1. We wish to find the probability of getting a run of at least 3 consecutive 0s or 1s in 15 tosses of a fair coin.

Set up a Markov chain similar to the one given in 325 Assignment 2, Question 3. Create a difference equation, and solve it to find the required probability. Also give a general formula for the probability of finding 3 consecutive 0s or 1s in \(t \) tosses of a fair coin. (10)

2. Consider a game following the transition diagram below. We say that the game is won if it finishes in state \(N \). Let \(S_0, S_1, S_2, \ldots \) be the process defined such that \(S_t \) is the state at time \(t \), and suppose we start with \(S_0 = x \). Assume that \(p < 0.5 \).

(a) Choose a suitable martingale with respect to \(S_0, S_1, S_2, \ldots \). Define the stopping time \(T \) to be the time at which the game finishes, either win or lose. Using the optional stopping theorem for bounded martingales, show that

\[
 w = \mathbb{P}(\text{game is won}) = \frac{x}{N},
\]

where \(x = S_0 \) is the start state. Your answer should include a proof that you have chosen a valid martingale. You may assume that \(\mathbb{P}(T < \infty) = 1 \). (5)

(b) Define a new process \(M_0, M_1, M_2, \ldots \), such that

\[
 M_t = S_t^2 - 2pt.
\]

Show that \(M_0, M_1, M_2, \ldots \) is a martingale with respect to \(S_0, S_1, S_2, \ldots \). (4)

(c) Recall that \(\mathbb{P}(T < \infty) = 1 \), and \(S_0 = x \). Using the optional stopping theorem for bounded martingales, together with a suitable choice of martingale from (a) or (b), find \(\mathbb{E}(T) \). You must clearly state which martingale you are using. (5)

Total: 24