(a) \(E[M_{t+1} | X_0, ..., X_t] = X_{t+1} + \lambda (t+1) \)

\[= X_t + E[Y_{t+1}] + \lambda t + \lambda \]

\[= M_t + \left(\frac{\lambda}{5} - \frac{\lambda}{6} \right) + \lambda \]

\[= M_t + \lambda - \frac{\lambda}{5} \]

So we read \(\lambda = \frac{1}{5} \)

(b) The event \(\{ T = t \} \) is

\[\{ X_t = 0 \} \cap \bigcap_{s=0}^{t-1} \{ X_s \neq 0 \} \]

which depends only on \(X_0, ..., X_t \)

(c) \(E[M_{\infty}] = E[M_0] \) by martingale property

\[= E[X_0] = 100 \]

(d) Optional stopping theorem: we have \(E[T] < \infty \), and

\[|M_{t+1} - M_t| = |X_{t+1} + \lambda| < \frac{\lambda}{5} \text{ bounded} \]

By the theorem, \(E[M_T] = E[M_0] = 100 \)

\[E[X_T + \lambda T] = 100 \]

or since \(X_T = 0 \), \(E[T] = \frac{100}{\lambda} = 500 \)