THE UNIVERSITY OF AUCKLAND

SECOND SEMESTER, 2003
 Campus: City

STATISTICS

Stochastic Processes
 Topics in Statistics 2

(Time allowed: THREE hours)

NOTE: Attempt ALL questions. Marks for each question are shown in brackets. An Attachment containing useful information is found on page 5.

1. (a) Let A and B be independent events. Show that A and \bar{B} are also independent events.
(b) Let A and B be any events, with $\mathbb{P}(A)=\frac{4}{5}$ and $\mathbb{P}(B)=\frac{1}{2}$. Show that

$$
\begin{equation*}
\frac{3}{10} \leq \mathbb{P}(A \cap B) \leq \frac{1}{2} \tag{4}
\end{equation*}
$$

2. A mouse is in a room with four exits at the centre of a maze.

- Exit 1 leads outside the maze after 4 minutes.
- Exit 2 leads back to the room after 2 minutes.
- Exit 3 leads back to the room after 5 minutes.
- Exit 4 leads back to the room after 6 minutes.

Every time the mouse makes a choice, it is equally likely to choose any of the four exits. Let T be the total time taken for the mouse to leave the maze.
(a) Find $\mathbb{E}(T)$.
(b) Given that the mouse last left the room 3 minutes ago, find the probability that the mouse has chosen the escape route (Exit 1).
(c) Starting at the room, find the probability that the mouse escapes in exactly 6 minutes.
3. The owner of a cafe is trying to decide how much to charge for a breakfast deal. He has to charge at least $\$ 10$ to cover costs. He wishes to charge $\$(10+x)$ so that he makes $\$ x$ profit. He needs to make x large enough to make a reasonable profit, but small enough to encourage customers to return after each visit.

The owner believes that

$$
\mathbb{P}(\text { customer returns for another visit })=\left\{\begin{array}{cl}
\frac{4}{5}-\frac{x^{2}}{125} & \text { if } 0 \leq x \leq 10 \\
0 & \text { otherwise }
\end{array}\right.
$$

The customer returns after each visit according to the probability above. If the customer fails to return after a visit, they will never return again.
Let P be the total profit that the owner makes from all visits of a given customer, starting at the customer's first visit and ending at the point that the customer fails to return.
(a) Show that $\mathbb{E}(P)=\frac{125 x}{25+x^{2}}$.
(b) By differentiating the expression above, find the value of x that the owner should choose. (You may assume without verification that any stationary points in the range $0 \leq x \leq 10$ are maxima.)
4. Let $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ be a Markov chain on the state space $S=\{1,2,3\}$, with transition matrix

$$
P=\left(\begin{array}{ccc}
0 & \frac{2}{3} & \frac{1}{3} \tag{2}\\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

(a) Draw the transition diagram.
(b) Find an equilibrium distribution for P.
(c) Does X_{t} converge to the distribution in (b) as $t \rightarrow \infty$? Explain why or why not.
5. (a) Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed random variables with common probability generating function $G_{X}(s)$. Let N be a random variable, independent of the X_{i} 's, with PGF $G_{N}(s)$, and let $T=X_{1}+\ldots+X_{N}$ (the sum of a random number of random variables). Show that the PGF of T is:

$$
\begin{equation*}
G_{T}(s)=G_{N}\left(G_{X}(s)\right) \tag{5}
\end{equation*}
$$

(b) Let $\left\{Z_{0}, Z_{1}, Z_{2}, \ldots\right\}$ be a branching process, where Z_{n} denotes the number of individuals born at time n, and $Z_{0}=1$. Let Y be the family size distribution, with PGF $G(s)$. Let $G_{n}(s)$ be the probability generating function of Z_{n}. Show that

$$
\begin{equation*}
G_{n}(s)=G_{n-1}(G(s)) \tag{2}
\end{equation*}
$$

(c) In the branching process defined in part (b), let $p_{i}=\mathbb{P}(Y=i)$ for $i=0,1,2, \ldots$

Show that

$$
\begin{equation*}
\mathbb{P}\left(Z_{n}=1\right)=p_{1} G_{n-1}^{\prime}\left(p_{0}\right) \tag{8}
\end{equation*}
$$

and find a similar expression for $\mathbb{P}\left(Z_{n}=2\right)$.
6. Let $\left\{Z_{0}, Z_{1}, Z_{2}, \ldots\right\}$ be a branching process, where Z_{n} denotes the population size at time n, and $Z_{0}=1$. Let Y be the family size distribution. Suppose that $Y \sim \operatorname{Geometric}(p=0.5)$, so that

$$
\mathbb{P}(Y=y)=\left(\frac{1}{2}\right)^{y+1} \quad \text { for } y=0,1,2, \ldots
$$

(a) Let $G(s)=\mathbb{E}\left(s^{Y}\right)$ be the probability generating function of Y. Show that

$$
\begin{equation*}
G(s)=\frac{1}{2-s} \tag{3}
\end{equation*}
$$

and state the radius of convergence.
(b) Find the probability of eventual extinction, γ.
(c) Let $G_{n}(s)=\mathbb{E}\left(s^{Z_{n}}\right)$ be the PGF of the population size at time n. It can be shown that

$$
G_{n}(s)=\frac{n-(n-1) s}{(n+1)-n s}
$$

Additionally, it can be shown that

$$
\mathbb{P}\left(Z_{n}=r\right)= \begin{cases}\frac{n}{n+1} & \text { for } r=0 \\ \frac{n^{r-1}}{(n+1)^{r+1}} & \text { for } r=1,2,3, \ldots\end{cases}
$$

Using the expression for $G_{n}(s)$, verify that the expression for $\mathbb{P}\left(Z_{n}=r\right)$ is correct for $r=0$ and $r=1$.
(d) Find the probability that the population becomes extinct at generation 8 .
(e) Using the expressions given above, and relevant information from the Attachment, find $\mathbb{P}\left(Z_{10} \leq 20\right)$.
7. Let $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ be a Markov chain on the state space $S=\{1,2,3,4,5,6\}$, with transition matrix

$$
P=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{4} & 0 & \frac{3}{4} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{4} & 0 & 0 & \frac{3}{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right) .
$$

(a) Draw the transition diagram, and identify all communicating classes. For each class, state whether or not it is closed.
(b) Let the set $A=\{1\}$. Find the vector of hitting probabilities, $\boldsymbol{h}_{\boldsymbol{A}}=\left(h_{1 A}, \ldots, h_{6 A}\right)^{T}$, where $h_{i A}$ is the probability of eventually hitting the set A, starting from state i.
8. Let $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ be a Markov chain on the state space $S=\{1,2\}$, with transition matrix

$$
P=\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right), \quad \text { where } 0<\alpha<1, \quad 0<\beta<1 .
$$

The general solution for P^{t} is as follows:

$$
P^{t}=\frac{1}{\alpha+\beta}\left\{\left(\begin{array}{ll}
\beta & \alpha \\
\beta & \alpha
\end{array}\right)+\left(\begin{array}{rr}
\alpha & -\alpha \\
-\beta & \beta
\end{array}\right)(1-\alpha-\beta)^{t}\right\} .
$$

(a) Suppose that $X_{0} \sim(0.1,0.9)^{T}$. Find a vector describing the distribution of X_{1}.
(b) Find $\mathbb{P}\left(X_{1}=2, X_{2}=1, X_{3}=2 \mid X_{0}=2\right)$.
(c) Let $\left\{Y_{0}, Y_{1}, \ldots\right\}$ be a Markov chain on the state space $S=\{1,2,3\}$, with transition matrix

$$
Q=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \tag{8}\\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2}
\end{array}\right)
$$

By reformulating the three-state chain as a suitable two-state chain, and using the general solution for P^{t} given above, find a general formula for $\mathbb{P}\left(Y_{t}=1 \mid Y_{0}=1\right)$ for any t.
9. Let $\left\{Z_{0}, Z_{1}, Z_{2}, \ldots\right\}$ be a process that behaves like a branching process, except for one important change: the distribution of family size is not constant for all generations, but depends upon the value of Z_{t}. Specifically, if there are $Z_{t}>0$ individuals in generation t, then each of these Z_{t} individuals has the following family size distribution:

$$
Y^{(t)}= \begin{cases}0 & \text { with probability }\left(1-\frac{1}{Z_{t}}\right) \\ 1 & \text { with probability } \frac{1}{Z_{t}}\end{cases}
$$

If $Z_{t}=0$, then $Z_{t+1}=0$ with probability 1 .
Suppose that $Z_{0}=3$, i.e. the process starts with 3 individuals at time 0 . Considering $\left\{Z_{0}, Z_{1}, Z_{2}, \ldots\right\}$ as a Markov chain on the state space $S=\{0,1,2,3\}$, find the transition matrix, and hence find the probability of eventual extinction starting from $Z_{0}=3$.
10. Let $\left\{X_{0}, X_{1}, \ldots\right\}$ be a Markov chain with transition diagram below.

Define the random variable T_{k} to be the number of steps taken to hit state 1 , starting from state k, for $k=1,2,3$. Let $G_{k}(s)=\mathbb{E}\left(s^{T_{k}}\right)$ be the probability generating function of T_{k}. By conditioning on the outcome of the first step, and using ideas of conditional expectation, find $G_{3}(s)$.

ATTACHMENT

1. Discrete Probability Distributions

Distribution	$\mathbb{P}(X=x)$	$\mathbb{E}(X)$	$\operatorname{PGF}, \mathbb{E}\left(s^{X}\right)$
$\operatorname{Geometric}(p)$	$p q^{x}($ where $q=1-p)$,	\underline{q}	$\frac{p}{1-q s}$
	for $x=0,1,2, \ldots$		

Number of failures before the first success in a sequence of independent trials, each with $\mathbb{P}($ success $)=p$.

$$
\left.\begin{array}{cc}
\operatorname{Binomial}(n, p) & \binom{n}{x} p^{x} q^{n-x}(\text { where } q=1-p),
\end{array} \quad n p \quad(p s+q)^{n}\right)
$$

Number of successes in n independent trials, each with $\mathbb{P}($ success $)=p$.
$\operatorname{Poisson}(\lambda) \quad \frac{\lambda^{x}}{x!} e^{-\lambda}$ for $x=0,1,2, \ldots \quad \lambda \quad e^{\lambda(s-1)}$
2. Uniform Distribution: $X \sim \operatorname{Uniform}(a, b)$.

Probability density function, $f_{X}(x)=\frac{1}{b-a}$ for $a<x<b$. Mean, $\mathbb{E}(X)=\frac{a+b}{2}$.

3. Properties of Probability Generating Functions

$$
\begin{array}{ll}
\text { Definition: } & G_{X}(s)=\mathbb{E}\left(s^{X}\right) \\
\text { Moments: } & \mathbb{E}(X)=G_{X}^{\prime}(1) \quad \mathbb{E}\{X(X-1) \ldots(X-k+1)\}=G_{X}^{(k)}(1) \\
\text { Probabilities: } & \mathbb{P}(X=n)=\frac{1}{n!} G_{X}^{(n)}(0)
\end{array}
$$

4. Geometric Series: $1+r+r^{2}+r^{3}+\ldots=\sum_{x=0}^{\infty} r^{x}=\frac{1}{1-r}$ for $|r|<1$.

Finite sum: $\quad \sum_{x=0}^{n} r^{x}=\frac{1-r^{n+1}}{1-r}$ for $r \neq 1$.
5. Binomial Theorem: For any $p, q \in \mathbb{R}$, and integer $n>0,(p+q)^{n}=\sum_{x=0}^{n}\binom{n}{x} p^{x} q^{n-x}$.
6. Exponential Power Series: For any $\lambda \in \mathbb{R}, \quad \sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}=e^{\lambda}$.

