, v) = fX,Y (x(u, v), y(u, v))| detJ |
= fX,Y (u − v, v) × 1

= 1 × 1

fU,V (u, v) = 1 for
{

0 < v < 1
v < u < v + 1

b)

fixed u
between 0
and 1

fixed u
between 1 and 2

PSfrag replacements
v = u − 1

v = 0

v = −u1

1
0

−1

v
v = u

v = 1

ufU(u) =
∫∞
−∞ fU,V (u, v) dv

=







∫ u

v=0 1 dv if 0 < u ≤ 1

∫ 1

v=u−1 1 dv if 1 < u < 2

=







[

v
]u

v=0
for 0 < u ≤ 1

[

v
]1

v=u−1
for 1 < u < 2

fU(u) =







u for 0 < u ≤ 1,

1 − (u − 1) = 2 − u for 1 < u < 2.
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Example 2: Let (X, Y ) have joint density f(x, y) =

{
4xy (0 < x < 1, 0 < y < 1),
0 otherwise.

Find the p.d.f. of U =
X

Y
.

Solution: Three steps. i) Let U = X
Y and choose a suitable V .

ii) Find the joint pdf of (U, V ).
iii) Integrate out V to give the marginal fU(u).

Step (i)

If we put V = Y , then we can uniquely recover X and Y from U = X
Y and V = Y .

So let u = u(x, y) = x
y
, v = v(x, y) = y for

{
0 < x < 1
0 < y < 1.

Invert:

x = x(u, v) = uv

y = y(u, v) = v.

Step (ii)
First find the region for (U, V ):

Lines:
x = 0 ⇒ uv = 0 ⇒ u = 0 or v = 0

x = 1 ⇒ uv = 1 ⇒ v = 1
u

y = 0 ⇒ v = 0

y = 1 ⇒ v = 1

Shaded Region:

0 < v < 1

0 < u <
1

v

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

x

y

0

1

1

Region for (X,Y)

1

1

u

v
PSfrag replacements

v = 1/u

x = 1x = 0

y = 0

y = 1

u = 0

v = 0

v = 1
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Jacobian: | det J | =

∣
∣
∣
∣
∣
∣

det





∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

det





v u

0 1





∣
∣
∣
∣
∣
∣

= v

Change of Variable: the transformation is (1 − 1) so we can apply the tech-
nique.

fU,V (u, v) = fX,Y (x(u, v), y(u, v))| detJ |
= 4(uv)(v)× v

fU,V (u, v) = 4uv3 for

{
0 < v < 1

0 < u <
1

v
.

(joint pdf of U, V .)

Step (iii)

Need marginal pdf of U = X
Y :

fixed u>1fixed u between
0 and 1

PSfrag replacements 1

0

v

u
v = 0

v = 1

v = 1
u

v = 1
ufU(u) =

∫∞
−∞ fU,V (u, v) dv

=







∫ 1

v=0 4uv3 dv for 0 < u ≤ 1

∫ 1/u

v=0 4uv3 dv for 1 < u < ∞

=







u
[

v4
]1

v=0
= u for 0 < u ≤ 1

u
[

v4
]1/u

v=0
=

1

u3
for 1 < u < ∞

fU(u) =







u for 0 < u ≤ 1

1

u3
for 1 < u < ∞

0 otherwise.
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4.10 Example of joint continuous distribution: the Bivariate Normal

The bivariate Normal distribution arises as an interaction between two univari-

ate Normal random variables.

Definition: X and Y have a bivariate Normal distribution if their joint density

is:

fX,Y (x, y) =
1

2π
√

σ2
Xσ2

Y (1 − ρ2)
exp

{

−1

2(1 − ρ2)

[(
x − µX

σX

)2

− 2ρ

(
x − µX

σX

)(
y − µY

σY

)

+

(
y − µY

σY

)2
]}

for −∞ < x, y < ∞.

Here,

−∞ < µX , µY < ∞

0 < σX , σY < ∞

−1 < ρ < 1







five parameters required.

Properties:

If (X, Y ) has a Bivariate Normal distribution, then:

i) The marginals are univariate Normal:

X ∼ N(µX , σ2
X)

Y ∼ N(µY , σ2
Y )

ii) Parameter ρ is the correlation between X and Y .

iii) Any linear combination Z = aX + bY is univariate Normal.
[Proof left till Chapter 5.]
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iv) X and Y are independent if and only if ρ = 0.

Note: this is different from usual:

usually X, Y independent ⇒ ρXY = 0 but ρXY = 0 ; X, Y independent.

However, if (X, Y ) ∼ Bivariate Normal then X, Y independent ⇔ ρXY = 0.

v) The graph of fX,Y (x, y) is like a ‘mountain’ centred on (µX , µY ). If X and

Y are independent (ρ = 0), with equal variance, the mountain has a circular
cross-section. As | ρ | → 1, the cross-section becomes elliptical and eventually

almost a straight line.

PSfrag replacements

x

x

x

x

y

y

y

y

fX,Y (x, y)

y = xy = x

X, Y independent (circular contours): ρ = 0

Positive correlation (ρ = 0.5) Strong positive correlation (ρ = 0.9)
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vi) The conditional distribution of X given Y = y is univariate Normal:

X|(Y = y) ∼ N







µX + ρ
σX

σY
(y − µY )

︸ ︷︷ ︸

mean

, σ2
X(1 − ρ2)
︸ ︷︷ ︸

variance







.

Note: E(X|Y = y) = µX + ρ
σX

σY
(y − µY ) is a linear function of y: this is called

the regression of X upon Y .

Proof: (i), (ii), (iv), (vi)

(i) The marginal density of X is

fX(x) =

∫ ∞

−∞
f(x, y) dy

=

∫ ∞

−∞







exp

{

− 1
2(1−ρ2)

[(
x−µX

σX

)2

− 2ρ
(

x−µX

σX

)(
y−µY

σY

)

+
(

y−µY

σY

)2
]}

2πσXσY

√

(1 − ρ2)







dy

=

∫ ∞

−∞







exp

{

− 1
2(1−ρ2)

[

(1 − ρ2)
(

x−µX

σX

)2

+
(

ρ
(

x−µX

σX

)

−
(

y−µY

σY

))2
]}

√

2πσ2
X

√

2πσ2
Y (1 − ρ2)







dy

Put z = ρ
(

x−µX

σX

)

−
(

y−µY

σY

)

. The integral becomes:

fX(x) =







exp

{

−1
2

(
x−µX

σX

)2
}

√

2πσ2
X







×
∫ ∞

−∞





exp
{

− z2

2(1−ρ2)

}

√

2π(1 − ρ2)



 dz

=







exp

{

−1
2

(
x−µX

σX

)2
}

√

2πσ2
X







× 1 .
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(The integral is the integral of the p.d.f. of a Normal(µ = 0, σ2 = (1 − ρ2))
random variable, so it is unity.)

By examining the form of the marginal p.d.f. fX(x), we see that

X ∼ Normal(µX , σ2
X).

By symmetry, the marginal distribution of Y is Normal(µY , σ2
Y ).

(ii) Method of proof: integrate the bivariate Normal p.d.f. to obtain

cov(X, Y ) = E

(

(X − µX)(Y − µY )
)

= ρ σXσY .

The result corr(X, Y ) = ρ follows.

(iv) We know that X, Y independent ⇒ ρ = 0, as always.

Suppose conversely that ρ = 0. The bivariate density fX,Y (x, y) factorizes into

an expression g(x)h(y), so X and Y are independent by Theorem 4.6.

Thus
X and Y are independent ⇐⇒ ρ = 0.

(vi) The conditional density of X given Y = y is

fX |Y (x | y) =
f(x, y)

fY (y)

=

1

2π
√

(1−ρ2)σ2
Xσ2

Y

exp

{

− 1
2(1−ρ2)

[(
x−µX

σX

)2

− 2ρ
(

x−µX

σX

)(
y−µY

σY

)

+
(

y−µY

σY

)2
]}

1√
2πσ2

Y

exp

{

−1
2

(
y−µY

σY

)2
}

=
1

√

2π(1 − ρ2)σ2
X

exp

{

− 1

2(1 − ρ2)

[(
x − µX

σX

)

− ρ

(
y − µY

σY

)]2
}

=
1

√

2π(1 − ρ2)σ2
X

exp

{

− 1

2σ2
X(1 − ρ2)

[

x −
(

µX +
ρσX

σY
(y − µY )

)]2
}

,

which is the density of the Normal distribution with mean µX + ρσX

σY
(y − µY )

and variance σ2
X(1 − ρ2). �
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Chapter 5: Moment Generating Functions

5.1 Introduction

Recall that the distribution function, FX(x), and the probability function or
probability density function, fX(x), both characterize the distribution of a

random variable X: that is, specifying either FX(x) or fX(x) uniquely defines
the whole distribution.

A third characterization of a distribution is the moment generating function,
MX(t).

Definition: The moment generating function (m.g.f.) of a random variable X

is the function MX(t) = E(eXt) provided this exists in some interval contain-

ing t = 0.

Reference List (derivations later)

Distribution of X M.G.F. Special cases M.G.F.

Normal(µ, σ2) e
(µt+1

2σ2t2)
Normal(0, 1) e

( 1
2 t2)

Uniform(a, b)
ebt − eat

t(b − a)
Uniform(0, 1)

et − 1

t

Binomial(n, p) (pet + q)n

Poisson(λ) eλ(et−1)

Gamma(k, λ)
(
1 − t

λ

)−k
Chisquare(ν) (1 − 2t)−

ν
2

Exponential(λ)
(
1 − t

λ

)−1

NegBin(k, p)
pk

(1 − qet)k
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Note: The moment generating function is written MX(t) and is a function of t:

for example, MX(2) = E
(
e2X
)
: a fixed number;

MX(3) = E
(
e3X
)
: a fixed number, different from MX(2).

MX(t) simply describes how E
(
etX
)

changes with the value of t. (Why this is
useful will become clear later on.)

Note that t is not random; X is the only random quantity. E
(
etX
)

is a fixed

number giving the mean of etX if X were observed many times.

Calculating the moment generating function

1. When X is discrete,

2. When X is continuous,

MX(t) = E(etX) =
∑

x

etxfX(x)

MX(t) = E(etX) =

∫ ∞

−∞
etxfX(x) dx (dx not dt)

Theorem 5.1: Let X be any random variable with m.g.f. MX(t). Let Y = aX + b
where a and b are constants. Then the m.g.f. of Y is

MY (t) = ebtMX(at).

Proof:

MY (t) = E(eY t) = E(e(aX+b)t) = E( ebt
︸︷︷︸

constant

e(at)X) = ebt
E(e(at)X) = ebtMX(at). �

Derivations of m.g.f.s for selected distributions

1. Binomial distribution

Let X ∼ Binomial(n, p), so fX(x) = P(X = x) =

(
n

x

)

pxqn−x.

MX(t) =

n∑

x=0

ext

(
n

x

)

pxqn−x

=
n∑

x=0

(
n

x

)

(pet)xqn−x

= (pet + q)n by the Binomial Theorem: true for all t.

Thus MX(t) = (pet + q)n for all t ∈ R.
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2. Poisson distribution

Let X ∼ Poisson(λ), so fX(x) = P(X = x) =
λx

x!
e−λ.

MX(t) =

∞∑

x=0

extfX(x) =

∞∑

x=0

extλ
x

x!
e−λ

= e−λ
∞∑

x=0

(λet)x

x!
(Note: sum = series expansion of e(λet))

= e−λe(λet)

MX(t) = eλ(et−1) for all t ∈ R.

3. Normal(0, 1) distribution

Let X ∼ Normal(0, 1), so fX(x) =
1√
2π

e−x2/2.

MX(t) = E(eXt) =

∫ ∞

−∞
extfX(x) dx (Note: integrate

∫
dx, NOT

∫
dt)

=

∫ ∞

−∞
ext 1√

2π
e−x2/2 dx

=

∫ ∞

−∞

1√
2π

e−
1
2 (x2−2tx+t2−t2) dx

=

∫ ∞

−∞

1√
2π

e−
1
2 (x−t)2e

1
2 t2 dx

= e
1
2 t2
∫ ∞

−∞

1√
2π

e−
1
2 (x−t)2 dx

︸ ︷︷ ︸

integral of N(t, 1) pdf = 1

MX(t) = e
1
2 t2 for t ∈ R.
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4. Normal(µ, σ2) distribution

Use Theorem 5.1: if Y ∼ N(µ, σ2), then Y −µ
σ ∼ N(0, 1), so we can write

Y = σX + µ, where X ∼ N(0, 1).

Thus by Thm 5.1, MY (t) = eµtMX(σt)

= eµte
1
2 (σt)2

MY (t) = eµt+ 1
2σ2t2 for all t ∈ R.

5. Gamma(k, λ) distribution

Let X ∼ Gamma(k, λ), so fX(x) =
1

Γ(k)
λkxk−1e−λx for x > 0.

MX(t) = E(eXt) =

∫ ∞

0

extfX(x) dx

=

∫ ∞

0

ext 1

Γ(k)
λkxk−1e−λx dx

=

∫ ∞

0

1

Γ(k)
λkxk−1e−(λ−t)x dx.

Important: we need t < λ for this integral to be finite. Assume t < λ, so that
(λ − t) is a positive number.

Then MX(t) =

∫ ∞

0

1

Γ(k)
(λ − t)kxk−1e−(λ−t)x λk

(λ − t)k
dx for t < λ

=
λk

(λ − t)k

∫ ∞

0

1

Γ(k)
(λ − t)kxk−1e−(λ−t)x dx for t < λ

=

(
λ

λ − t

)k

for t < λ

MX(t) =
1

(1 − t/λ)k
for t < λ.
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6. Chi-square distribution χ2
ν

Recall that χ2
ν = Gamma(v

2,
1
2). Put k = ν

2 , λ = 1
2 above to get

MX(t) =

(

1 − t

λ

)−k

= (1 − 2t)−ν/2 when X ∼ χ2
ν . Valid for t < 1

2.

7. Exponential distribution

Recall that Exponential(λ) = Gamma(k = 1, λ). Put k = 1 above to get

MX(t) =

(

1 − t

λ

)−1

when X ∼ Exponential(λ), for t < λ.

Uniqueness of the moment generating function

Theorem 5.2: Let X be a random variable. If the m.g.f. of X, MX(t), exists for

all t with |t| < t0 for some t0 > 0, then the whole distribution of X is uniquely

determined by MX(t).

Proof: beyond the scope of this course.

The Theorem tells us that, if the m.g.f. MX(t) exists for t in some interval

containing 0, then
the m.g.f. uniquely determines the distribution of X.

Thus, if we can recognize the m.g.f. of an unknown random variable X as one of

the functions on the reference list on page 185, then we have established what
the distribution of X is.

Why is the moment generating function useful?

The moment generating function is a powerful tool for solving problems that are
difficult to solve using distribution functions and p.d.f.s or probability functions.

Examples are: (i) calculating moments; (ii) finding the distribution of a sum
of independent random variables; (iii) finding the distribution of a compound

random variable; (iv) finding the distribution of a function of X; (v) finding a
limiting distribution. We will look at these in turn.
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5.2 Moments

Definition: Let X be a random variable and let r be a positive integer.

The r’th moment of X (about the origin) is E(X r).
The r’th central moment of X (r’th moment of X about the mean of X)
is E{(X − µX)r}.

Examples: E(X) = µX is the first moment of X.
Var(X) = E((X − µX)2) is the second central moment of X.

Using the power series expansion of the m.g.f. to calculate moments

The moment generating function gets its name because it gives us a quick way
of calculating the moments of X, using the power series expansion of etX .

Consider MX(t) = E(etX)

= E{1 + tX +
(tX)2

2!
+

(tX)3

3!
+ . . .}

︸ ︷︷ ︸

using power series expansion of etX

= 1 + t E(X)
︸ ︷︷ ︸

1st moment

+
t2

2!
E(X2)
︸ ︷︷ ︸

2nd moment

+
t3

3!
E(X3)
︸ ︷︷ ︸

3rd moment

+ . . .

We can recover the moments by differentiating the power series and evaluating
at t = 0.

1st moment
d

dt
(MX(t)) = E(X) + tE(X2) +

t2

2!
E(X3) + . . .

So
d

dt
(MX(t))

∣
∣
∣
t=0

= M ′
X(0) = E(X) : the 1st moment.

2nd moment
d2

dt2
(MX(t)) = E(X2) + tE(X3) +

t2

2!
E(X4) + . . .

So
d2

dt2
(MX(t))

∣
∣
∣
t=0

= M ′′
X(0) = E(X2) : the 2nd moment.
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General expression
E(X) = M ′

X(0) =
d

dt
MX(t)

∣
∣
∣
t=0

E(X2) = M ′′
X(0) =

d2

dt2
MX(t)

∣
∣
∣
t=0

E(Xr) = M
(r)
X (0) =

dr

dtr
MX(t)

∣
∣
∣
t=0

This can be a much quicker way of calculating the mean and variance than the

traditional integrations or summations.

Compare the following examples with the effort required in chapters 2 and 3.

1. Binomial distribution mean and variance

X ∼ Binomial(n, p), so MGF is MX(t) = (pet + q)n.

M ′
X(t) = n(pet + q)n−1pet (Note: d

dt
, not d

dx
)

M ′′
X(t) = n(n−1)(pet+q)n−2(pet)2+n(pet+q)n−1pet (don’t bother to simplify)

So

E(X) = M ′
X(0) = n(pe0 + q)n−1pe0 = n(p + q)n−1p = np (because p + q = 1)

E(X2) = M ′′
X(0) = n(n − 1)(p + q)n−2p2 + n(p + q)n−1p

= n(n − 1)p2 + np

So Var(X) = E(X2) − (EX)2 = n(n − 1)p2 + np − n2p2 = np(1 − p).

2. Poisson distribution mean and variance

X ∼ Poisson(λ), so MGF is MX(t) = eλ(et−1).

M ′
X(t) = λeteλ(et−1) = λet+λet−λ

M ′′
X(t) = λ(1 + λet)et+λet−λ
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So E(X) = M ′
X(0) = λe0+λe0−λ = λ

E(X2) = M ′′
X(0) = λ(1 + λe0)e0+λe0−λ = λ(1 + λ)

So Var(X) = E(X2) − (EX)2 = λ(1 + λ) − λ2 = λ

3. Normal(µ, σ2) distribution mean and variance

X ∼ N(µ, σ2), so MGF is MX(t) = eµt+ 1
2σ2t2

M ′
X(t) = (µ + σ2t)eµt+ 1

2σ2t2

M ′′
X(t) = (µ + σ2t)2eµt+ 1

2σ2t2 + σ2eµt+ 1
2σ2t2

So E(X) = M ′
X(0) = (µ + 0)e0 = µ.

E(X2) = M ′′
X(0) = (µ + 0)2e0 + σ2e0 = µ2 + σ2 ;

So Var(X) = E(X2) − (EX)2 = µ2 + σ2 − µ2 = σ2.

4. Gamma(k, λ) distribution mean and variance

X ∼ Gamma(k, λ), so MGF is MX(t) = (1 − t
λ)−k (t < λ)

The MGF is defined at t = 0, so we can proceed.

M ′
X(t) = −k

(

1 − t

λ

)−k−1(−1

λ

)

=
k

λ

(

1 − t

λ

)−k−1

M ′′
X(t) =

k

λ

(

− k − 1
)(

1 − t

λ

)−k−2(−1

λ

)

=
k

λ2

(

k + 1
)(

1 − t

λ

)−k−2

So E(X) = M ′
X(0) =

k

λ
.

E(X2) = M ′′
X(0) =

k

λ2
(k + 1) ;

So Var(X) = E(X2) − (EX)2 =
k(k + 1)

λ2
− k2

λ2
=

k

λ2
.
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Skewness and Kurtosis

The mean, µ = E(X), of a distribution measures its location (centre).
and the variance, σ2 = Var(X) = E

{
(X − µ)2

}
, measures its spread.

Two other commonly used measures of distributional shape are skewness and
kurtosis.

Definition: For any r.v. X, the skewness of X is γ1 = E

{(
X−µ

σ

)3
}

.

How does skewness measure shape?

If the distribution of X is symmetric about the mean µ, then skewness= 0.

Proof: If X is symmetric, then fX(µ − y) = fX(µ + y) for all y.

Then γ1 =
1

σ3
E{(X − µ)3} =

1

σ3

∫ ∞

−∞
(x − µ)3fX(x) dx

=
1

σ3

∫ ∞

−∞
y3fX(µ + y) dy (putting y = x − µ.)

Split integral: γ1 =
1

σ3

{∫ 0

−∞
y3fX(µ + y) dy +

∫ ∞

0

y3fX(µ + y) dy

}

=
1

σ3

{∫ ∞

0

−v3fX(µ − v) dv +

∫ ∞

0

y3fX(µ + y) dy

}

(v = −y)

=
1

σ3

{

−
∫ ∞

0

v3fX (µ + v)
︸ ︷︷ ︸

by symmetry

dv +

∫ ∞

0

y3fX(µ + y) dy
}

= 0.

If the distribution of X is not symmetric, then skewness 6= 0 and we say that

the distribution is skewed: long positive or negative tail.
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Definition: The kurtosis of X is
γ2 = E

{(
X−µ

σ

)4
}

− 3.

Kurtosis measures the heavy-tailedness of X, relative to the Normal distribu-

tion. (The −3 in the formula makes γ2 = 0 for any Normal(µ, σ2) distribution.)

When the kurtosis is negative (γ2 < 0), the tails are ‘thin’ relative to the Normal

distribution.

When the kurtosis is positive (γ2 > 0), the tails are ‘fat’ relative to the Normal
distribution.

PSfrag replacements

Thin tails: γ2 < 0

Fat tails: γ2 > 0

N(0, 1)

N(0, 1)

Notes:

1. Distributions with the first few moments equal are similar in shape.
(Same mean, same variance, same skewness, etc. ⇒ similar shape).

2. Not all distributions possess finite moments: for example, the Cauchy dis-
tribution has E(X) = ∞ and E(X2) = ∞, although any observation from the

Cauchy distribution is of course finite.

3. Central moments, E {(X − µ)r}, can always be expressed in terms of mo-
ments about the origin, E(X), E(X2), . . . , E(Xr). Simply expand (X −µ)r and
take expectations.

Similarly, E(Xr) can be expressed in terms of E(X − µ), E
{
(X − µ)2

}
, . . .,

E {(X − µ)r}, by writing E(Xr) = E {(X − µ + µ)r} and expanding.

An example is the well-known variance equivalence:

σ2 = E{(X − µ)2} = E(X2) − (EX)2.
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5.3 Moment generating functions for sums of independent r.v.s

The moment generating function turns a sum into a product:

E

(

e(X1+X2)t
)

= E

(

eX1teX2t
)

.

This makes it especially useful for finding the distribution of (a1X1+. . .+anXn).

Theorem 5.3: Suppose that X1, . . . , Xn are independent random variables, and

let Y = a1X1 + . . . + anXn for constants a1, . . . , an. Then

MY (t) =

n∏

i=1

MXi
(ait)

Proof:

MY (t) = E(e(a1X1+...+anXn)t)

= E(eX1(a1t)eX2(a2t) . . . eXn(ant))

= E(eX1(a1t))E(eX2(a2t)) . . .E(eXn(ant)) (because X1, . . . , Xn are independent)

=

n∏

i=1

MXi
(ait). as required.

Sums and means of independent, identically distributed random variables

Let X1, . . . , Xn be independent and identically distributed, with common
moment generating function MX(t). Theorem 5.3 gives the following results

about the m.g.f.s of the sum, Sn, and the mean, Xn :

Sum: If S = X1 + . . . + Xn, then MS(t) = {MX(t)}n.

Mean: If X = 1
n(X1 + . . . + Xn), then MX(t) = {MX( t

n)}n.

Examples: The following examples of Theorem 5.3 are all important results.

1. Sum of independent Poisson random variables is Poisson.

2. Sum of independent Normal random variables is Normal.

3. Sum of independent Chi-square random variables is Chi-square.
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Example 1: Let X1, . . . , Xn be independent with Xi ∼ Poisson(λi)
(i = 1, . . . , n). Then X1 + . . . + Xn ∼ Poisson(λ1 + . . . + λn).

Proof:
Let Y =

n∑

i=1

Xi then MY (t) =
n∏

i=1

MXi
(t)

=
n∏

i=1

eλi(e
t−1)

= e
∑n

i=1 λi(e
t−1) = e(

∑n

i=1 λi)(e
t−1),

which is the m.g.f. of the Poisson

(
n∑

i=1

λi

)

distribution. So Y ∼ Poisson

(
n∑

i=1

λi

)

.

Example 2: Let X1, . . . , Xn be independent with Xi ∼ Normal(µi, σ
2
i )

(i = 1, . . . , n). Then a1X1 + . . . + anXn ∼ N(a1µ1 + . . . + anµn, a
2
1σ

2
1 + . . . + a2

nσ
2
n).

Proof:

Let Y =

n∑

i=1

aiXi then MY (t) =

n∏

i=1

MXi
(ait) =

n∏

i=1

eµi(ait)+
1
2σ2

i (ait)
2

= e(
∑n

i=1 µiai)t+
1
2 (
∑n

i=1 σ2
i a2

i )t
2

,

which is the m.g.f. of the Normal

(
n∑

i=1

aiµi,
n∑

i=1

a2
i σ

2
i

)

distribution.

Example 3: Let X1, . . . , Xn be independent with Xi ∼ Chisquare(νi) = χ2
νi

(i = 1, . . . , n). Then X1 + . . . + Xn ∼ χ2∑n

i=1 νi
= Chisquare(

∑n
i=1 νi).

Proof:
Let Y =

n∑

i=1

Xi then MY (t) =
n∏

i=1

MXi
(t)

=
n∏

i=1

(1 − 2t)−vi/2

= (1 − 2t)−
1
2

∑n

i=1 vi ,

which is the m.g.f. of the Chisquare

(
n∑

i=1

νi

)

distribution.
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5.4 Compound distributions

A random variable has a compound distribution if it is defined in terms of

two or more other distributions:

e.g. X ∼ Poisson(λ), (Y |X) ∼ Binomial(X, p);
Then Y has a compound distribution.

To find the m.g.f. of a compound random variable, use the formula for conditional
expectation:

MY (t) = E(eY t) = EX{E(eY t|X)}

Useful Tip: For questions of this sort, we often need to find E(aX) for constant a.
Use

E(aX) = E(elog(aX)) = E(eX log a) = MX(log a).

Example 1: (insect eggs on a leaf again: see example in Chapter 4).

Let X ∼ Poisson(λ), so MX(t) = E(eXt) = eλ(et−1).
Let (Y |X) ∼ Binomial(X, p), so E(eY t|X) = (pet + q)X

(this is Binomial m.g.f. replacing “n” by “X” in usual formula, and where
q = 1 − p).

So MY (t) = E(eY t) = EX{E(eY t|X)}
= EX{(pet + q)X}
= EX{eX log(pet+q)} (using tip above)
= MX(log(pet + q)).
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But X ∼ Poisson(λ), so MX(t) = eλ(et−1).

So MY (t) = MX(log(pet + q))

= eλ(elog(pet+q)−1)

= eλ(pet+q−1)

= eλ(pet+1−p−1) (because q = 1 − p)

MY (t) = eλp(et−1)

This is the m.g.f. of the Poisson(λp) distribution, so Y ∼ Poisson(λp) as also
derived in Chapter 4.

Example 2: Sum of a random number of random variables.

Suppose that N has m.g.f. MN(t) = E(eNt), and let X1, X2, . . . be independent of
each other and of N , with common m.g.f. MX(t).
Let Y = X1 + . . . + XN (sum of a random number of random variables).

Then MY (t) = E(eY t)

= EN{E(eY t|N)}
= EN{E(e(X1+...+XN )t|N)}
= EN{E(eX1teX2t . . . eXN t|N)}
= EN{E(eX1t)E(eX2t) . . .E(eXN t)} (because X1, . . . , XN are

independent of each other and of N)
= EN{(MX(t))N}

So MY (t) = EN{(MX(t))N} = EN(eN log MX(t))

⇒ MY (t) = MN(log MX(t)).
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Example: if Xi ∼ Poisson(λ) for all i, and if N ∼ Poisson(µ), then
Y = X1 + . . . + XN has the compound Poisson distribution:

MY (t) = MN (logMX(t)) = eµ(eλ(et
−1)−1)

5.5 Using the m.g.f. to find the distribution of g(X)

Let X be a random variable, and let Y = g(X). Usually (for monotone transfor-

mations) we find the distribution of Y by using the change of variable technique
to convert the p.d.f. fX(x) into the p.d.f. fY (y). However, we can also use the

moment generating function.

Example: Let X ∼ Normal(0, 1), and let Y = X2. (Note: this transformation

is not monotone over the range of X.) In Section 3.3 we worked with the
distribution function to show that Y ∼ Chisquare(1) = χ2

1. Here we use the

m.g.f. instead.

The m.g.f. of Y is:

MY (t) = E(eY t)

= E(eX2t)

=

∫ ∞

−∞
ex2tfX(x) dx

=

∫ ∞

−∞
ex2t 1√

2π
e−x2/2 dx

=

∫ ∞

−∞

1√
2π

e−
1
2x2(1−2t) dx (need 1 − 2t > 0, i.e. t < 1

2 , for integral
to be finite)

=
√

(1 − 2t)−1

∫ ∞

−∞

1
√

2π(1 − 2t)−1
e
− x2

2(1−2t)−1 dx

︸ ︷︷ ︸

p.d.f. of N(0, (1 − 2t)−1) integrates to 1

= (1 − 2t)−1/2.
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So MY (t) = (1− 2t)−1/2 for t < 1
2, and this is the m.g.f. of a χ2

1 random variable.

So Y = X2 ∼ Chisquare(1) as expected.

5.6 Limiting distributions

Definition: Let X1, . . . , Xn be a sequence of random variables such that the r.v.
Xi has distribution function Fi(x) for each i. Then the sequence X1, . . . , Xn

converges in distribution to the random variable X, with distribution func-
tion F (x), if lim

n→∞
Fn(x) = F (x) for all x at which F (x) is continuous.

We write Xn
D−→ X (Xn converges in distribution to X)

or (same thing) Xn
W−→ X (Xn converges weakly to X).

We can therefore use the distribution of X to gain approximate probabilities
for Xn, if n is large enough.

P(a < Xn ≤ b) = Fn(b) − Fn(a) ' F (b) − F (a) for large n.

This is useful when F (x) is easier to calculate than Fn(x): for example, many
complicated distributions converge to the Normal distribution (Central Limit

Theorem), for which F (x) can be calculated by computer.

Moment generating functions are useful for finding the limiting distribution F .

Theorem 5.4: Suppose that X1, X2, . . . is a sequence of random variables with

m.g.f.s MX1
(t), MX2

(t), . . . all defined for |t| < t0 (for some t0 > 0).

If MXn
(t) → MX(t) for all |t| < t0 and for some r.v. X, then Xn

D−→ X.

Proof: beyond the scope of this course.
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Practical use of Theorem 5.4:

If we can prove that MXn
(t) → MX(t) as n → ∞,

or (often easier) that log MXn
(t) → log MX(t) as n → ∞,

then we have proved that Xn
D−→ X as n → ∞.

Theorem 5.5: The Central Limit Theorem

Let X1, . . . , Xn be independent, indentically distributed r.v’s with m.g.f MX(t)
defined for all |t| < t0 (where t0 > 0).

Let E(Xi) = µ and Var(Xi) = σ2 for all i,
and let Sn = X1 + X2 + . . . + Xn be the sum of the first n Xi’s.

Let Zn =
Sn − nµ√

nσ2
=

Sn − E(Sn)
√

Var(Sn)
.

Then Zn
D−→ Z as n → ∞, where Z ∼ N(0, 1).

That is,
Sn − nµ√

nσ2

D−→ N(0, 1) as n → ∞.

Proof: (non-examinable)

i) Standardize X1, . . . , Xn to have mean 0 and variance 1:

Let Yi =
Xi − µ

σ
.

Then Y1, . . . , Yn are independent and identically distributed, with
E(Yi) = 0, Var(Yi) = 1, for all i.

Also,
n∑

i=1

Yi =
Sn − nµ

σ
=

√
n

(
Sn − nµ√

nσ2

)

.
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ii) Find MY (t), the m.g.f. of Y1, . . . , Yn :

Any m.g.f. satisfies MY (t) = 1 + tE(Y ) + t2

2 E(Y 2) + t3

3!E(Y 3) + . . .

Here, E(Yi) = 0, E(Y 2
i ) = Var(Yi) + (EYi)

2 = 1.

So MY (t) = 1 + (t × 0) +

(
t2

2
× 1

)

+ O(t3)
︸ ︷︷ ︸

terms in t3 and above

MY (t) = 1 +
t2

2
+ O(t3).

iii) Find the m.g.f. of Zn =
Sn − nµ√

nσ2
in terms of MY (t) :

We have Zn =
Sn − nµ√

nσ2
=

n∑

i=1

Yi√
n

, so by Theorem 5.3,

MZn
(t) =

n∏

i=1

(

MY

(
t√
n

))

=

[

MY

(
t√
n

)]n

=

{

1 +
t2

2n
+ O

(
t√
n

)3
}n

.

iv) Take logs:

log (MZn
(t)) = n log

{

1 +
t2

2n
+ O

(
t√
n

)3
}

= n







(

t2

2n
+ O

(
t√
n

)3
)

− 1

2

(

t2

2n
+ O

(
t√
n

)3
)2

+ . . .







=
t2

2
+ (terms that → 0 as n → ∞).

So log MZn
(t) → t2

2
as n → ∞.

Thus MZn
(t) → et2/2 = Mz(t) as n → ∞, where Z ∼ N(0, 1). �
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Notes:

1. This is a remarkable theorem, because the limit holds for any distribution
of X1, . . . , Xn.

2. The condition that MX(t) exists is stronger than necessary: it is actually

sufficient that Var(X) is finite. Still more versions of the Central Limit Theo-
rem relax the conditions that X1, . . . , Xn are independent and have the same

distribution.

3. The speed of convergence of
Sn − nµ√

nσ2
to the Normal(0, 1) distribution does

depend upon the distribution of X: distributions with large skewness and kur-
tosis converge more slowly than symmetric Normal-like distributions.

Using the Central Limit Theorem to find the distribution of the mean, X

Let X =
X1 + . . . + Xn

n
=

Sn

n
. Note that E(X) = µ, Var(X) =

(
1
n2

)
nσ2 = σ2

n
.

Then
Sn − nµ√

nσ2
=

n(X − µ)√
nσ2

=
X − µ
√

σ2/n
=

X − E(X)
√

Var(X)
.

So the CLT also states that
X − µ
√

σ2/n

D−→ N(0, 1) as n → ∞, ie. X
D−→ N(µ, σ2/n).

The essential point to remember about the Central Limit Theorem is that large

sums or sample means of independent random variables converge to a Normal
distribution. With some distributions the CLT applies for as few as n = 4

observations, while other distributions require larger n. Generally speaking, it is
safe to assume that the Central Limit Theorem provides a good approximation

whenever n ≥ 30.

Central Limit Theorem in action : simulation studies

The following simulation study illustrates the Central Limit Theorem, making
use of several of the techniques learnt in STATS 210. Check all the working in

the examples below.
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Example 1: Triangular distribution: fX(x) = 2x for 0 < x < 1.

PSfrag replacements

x

f(x)
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2We find that E(X) = µ = 2
3, Var(X) = σ2 = 1

18.

The distribution function is FX(x) = x2 for 0 < x < 1,

with FX(x) = 0 for x ≤ 0, FX(x) = 1 for x ≥ 1.

The inverse distribution function is therefore F−1
X (u) =

√
u, for 0 < u < 1.

We can generate samples of size n from this distribution using the method of

§3.4: generate U1, . . . , Un ∼ Uniform(0, 1) and let Xi =
√

Ui for i = 1, . . . , n.

The graph shows histograms of 10 000 values of Sn = X1+. . .+Xn for n = 1, 2, 3,
and 10. The Normal p.d.f. N(nµ, nσ2) = N(2

3n, 1
18n) is superimposed across the

top. Even for n as low as 10, the Normal curve is a very good approximation.
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Example 2: U-shaped distribution: fX(x) = 3
2
x2 for −1 < x < 1.
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5
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FX(x) = 1
2(x

3 + 1) for −1 < x < 1, so F−1
X (u) = (2u − 1)1/3, for 0 < u < 1.

We generate samples X1, . . . , Xn using Xi = (2Ui − 1)1/3 for i = 1, . . . , n.

Even with this highly non-Normal distribution for X, the Normal curve provides

a good approximation to Sn = X1 + . . . + Xn for n as small as 10.
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Chapter 6: Sampling Theory for the

Normal Distribution

6.1 Introduction

The aim in this chapter is to establish the theory behind the t-tests and t-based

confidence intervals described in Stage I courses. These tests are designed for
Normal distributions: you might remember from Stage I that we only use

t-tests and t-based confidence intervals when we are satisfied that plots of the
data show no evidence of severe non-Normality.

We need to establish the following results.

Let X1, . . . , Xn be independent and identically distributed such that each
Xi ∼ Normal(µ, σ2). Then:

1. The sample mean, X = 1
n

∑n
i=1 Xi has distribution X ∼ Normal

(

µ, σ2

n

)

.

2. The sample variance, S2
X =

∑n
i=1(Xi − X)2

n − 1
satisfies

(
n − 1

σ2

)

S2
X ∼ Chisquare(n − 1).

3. The random variables X and S2
X are independent.

4. The t-ratio,

T =
X − µ
√

(S2
X/n)

=
X − µ

se(X)
,

has a distribution called the Student’s t-distribution, with p.d.f. to be

determined.

The reason for needing to use the t-distribution is that we are interested in the
unknown mean, µ, but not in the unknown variance, σ2. The t-ratio involves µ,
but not σ2, so it eliminates the nuisance parameter σ2.
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6.2 Distribution Theory

Theorem 6.1: Let X1, . . . , Xn be independent, with Xi ∼ Normal(µ, σ2) for all i.

Then

(a) X ∼ Normal(µ,
σ2

n
)

(b)
n∑

i=1

(
Xi − µ

σ

)2

∼ Chisquare(n).

Proof:

a)

X = 1
n(X1 + . . . + Xn). Find the m.g.f. of X:

By Theorem 5.3, MX(t) =

{

MX

(
t

n

)}n

=

{

e

(

µ t
n
+ 1

2σ2 t2

n2

)}n

= e

{

µt+ 1
2 (σ2

n
)t2
}

,

which is the m.g.f. of the Normal(µ, σ2

n ) distribution. So, X ∼ Normal(µ, σ2

n ).

b)

Let Zi =
Xi − µ

σ
: then Zi ∼ Normal(0, 1).

By Example in Section 5.5, this means that Z2
i ∼ Chisquare(1).

Now by Example 3, Section 5.3, the sum of independent Chisquare(νi) r.v’s has
distribution Chisquare(

∑

i

νi).

Thus
n∑

i=1

(
Xi − µ

σ

)2

=
n∑

i=1

Z2
i ∼ Chisquare(

n∑

i=1

1) = χ2
n (Chisquare(n)).
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Note: If X1, . . . , Xn are not Normal, then (a) still holds approximately for large
n, by the Central Limit Theorem. The approximation is less good for (b):

Normality is more important.

Drawing inference about the unknown mean, µ

Usually, µ and σ2 are unknown: in real life, we observe X1, . . . , Xn and use them
to make inferences (statements) about the mean, µ.
σ2 is usually a nuisance parameter: it is unknown, but not of primary interest.

We aim to find a quantity with a known distribution, that does not depend

on σ2, so that we can concentrate on drawing inference about the mean, µ.

Consider the following.

Lemma : Let X1, . . . , Xn be independent, with Xi ∼ Normal(µ, σ2) for all i.

Define the vector of residuals,

R =
(

(X1 − X), (X2 − X), . . . , (Xn − X)
)

.

Then X and R are independent.

Proof: (sketch)

• Find the multivariate moment generating function of the vector (X, R):

M(t0, t1, . . . , tn) = E

(

e t0X + t1R1 + ...+ tnRn

)

= E

(

e t0X + t1(X1−X) + ... + tn(Xn−X)
)

.

• Show that M(t0, t1, . . . , tn) factorizes as a(t0)b(t1, . . . , tn). There is a theo-
rem that states that random variables are independent if and only if their
multivariate moment generating functions factorize in this way. �
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Theorem 6.2: Let X1, . . . , Xn be independent, with Xi ∼ Normal(µ, σ2) for all i.

Let X = 1
n

∑n
i=1 Xi be the sample mean,

and let S2
X = 1

n−1

∑n
i=1(Xi − X)2 be the sample variance.

Then

(a) X and S2
X are independent.

(b)

(
n − 1

σ2

)

S2
X =

∑n
i=1(Xi − X)2

σ2
∼ Chisquare(n − 1).

Proof:

(a) Direct from the Lemma: if X and R are independent, then X and S2
X must

also be independent, because S2
X is a function of R.

(b) Let U =
n(X − µ)2

σ2
, and let V =

n∑

i=1

(Xi − X)2

σ2
.

We wish to prove that V ∼ Chisquare(n − 1).

Method: (i) show that U and V are independent;

(ii) find the MGF of U + V , MU+V (t);

(iii) by independence, MU+V (t) = MU (t)MV (t);

(iv) hence, knowing MU(t), find MV (t).

(i) U is a function of X only, and V is a function of R=((X1−X), . . . , (Xn−X))

only. Thus U and V are independent by the Lemma.

(ii) U + V =
n(X − µ)2

σ2
+

n∑

i=1

{(Xi − µ) − (X − µ)}2

σ2

︸ ︷︷ ︸

expand and use the fact that
∑n

i=1(Xi−µ)=n(X−µ)

→ gives U + V =
1

σ2

n∑

i=1

(Xi − µ)2.
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But we have already found the distribution of 1
σ2

∑n
i=1(Xi−µ)2: by Theorem 6.1,

we have 1
σ2

∑n
i=1(Xi − µ)2 ∼ Chisquare(n).

Thus U + V ∼ Chisquare(n), so MU+V (t) = (1 − 2t)−n/2. ~

(iii) By independence, MU+V (t) = (1 − 2t)−n/2 = MU(t)MV (t). ~~

Now U =
(X − µ)2

(σ2/n)
, and by Theorem 6.1(a), X ∼ Normal(µ, σ2

n
),

so U ∼ Chisquare(1) (square of a Normal(0, 1) r.v.).

So MU(t) = (1 − 2t)−1/2.

(iv) Thus ~ and ~~ give:

MV (t) =
MU+V (t)

MU(t)
=

(1 − 2t)−n/2

(1 − 2t)−1/2

= (1 − 2t)−(n−1)/2

So V ∼ Chisquare(n − 1) as required.

We are now able to eliminate the nuisance parameter σ2.

We have X ∼ Normal(µ, σ2

n
) ⇒ Z =

(X − µ)
√

n

σ
∼ Normal(0, 1). Thm 6.1(a)

Also, V =

(
n − 1

σ2

)

S2
X =

n∑

i=1

(Xi − X)2

σ2
∼ Chisquare(n − 1). Thm 6.2(b)

Also, V and Z are independent. Thm 6.2(a)

Consider the quantity

T =
Z

√
V

n−1

=

(
(X−µ)

√
n

σ

)

√
(n−1)

σ2

S2
X

n−1

=
(X − µ)
√

S2
X

n
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T =
(X − µ)
√

S2
X

n

does not depend upon σ2.

Furthermore, the distribution of T is quite easy to find.

Theorem 6.3: Let Z ∼ Normal(0, 1), and let V ∼ Chisquare(r), and suppose

that Z and V are independent.

Let T =
Z
√

V
r

. Then T has p.d.f.

fT (t) =

(

Γ
(

r+1
2

)

√
rπ Γ

(
r
2

)

)(

1 +
t2

r

)−(r+1)/2

for −∞ < t < ∞.

This is defined as the Student’s t-distribution with r degrees of freedom:

T ∼ tr or T ∼ Student(df = r).

Proof: (sketch)

Use the bivariate change of variable technique:

• find the joint density of Z and V by independence:

fZ, V (z, v) = fZ(z) fV (v) .

• define two new random variables: T =
Z
√

V
r

, and U = V .

• Use the bivariate change of variable technique to find fT, U(t, u).

• Find the marginal p.d.f. of T ,

fT (t) =

∫ ∞

0

fT, U(t, u) du .
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Proof: (detailed)

Let Z ∼ Normal(0, 1) and let V ∼ χ2
r (i.e. V ∼ Chisquare(r)), and let Z and

V be independent. The joint density of Z and V is

f(z, v) =
1√
2π

e−
z2

2
1

2
r
2Γ( r

2)
v

r
2−1e−

v
2 , −∞ < z < ∞, v ≥ 0.

Now let T =
√

r Z/
√

V , and U = V . The transformation is monotone.

Inverting, we obtain Z =
√

U T/
√

r and V = U , so

| det J | =

∣
∣
∣
∣
∣
det

(
∂z
∂t

∂z
∂u

∂v
∂t

∂v
∂u

)∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
det

( √
u
r

t
2
√

ru

0 1

)∣
∣
∣
∣
∣
=

√
u

r
.

Thus T and U have joint p.d.f.

fT, U(t, u) =
1√

2π 2
r
2 Γ
(

r
2

) e−
ut2

2r u
r
2−1e−

u
2

√
u√
r
, −∞ < t < ∞, u ≥ 0

=
u

r−1
2 e−

u
2 (1+ t2

r
)

√
2πr 2

r
2 Γ( r

2
)
, −∞ < t < ∞, u ≥ 0.

Thus T has marginal p.d.f.

fT (t) =
1√

2πr 2
r
2 Γ( r

2)

∫ ∞

0

u
r+1
2 −1e−

u
2 (1+ t2

r
)du .

The integral is proportional to the integral of a Gamma p.d.f. with k =
(

r+1
2

)

and λ = 1
2

(

1 + t2

r

)

. In general, for a Gamma(k, λ) integral we have

∫ ∞

0

1

Γ(k)
λkuk−1e−λu du = 1, ⇒

∫ ∞

0

uk−1e−λu du =
Γ(k)

λk
.

Substituting k =
(

r+1
2

)
and λ = 1

2

(

1 + t2

r

)

gives

fT (t) =

(

1√
2πr 2

r
2 Γ( r

2)

)(

Γ(r+1
2 )

{1
2(1 + t2

r )} r+1
2

)

=

(

Γ
(

r+1
2

)

√
rπ Γ

(
r
2

)

)(

1 +
t2

r

)−(r+1)/2

for −∞ < t < ∞. �
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The results above together prove the following theorem.

Theorem 6.4: Let X1, . . . , Xn be independent, with Xi ∼ Normal(µ, σ2) for all i.

Then Z =
(X − µ)

√
n

σ
∼ Normal(0, 1);

V =

(
n − 1

σ2

)

S2
X =

(
n − 1

σ2

)∑n
i=1(Xi − X)2

n − 1
∼ Chisquare(n − 1);

Z and V are independent;

and T =
Z

√

V/(n − 1)
=

X − µ
√

(S2
X/n)

∼ Student(df = n − 1). �

6.3 Application to confidence intervals and t-tests

We have discovered that we can derive a quantity T = X−µ√
(S2

X/n)
with a known

distribution, where T depends upon the unknown mean µ but not on the
unknown variance σ2 (the nuisance parameter). This means that, even without

any knowledge of σ2, we can predict how T should behave and draw conclusions
about the unknown mean, µ. Two examples are:

1. Because T is related to (X−µ), we can predict how far away the observed
sample mean, X , should lie from the true mean, µ, and therefore construct

an interval in which µ is likely to lie (a confidence interval for µ).

2. We can guess (hypothesize) a value of µ and test whether it is plausi-

ble. For example, if the true value of µ is 5, then the true T -statistic is
T = X−5√

(S2
X/n)

, and its distribution is known to be the Student(df=n − 1)

distribution. However, if the true value of µ is not 5, then the quan-
tity X−5√

(S2
X/n)

will have a different (unknown) distribution. Therefore, we

can look at the value of X−5√
(S2

X/n)
, to see whether it is consistent with the

Student(df=n − 1) distribution. If it is not, we have to conclude that the

true value of µ is probably not 5.
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1. Confidence intervals for the mean, µ

We have T = X−µ√
(S2

X/n)
∼ Student(df = n−1). Because the Student(df = n−1)

distribution is known, we are able to find points a and b such that

P

(

a <
X − µ
√

S2
X/n

< b
)

= 0.95.

PSfrag replacements

a b
t

0

shaded area = 0.95

p.d.f. of Student(n − 1) distribution
(known)

Usually, we choose a = −b, so:

P

(

− b < X−µ√
S2

X/n
< b

)

= 0.95

⇒ P

{(

X − b

√
S2

X

n

)

< µ <
(

X + b

√
S2

X

n

)}

= 0.95.

Thus, with 95% probability, the interval

(

X − b

√
S2

X

n , X + b

√
S2

X

n

)

encloses

the unknown value µ. This is called a

95% confidence interval for µ.

Note: X and S2
X are observed from the data: they are random.

b is calculated from the t-distribution, and it is not random. It is the unique

value that satisfies P(−b < T < b) = 0.95 where T ∼ Student(df = n − 1).

µ is unknown, but fixed (not random).

The confidence interval is random because of X and S2
X . It contains µ with

probability 0.95, but this is a probability statement about X and S2
X , not about

µ (which is fixed).
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2. Hypothesis tests

Let H0 : µ = µ0 be the null (favoured) hypothesis. (µ0 here is a specified
number, for example µ0 = 5 or µ0 = 0.)

If H0 is true, then µ = µ0, so T0 =
X − µ0
√

S2
X/n

∼ Student(df = n − 1).

Testing H0 : Calculate the value of t0 = x−µ0√
(s2

x/n)
.

Does it look as if it came from the Student(df = n − 1) distribution?

PSfrag replacements

value of t0
nono yesyesyesyes

p.d.f. of Student(n − 1) distribution

If yes, accept that H0 is possibly true.

If no, we have evidence against H0.

We summarize evidence by the p-value:

p = P

(

T ≥ |t0| if T ∼ Student(n − 1)
)

=total shaded area.

PSfrag replacements

−|t0| |t0|

PSfrag replacements

−|t0| |t0|

Large p-value ⇒ no evidence against H0.

t0 is a reasonable observation from the
Student(n − 1) distribution.

Small p-value ⇒ evidence against H0.
t0 is a very unusual observation from

the Student(n − 1) distribution.

Note: Non-Normal populations
The procedures above (t-tests and t-based confidence intervals) are often applied
when X1, . . . , Xn are not drawn from a Normal distribution. This is accept-

able in large samples if the distribution of X1, . . . , Xn is reasonably symmetric.
However, the procedures are not valid for highly skewed distributions.
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