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1. Consider a two-armed bandit process for trialling two treatments A and B on a succession
of patients. All patients are independent. For any patient, the probability that treatment A
is successful is α, and the probability that treatment B is successful is β. If the treatment for
patient t was successful, the same treatment is used for patient t + 1. If the treatment for
patient t was unsuccessful, the treatment is changed for patient t+1. The state of the process
at time t is the treatment (A or B) that is given to patient t.

The transition diagram for the two-armed bandit process is below. Assume that 0 < α < 1 and
0 < β < 1.

A B

βα
1−α

1−β

(a) Write down the transition matrix for the Markov chain represented by this diagram. (1E)

(b) Find an equilibrium distribution, π, for this Markov chain. (3E)

(c) Does the Markov chain converge to the equilibrium distribution in (b) as t → ∞? Explain
why or why not. (2E)

(d) Show that the long-run probability of success for each patient in this process is

α + β − 2αβ

2 − α − β
.

(2M)

(e) Suppose that treatment A is better than treatment B, so α > β. Show that the two-armed
bandit strategy has a lower long-run probability of success for each patient than an alternative
strategy that applies treatment A to every patient. In view of this, explain why we might
ever wish to use the two-armed bandit strategy. (4M)

[12 marks]
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2. Consider the model for gene spread studied in class. A population consists of N individuals,
where N is constant. Each individual possesses one of two alleles: the harmful allele A, or the
safe allele B. Let X0,X1,X2, . . . be a Markov chain such that Xt is the number of individuals
in generation t that possess the harmful allele A.

The chain evolves according to the following relationship:

[Xt+1 |Xt ] ∼ Binomial

(

N,
Xt

N

)

.

The chain is said to reach fixation when either Xt = 0 or Xt = N for some t. We are interested
in the probability that the chain reaches fixation at state N , such that all individuals eventually
possess the harmful allele A.

(a) Show that the chain X0,X1,X2, . . . is a martingale. (3M)

(b) Define the random variable T to be the generation at which fixation is reached. Explain why
T is a stopping time with respect to {Xt}. (2M)

(c) Suppose that the chain begins with X0 = x individuals possessing allele A. Use the Optional
Stopping Theorem for bounded martingales to find the probability that the population even-
tually becomes fixed for the harmful allele A. Your answer should include clear notation, and
justification that the Optional Stopping Theorem can be applied to this process. You may
assume that E(T ) < ∞. (5H)

[10 marks]
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3. Let {X0,X1,X2, . . .} be a random walk on the integers, with transition diagram below.

1/3 1/3 1/3

1/3

1/3 1/3 1/3

1/3

−1 0 1
1/3

Let U be the number of steps taken to reach state 1, starting at state 0. Let HU (s) = E(sU ) be
the probability generating function of U .

(a) Show that HU(s) must be either the (+) root or the (−) root of the following expression:

HU(s) =
3 − s ±

√
9 − 6s − 3s2

2s
. (4M)

(b) By considering lims→0 HU (s), prove that HU (s) can not be the (+) root in the expression
above. (2M)

(c) Using the expression HU (s) =
3 − s −

√
9 − 6s − 3s2

2s
, find whether U is a defective random

variable. (2M)

(d) Let V be the number of steps taken to reach state −1, starting at state 0. Let HV (s) = E(sV )
be the probability generating function of V . Explain why HV (·) = HU(·). (1M)

(e) Let T be the number of steps taken to first return to state 0, starting at state 0. For
example, if X0 = 0, X1 = 1, and X2 = 0, then T = 2 steps are taken to return from 0 to 0
again. Let G(s) = E(sT ) be the probability generating function of T . Show that

G(s) = 1 − 1

3

√

9 − 6s − 3s2.

(4M)

(f) If the process is currently in state 5, what is the probability it will never be in state 5 again?
Explain your answer. (2M)

[15 marks]
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4. Consider the Gambler’s Ruin process represented by the transition diagram below.

2/32/3 2/32/3

1/3 1/3 1/31/3 1/3

0 1 2 NN−13

2/3

1 1

Define

hx = P(process reaches state N | start from state x), for x = 0, 1, 2, . . . , N.

(a) Using the theory of second-order difference equations, show that

hx =
2x − 1

2N − 1
for x = 0, 1, . . . , N.

Marks are awarded for setting out your answer clearly, including giving appropriate headings.
(7M)

(b) Let mx be the expected number of steps taken before absorption, starting from state x, for
x = 0, 1, . . . , N . Note that mx corresponds to the expected number of arrows traversed from
state x until the process first reaches state 0 or state N , and m0 = mN = 0. Again using
the theory of second-order difference equations, find an expression for mx for x = 0, 1, . . . , N .
You may use results from part (a) without rewriting them, as long as you label them in your
working for part (a) and clearly refer to them here. Do not re-use notation that you
have already used in part (a). (7M)

(c) Let Y be a random variable such that Y is the maximum value attained in the Gambler’s
Ruin process, starting from state x. For example, in the process that starts at x = 2 and has
trajectory 2, 3, 2, 1, 0, the maximum value attained is Y = 3.

Find P(Y = y | start from state x) in terms of x and N , for any y = 0, 1, . . . , N . (5H)

[19 marks]
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5.(a) Let Y ∼ Poisson(λ). Working directly from the probability function of Y , show that the
probability generating function (PGF) of Y is

GY (s) = E(sY ) = eλ(s−1) .

(3E)

(b) Let Y1, Y2, . . . , Yn be independent, such that each Yi ∼ Poisson(λ). Let T = Y1 +Y2 + . . .+Yn.
Show that T ∼ Poisson(nλ). (3M)

(c) Now let X0,X1,X2, . . . be a Markov chain with state space S = {0, 1, 2, . . .}, such that for
any t the conditional distribution of Xt+1, given Xt, is

[Xt+1 |Xt ] ∼ Poisson(Xt) .

(i) Suppose that X0 = 10. What is the probability of the trajectory (X0,X1,X2) = (10, 8, 12)?
(2M)

(ii) Suppose that X0 = 1. Find P(Xt ≤ 1 for all t = 0, 1, 2, . . .), the probability that the chain
never exceeds 1. (3M)

(iii) The Markov chain X0,X1,X2, . . . is an example of a named process that we have studied
in class. Using previous parts of the question to help you, give the name of the process,
and identify any parameters of the process. Use your knowledge of this process to find the
probability that the Markov chain ever reaches the state 0, starting from any state x ∈ S.
Fully explain all your reasoning. (5H)

[16 marks]

6. Let {Z0, Z1, Z2, . . .} be a branching process, where Zn denotes the number of individuals born at
time n, and Z0 = 1. Let Y be the family size distribution, and suppose the probability generating
function of Y is G(s) = E(sY ).

Let γ be the probability of eventual extinction in the process, starting from Z0 = 1.

(a) Suppose that there are k individuals alive in a particular generation. Give an expression for
the probability of eventual extinction, starting from k individuals, for any k = 0, 1, 2, . . ..
Write your answer in terms of γ. (2M)

(b) A theorem we have studied states that if {Z0, Z1, . . .} is a Markov chain, and A is any state,
then the vector of hitting probabilities for state A is the minimal non-negative solution to the
appropriate first-step analysis equations. In this question, the Markov chain is the branching
process {Z0, Z1, . . .}, and we are interested in the probability of eventual extinction starting
from Z0 = 1 individual. Using the theorem stated, together with part (a), prove that the
probability of eventual extinction γ is the minimal non-negative solution to the equation
G(s) = s. (6H)

[8 marks]
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7. Disease model.

A school contains n children. On day t, let Xt of the children be absent with sickness. The
model is described as follows:

• If a child is absent on day t, he or she will be absent again on day t + 1 with probability p.

• If a child is present on day t, he or she will be absent on day t + 1 with probability a.

• All children are independent.

According to this model, X1,X2, . . . is a Markov chain, such that:

Xt+1 = Ut+1 + Wt+1,

where [Ut+1 |Xt ] ∼ Binomial(Xt, p);

[Wt+1 |Xt ] ∼ Binomial(n − Xt, a);

Ut+1, Wt+1 are independent, given Xt.

Here, Ut+1 is the number of children who have remained ill from day t to day t + 1, and Wt+1 is
the number of children who have a new bout of illness on day t + 1.

Assume that 0 < p < 1 and 0 < a < 1.

(a) In terms of n, p, and a, find P(Xt+1 = 0 |Xt = 5) and P(Xt+1 = 1 |Xt = 5). (4M)

(b) Does the Markov chain {Xt} converge to an equilibrium distribution as t → ∞? Explain why
or why not. (3M)

(c) For any random variable Y ∼ Binomial(m,β), show that the probability generating function
of Y is

GY (s) = E(sY ) = (βs + 1 − β)m .

Work directly from the probability function of Y , and show your working. (3E)

(d) In the disease model above, show that

E
(

sXt+1 |Xt

)

= (as + 1 − a)n
{

ps + 1 − p

as + 1 − a

}Xt

.

(4M)

(e) Assume that Xt ∼ Binomial(n, π) for some 0 < π < 1. Find the distribution of Xt+1,
specifying the distribution name and all parameters. Hence find an equilibrium distribution
for the Markov chain {Xt}. (6H)

[20 marks]
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ATTACHMENT

1. Discrete Probability Distributions

Distribution P(X = x) E(X) PGF, E(sX)

Geometric(p) pqx (where q = 1 − p),
q

p

p

1 − qs
for x = 0, 1, 2, . . .

Number of failures before the first success in a sequence of independent
trials, each with P(success) = p.

Binomial(n, p)

(

n

x

)

pxqn−x (where q = 1 − p), np (ps + q)n

for x = 0, 1, 2, . . . , n.

Number of successes in n independent trials, each with P(success) = p.

Poisson(λ)
λx

x!
e−λ for x = 0, 1, 2, . . . λ eλ(s−1)

2. Uniform Distribution: X ∼ Uniform(a, b).
Probability density function, fX(x) = 1

b−a
for a < x < b. Mean, E(X) = a+b

2 .

3. Properties of Probability Generating Functions

Definition: GX(s) = E(sX)

Moments: E(X) = G′

X
(1) E

{

X(X − 1) . . . (X − k + 1)

}

= G
(k)
X

(1)

Probabilities: P(X = n) =
1

n!
G

(n)
X

(0)

4. Geometric Series: 1 + r + r2 + r3 + . . . =

∞
∑

x=0

rx =
1

1 − r
for |r| < 1.

Finite sum:

n
∑

x=0

rx =
1 − rn+1

1 − r
for r 6= 1.

5. Binomial Theorem: For any p, q ∈ R, and integer n > 0, (p + q)n =

n
∑

x=0

(

n

x

)

pxqn−x.

6. Exponential Power Series: For any λ ∈ R,

∞
∑

x=0

λx

x!
= eλ.


