THE UNIVERSITY OF AUCKLAND

SECOND SEMESTER, 2004 Campus: City

STATISTICS

Stochastic Processes Topics in Statistics 2

(Time allowed: THREE hours)

NOTE: Attempt ALL questions. Marks for each question are shown in brackets. An Attachment containing useful information is found on page 6.

1. Let A and B be any events.

(a) Show that
$$\mathbb{P}(A \cup B) = 1 - \mathbb{P}(\overline{A}) + \mathbb{P}(\overline{A} \cap B)$$
. (4)

(b) Starting from the result in part (a), show that
$$\mathbb{P}(A \cup B) = 1 - \mathbb{P}(\overline{A} \cap \overline{B})$$
. (4)

2. Let $\{X_0, X_1, X_2, \ldots\}$ be a Markov chain on the state space $S = \{1, 2, 3\}$, with transition matrix

$$P = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 0 & 1\\ \frac{1}{4} & \frac{3}{4} & 0 \end{array}\right).$$

(b) Find an equilibrium distribution for
$$P$$
. (4)

(c) Does
$$X_t$$
 converge to the distribution in (b) as $t \to \infty$? Explain why or why not. (3)

(2)

3. Let $\{Z_0, Z_1, Z_2, \ldots\}$ be a branching process, where Z_n denotes the number of individuals born at time n, and $Z_0 = 1$. Let Y be the family size distribution, and let $G(s) = \mathbb{E}(s^Y)$ be the probability generating function of Y. Let $\mu = \mathbb{E}(Y)$, let $\sigma^2 = \text{Var}(Y)$, and let γ be the probability of eventual extinction.

The diagram below shows a graph of G(s), with missing values a, b, c, d, and e. Each of the missing values is included on the following list:

 $0 \qquad 1 \qquad \mu \qquad \sigma^2 \qquad \gamma \qquad y \qquad Y \qquad \mathbb{P}(Y=0) \qquad \mathbb{P}(Y=1) \qquad \mathbb{P}(Y=y) \qquad \mathbb{E}(s^Y)$

- (a) By reference to the list above, state the values of a, b, c, d, and e. (5)
- (b) Using the diagram above, state whether $\mu > 1, \ \mu = 1, \ {\rm or} \ \mu < 1.$ Give a reason for your answer. (2)

4. Let $\{X_0, X_1, X_2, \ldots\}$ be a Markov chain on the state space $S = \{1, 2\}$, with transition matrix

$$P = \left(\begin{array}{cc} \frac{3}{5} & \frac{2}{5} \\ \frac{1}{4} & \frac{3}{4} \end{array}\right).$$

The general solution for P^t is as follows:

$$P^{t} = \begin{pmatrix} \frac{5}{13} & \frac{8}{13} \\ \frac{5}{13} & \frac{8}{13} \end{pmatrix} + \begin{pmatrix} \frac{8}{13} & -\frac{8}{13} \\ -\frac{5}{13} & \frac{5}{13} \end{pmatrix} \begin{pmatrix} \frac{7}{20} \end{pmatrix}^{t}.$$

- (a) Suppose that $X_0 \sim (0.4, 0.6)^T$. Find a vector describing the distribution of X_1 .
- (b) Again suppose that $X_0 \sim (0.4, 0.6)^T$. Find $\mathbb{P}(X_0 = 2, X_2 = 2, X_4 = 1)$. (4)
- (c) Using only the formula given for P^t , state whether or not the Markov chain converges to an equilibrium distribution as $t \to \infty$. If the chain does converge to equilibrium, state what the equilibrium distribution is.

- 5. Let $\{Z_0, Z_1, Z_2, \ldots\}$ be a branching process, where Z_n denotes the number of individuals born at time n, and $Z_0 = 1$. Let Y be the family size distribution, and let γ be the probability of ultimate extinction.
 - (a) Suppose that $Y \sim \text{Geometric}(p = \frac{1}{4})$, so that

$$\mathbb{P}(Y=y) = \left(\frac{1}{4}\right) \left(\frac{3}{4}\right)^y \quad \text{for } y = 0, 1, 2, \dots$$

Let $G(s) = \mathbb{E}(s^Y)$ be the probability generating function of Y. Show that

$$G(s) = \frac{1}{4 - 3s}$$
 for $|s| < \frac{4}{3}$.

(3)

(3)

- (b) Let $G_2(s)$ be the probability generating function of Z_2 . Find $G_2(s)$, and simplify your expression as far as possible.
- (c) Find the probability of eventual extinction, γ . (3)
- (d) Find the probability that the branching process goes extinct at generation n = 3.
- (e) Now suppose that $Y \sim \text{Poisson}(\lambda = 0.5)$, so that

$$\mathbb{P}(Y=y) = \frac{(0.5)^y}{y!} e^{-0.5}$$
 for $y = 0, 1, 2, ...$

Let $G(s) = \mathbb{E}(s^Y)$ be the probability generating function of Y. Show that

$$G(s) = e^{0.5(s-1)}$$
 for $s \in \mathbb{R}$.

(3)

(f) Using $Y \sim \text{Poisson}(\lambda = 0.5)$, state the probability of eventual extinction, γ .

6. Let $\{X_0, X_1, X_2, \ldots\}$ be a random walk on the integers, with transition diagram below.

Let T be the number of steps taken to reach state 1, starting at state 0. Let $H(s) = \mathbb{E}(s^T)$ be the probability generating function of T.

(a) Show that H(s) must be either the (+) root or the (-) root of the following expression:

$$H(s) = \frac{4 \pm \sqrt{16 - 12s^2}}{2s}.$$

(5)

- (b) Simplify the above expression to show that $H(s) = \frac{2 \pm \sqrt{4 3s^2}}{s}$. (1)
- (c) By considering H(0), prove that H(s) can **not** be the (+) root in the expression above. (2)
- (d) Using the expression $H(s) = \frac{2 \sqrt{4 3s^2}}{s}$, find whether T is a defective random variable. (2)
- (e) Using the PGF H(s) as above, find E(T), the expected number of steps taken to reach state 1, starting at state 0. (5)
- (f) Let W be the number of steps required to reach state 4, starting from state 0. Define $G(s) = \mathbb{E}(s^W)$ to be the probability generating function of W. Find G(s) in terms of H(s). (2)
- 7. A fair 6-sided die is tossed t times. Let $\{X_0, X_1, X_2, \ldots\}$ be a Markov chain where X_t represents the number of distinct values that have appeared up to and including toss t. The chain starts with $X_0 = 0$ (no distinct values at toss 0). At toss 1, we always have $X_1 = 1$ because one distinct value has always appeared after one toss. To illustrate further, if the sequence of tosses 1 to 5 is:

then the Markov chain $\{X_0, X_1, X_2, \ldots\}$ begins:

$$X_0 = 0$$
 $X_1 = 1$ $X_2 = 2$ $X_3 = 2$ $X_4 = 3$ $X_5 = 3$...

The Markov chain $\{X_0, X_1, X_2, ...\}$ has state space $\{0, 1, 2, 3, 4, 5, 6\}$.

- (a) Construct the transition diagram of the Markov chain. (4)
- (b) Let T be the number of tosses required before all values 1, 2, ..., 6 have appeared on the die at least once. Find $\mathbb{E}(T)$. (6)

8. Let $\{X_0, X_1, \ldots\}$ be a Markov chain on $\{0, 1, \ldots\}$ with the following transition diagram:

Given a starting state k, define h_k to be the probability that the process eventually reaches state 0, starting from state k. We aim to prove by mathematical induction that

$$h_k = kh_1 - (k-1)$$
 for $k = 0, 1, 2, \dots$, (\star)

where h_1 is the probability that the process eventually reaches state 0, starting from state 1.

- (a) Show that formula (\star) is true for k = 0 and k = 1.
- (b) By considering the hitting probability equation for h_r , show that

$$h_{r+1} = 2h_r - h_{r-1}$$
 for $r = 1, 2, 3, \dots$ (2)

- (c) Suppose that formula (\star) is true for all $k=0,1,\ldots,r$, for some integer $r\geq 1$. Using part (b), show that formula (\star) is true for k=r+1. Hence deduce that formula (\star) is true for all $k=0,1,2,\ldots$
- (d) It remains to find the value of h_1 . Using the fact that $0 \le h_k \le 1$ for all k, find h_1 .
- 9. Let $\{X_0, X_1, X_2, \ldots\}$ be a Markov chain on the state space $\{1, 2, 3\}$ with transition diagram shown below.

Define random variables T and U as follows.

T = number of steps taken to hit state 3, starting from state 1.

U = number of steps taken to hit state 3, starting from state 2.

- (a) Show that the mean hitting times for state 3 are $\mathbb{E}(U) = 2$ and $\mathbb{E}(T) = 4$. (4)
- (b) Find $\mathbb{E}(U^2)$, and hence, or otherwise, find $\mathbb{E}(T^2)$ and Var(T). (8)

ATTACHMENT

1. Discrete Probability Distributions

Distribution	$\mathbb{P}(X=x)$	$\mathbb{E}(X)$	PGF, $\mathbb{E}(s^X)$
Geometric(p)	pq^{x} (where $q = 1 - p$), for $x = 0, 1, 2,$	$rac{q}{p}$	$\frac{p}{1-qs}$
	Number of failures before the first trials, each with $\mathbb{P}(\text{success}) = p$.	st success in a seq	uence of independent
$\operatorname{Binomial}(n,p)$	$\binom{n}{x} p^x q^{n-x}$ (where $q = 1 - p$), for $x = 0, 1, 2, \dots, n$.	np	$(ps+q)^n$
Number of successes in n independent trials, each with $\mathbb{P}(\text{success}) = p$.			
$Poisson(\lambda)$	$\frac{\lambda^x}{x!}e^{-\lambda}$ for $x = 0, 1, 2, \dots$	λ	$e^{\lambda(s-1)}$

2. Uniform Distribution: $X \sim \text{Uniform}(a, b)$. Probability density function, $f_X(x) = \frac{1}{b-a}$ for a < x < b. Mean, $\mathbb{E}(X) = \frac{a+b}{2}$.

3. Properties of Probability Generating Functions

$$\begin{array}{ll} \textbf{Definition:} & G_X(s) = \mathbb{E}(s^X) \\ \textbf{Moments:} & \mathbb{E}(X) = G_X'(1) & \mathbb{E}\bigg\{X(X-1)\dots(X-k+1)\bigg\} = G_X^{(k)}(1) \\ \textbf{Probabilities:} & \mathbb{P}(X=n) = \frac{1}{n!}G_X^{(n)}(0) \end{array}$$

4. Geometric Series: $1 + r + r^2 + r^3 + \dots = \sum_{x=0}^{\infty} r^x = \frac{1}{1-r}$ for |r| < 1. Finite sum: $\sum_{x=0}^{n} r^x = \frac{1-r^{n+1}}{1-r}$ for $r \neq 1$.

5. **Binomial Theorem:** For any $p, q \in \mathbb{R}$, and integer n > 0, $(p+q)^n = \sum_{x=0}^n \binom{n}{x} p^x q^{n-x}$.

6. Exponential Power Series: For any $\lambda \in \mathbb{R}$, $\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda}.$