Answer ALL QUESTIONS. Marks are shown for each question.
Write your name and ID number at the top of your answer sheet.

Consider a random walk $S_{0}, S_{1}, S_{2}, \ldots$, where $S_{0}=x$ and $S_{t}=x+\sum_{i=1}^{t} Y_{i}$, where Y_{1}, Y_{2}, \ldots are independent random variables such that

$$
Y_{i}=\left\{\begin{aligned}
1 & \text { with probability } p \\
0 & \text { with probability } 1-p-q, \\
-1 & \text { with probability } q
\end{aligned}\right.
$$

Suppose that the starting point, x, satisfies $0<x<N$.
Let T be a random variable denoting the time at which the random walk first hits either state 0 or state N. The stopped process is the process that is stopped by T, defined as $S_{T \wedge t}=\left\{S_{0}, S_{1}, \ldots, S_{T}, S_{T}, S_{T}, \ldots\right\}$. You may assume that $\mathbb{P}(T<\infty)=1$.

The diagram below is the transition diagram for the stopped process, $S_{T \wedge t}$. We say that the game is won if it stops in state N, and lost if it stops in state 0 . The expected time taken for the game to finish is $\mathbb{E}(T)$. Our aim is to find $\mathbb{E}(T)$, which we will do (1) using second-order difference equations, and (2) using martingales.

Assume throughout that $p \neq q$.

1. Let m_{x} be the expected number of steps for the game to finish, starting from state x, for $x=0,1,2, \ldots, N$. (As in Stats 721 Assigment 1, the number of steps is the number of arrows traversed, not the number of boxes entered.)
Formulate the second-order difference equation necessary to find m_{x}, and solve it to find m_{x}. Finish your answer by writing down an explicit expression for $\mathbb{E}(T)$, where T was the random variable defined above.
[Hint: when solving the quadratic equation, factorize it by using an intelligent guess for one of the factors. Do not use the formula $\left(-b \pm \sqrt{b^{2}-4 a c}\right) / 2 a$.]

The same diagram is shown again below for ease of reference. Remember that $p \neq q$.

2.(a) Using Stats 721 Assignment 2 as a guide, guess a suitable definition of a martingale with respect to $S_{0}, S_{1}, S_{2}, \ldots$. Prove that your process does indeed define a martingale.
(b) Let w be the probability of winning the game (finishing in state N), starting from state x. Using the optional stopping theorem for bounded martingales, together with your answer for (a), show that

$$
w=\mathbb{P}(\text { game is won })=\frac{1-\left(\frac{q}{p}\right)^{x}}{1-\left(\frac{q}{p}\right)^{N}} .
$$

(c) Using your answers to (a) and (b), find $\mathbb{E}(T)$. Say whether your answer is the same as you obtained in question 1, and whether or not it should be.

