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1. Let A and B be any events.

(a) Show that P(A ∪ B) = P(A ∩ B) + P(A ∩ B) + P(A ∩ B). (4M)

(b) By rearranging the expression in part (a), we obtain:

P(A ∪ B) − P(A ∩ B) = P(A ∩ B) + P(A ∩ B).

Give a sentence in plain English to explain what probability the left-hand side and the right-
hand side both represent. Example: if the probability were P(A∩B), a suitable sentence would

be ‘Probability that A and B both occur.’ (2M)

(c) Let A and B be any events with P(A) = 1
3 and P(B) = 3

4 . Show that

1

12
≤ P(A ∩ B) ≤ 1

3
.

[Hint: consider P(A ∪ B).] (4M)
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2. Let {X0, X1, X2, . . .} be a Markov chain on the state space S = {1, 2, 3}, with transition matrix

P =






0 1
2

1
2

1
4 0 3

4

1 0 0




 .

(a) Draw the transition diagram. (2E)

(b) Find an equilibrium distribution for P . (4E)

(c) Does Xt converge to the distribution in (b) as t → ∞? Explain why or why not. (2M)

3. Let {Z0, Z1, Z2, . . .} be a branching process, where Zn denotes the number of individuals born
at time n, and Z0 = 1. Let Y be the family size distribution, and let γ be the probability of
ultimate extinction.

Suppose that Y ∼ Binomial(n, p), so that

P(Y = y) =

(
n

y

)

pyqn−y for y = 0, 1, . . . , n,

where q = 1 − p.

(a) Let G(s) = E(sY ) be the probability generating function of Y . Show that

G(s) = (ps + q)n for s ∈ R.

(3E)

(b) Suppose that Y ∼ Binomial(n = 2, p = 0.6). Let G2(s) be the probability generating function
of Z2. Write down an expression for G2(s). (You do not need to simplify your answer.) (2E)

(c) Continue to assume that Y ∼ Binomial(2, 0.6). Find the probability of eventual extinction,
γ. (3E)

(d) Find the probability that the branching process goes extinct by generation n = 4.
[Hint: use part (b). You do not need to calculate a general expression for G4(s).] (4M)

(e) Suppose there are 10 individuals alive at generation 8. What is the probability of eventual
extinction? (2M)

CONTINUED
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4. Let {Z0, Z1, Z2, . . .} be a branching process, where Zn denotes the number of individuals born
at time n, and Z0 = 1. Let Y be the family size distribution, and let G(s) = E(sY ) be the
probability generating function of Y . Let µ = E(Y ), and let γ be the probability of eventual
extinction.

The diagram below shows a graph of t = s for 0 ≤ s ≤ 1.

s

t

0

1

1

t=s

(a) Suppose that γ < 1. Copy the diagram above and mark on it the following features:

(i) The curve t = G(s);

(ii) γ;

(iii) P(Y = 0);

(iv) µ. (4E)

(b) State whether µ > 1, µ = 1, or µ < 1. Give a reason for your answer. (2E)

5. Let {X0, X1, X2, . . .} be a Markov chain on the state space S = {1, 2, 3}, with transition matrix
P . The general solution for P t is as follows:

P t =
1

8












1 3 4

1 3 4

1 3 4




 + (−1)t







1 3 −4

1 3 −4

−1 −3 4













for t = 1, 2, 3, . . . .

(a) Draw the transition diagram of the Markov chain. (2E)

(b) Suppose that X0 ∼
(

1
3 , 1

3 , 1
3

)T
. Find a vector describing the distribution of X1. (2E)

(c) Again suppose that X0 ∼
(

1
3 , 1

3 , 1
3

)T
. Find P(X0 = 3, X2 = 3, X5 = 1). (4M)

(d) Using only the formula given for P t, state whether or not the Markov chain converges to an
equilibrium distribution as t → ∞. If the chain does converge to equilibrium, state what the
equilibrium distribution is. If the chain does not converge to equilibrium, explain why. (3M)
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6. Consider a stochastic process with the following transition diagram.

1/2STOP A

B

C

1/2

1/2

1/2
1/2

1/4

1/4

Starting from state A, we wish to find the probability that all states A, B, and C are visited
before stopping. We will call this probability pA.

We aim to find pA by defining a new stochastic process with the following states:

A : visited state A only, and currently in state A.

AB : visited states A and B, and currently in state B.

ABA : visited states A and B, and currently in state A.

AC : visited states A and C, and currently in state C.

ACA : visited states A and C, and currently in state A.

Success : visited all three states A, B, and C.

Fail : reached state Stop before all three states A, B, and C are visited.

The incomplete transition diagram for the redefined process is shown below.

A

AB ABA

FAIL SUCCESS

AC ACA

Copy the incomplete transition diagram above, and add all transition arrows and probabilities
to the diagram. Hence find pA, the probability that all states A, B, and C are visited before
stopping, starting from state A. (8M)

CONTINUED
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7. Let {X0, X1, X2, . . .} be a random walk on the integers, with transition diagram below.

−1 0 1 2 3

1/51/5 1/5 1/5 1/5 1/5

4/5 4/5 4/5 4/5 4/54/5

Let T be the number of steps taken to reach state 1, starting at state 0. Let H(s) = E(sT ) be
the probability generating function of T .

(a) Show that H(s) must be either the (+) root or the (−) root of the following expression:

H(s) =
5 ±

√
25 − 16s2

8s
.

(5M)

(b) By considering H(0), prove that H(s) can not be the (+) root in the expression above. (2M)

(c) Using the expression H(s) =
5 −

√
25 − 16s2

8s
, find whether T is a defective random variable.

(2M)

(d) What is the probability that we never reach state 1, starting from state 0? (2M)

(e) Let W be the number of steps required to reach state 3, starting from state 0. Define
G(s) = E(sW ) to be the probability generating function of W . Find G(s) in terms of H(s). (2M)

8. Four friends stand in a circle in the park and throw a frisbee to each other according to the
following transition diagram. For example, when person 1 has the frisbee, he throws it to person
2 or to person 4 with probability 1/2 each.

1 3

2

4

1/2

1/2

1/2

1/2 1/2

1/2

1/2

1/2

Let Tij be the number of times the frisbee is thrown before it first returns to person j, starting
with person i. For example, if the frisbee is thrown person 1 → person 2 → person 1, then
T11 = 2. If the frisbee is thrown person 2 → person 3, then T23 = 1.

(a) For each of the following pairs of random variables, state whether or not the two random
variables have the same distribution as each other.

(i) T11 and T21.

(ii) T21 and T41.

(iii) T11 and T31. (3H)

(b) Find E(sT11), and state whether or not T11 is defective. (5H)
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9. Let {X0, X1, X2, . . .} be a Markov chain on the state space {1, 2, 3, 4}. The incomplete transition
diagram is shown below. The diagram shows the states of the Markov chain, but arrows and
probabilities are not marked.

1 3

2

4

Let h =
(

1
2 , 1, 1

4 , 0
)

be the vector of hitting probabilities to one of the states on the diagram
above, which we shall call state x. That is,

hi = P(the chain hits state x at any time t ≥ 0, starting from state i), for i = 1, 2, 3, 4.

(a) State x is either 1, 2, 3, or 4. Identify state x. (1M)

(b) Reproduce the diagram above and add arrows and probabilities to give a transition diagram
that produces the vector h of hitting probabilities to state x. [Hint: there are many possible
solutions; you are asked to produce just one. A simple diagram is sufficient.] (3H)

(c) What is the communicating class containing State 4 in your answer to part (b)? Explain why
every possible solution to part (b) has the same communicating class for State 4. (2H)

(d) Now suppose {X0, X1, X2, . . .} is a Markov chain on the state space {1, 2, 3} with the transition
diagram below.

2

3

1

1

00

q s

p

r

Let m = (2, 3, 0) be the vector of mean hitting times to state 3. That is,

mi = E(number of steps to hit state 3, starting from state i), for i = 1, 2, 3.

Find the missing probabilities p, q, r, and s, and draw the completed transition diagram. (4H)

CONTINUED
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10. Let {Z0, Z1, Z2, . . .} be a branching process, where Zn denotes the number of individuals born
at time n, and Z0 = 1. Let Y be the family size distribution. Define

P (s) = E
(
sY
)
, Gn(s) = E

(
sZn

)
.

Note: we usually write G(s) instead of P (s), but we will need the notation P (s) for this question.

(a) Using the fact that Zn+1 = Y1 + . . .+YZn
where each Yi ∼ Y and all the Yi’s are independent,

prove that

Gn+1(s) = Gn

(

P (s)
)

.

(4M)

Now suppose that we have a branching process with additional immigration. For each generation
n, the process continues as usual, with the addition of a random number of Mn immigrants that
join the population from outside. Assume that Mn is independent of Zn−1 and of Y1, . . . , YZn−1

in any generation. Each of the Mn immigrants behaves exactly like any other individual: it
reproduces in the following generation independently of all other individuals, with family size
∼ Y . Under the immigration model, we have:

Z1 = Y1 + M1

...

Zn = Y1 + . . . + YZn−1
+ Mn

Zn+1 = Y1 + . . . + YZn
+ Mn+1,

where M1, . . . ,Mn+1 are the random number of immigrants that join the population at genera-
tions 1, 2, . . . , n + 1.

Let M1, . . . ,Mn+1 be independent and identically distributed with probability generating func-
tion H(s) = E(sM). As before, let P (s) = E

(
sY
)

and Gn(s) = E
(
sZn

)
. Also, define Pn(s) to be

the n-fold iterate of P : that is,

Pn(s) = P

(

P

(

P

(

. . . P

︸ ︷︷ ︸

n times

(s) . . .

)))

.

We wish to prove by mathematical induction that

Gn(s) = H(s) × H
(

P1(s)
)

× H
(

P2(s)
)

× . . . × H
(

Pn−1(s)
)

× Pn(s). (?)

(b) Prove that equation (?) holds when n = 1: that is, prove that

G1(s) = E
(
sZ1

)
= H(s)P1(s).

(3H)

(c) Complete the proof of equation (?) by mathematical induction. (5H)

CONTINUED
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ATTACHMENT

1. Discrete Probability Distributions

Distribution P(X = x) E(X) PGF, E(sX)

Geometric(p) pqx (where q = 1 − p),
q

p

p

1 − qs
for x = 0, 1, 2, . . .

Number of failures before the first success in a sequence of independent
trials, each with P(success) = p.

Binomial(n, p)

(
n

x

)

pxqn−x (where q = 1 − p), np (ps + q)n

for x = 0, 1, 2, . . . , n.

Number of successes in n independent trials, each with P(success) = p.

Poisson(λ)
λx

x!
e−λ for x = 0, 1, 2, . . . λ eλ(s−1)

2. Uniform Distribution: X ∼ Uniform(a, b).
Probability density function, fX(x) = 1

b−a
for a < x < b. Mean, E(X) = a+b

2 .

3. Properties of Probability Generating Functions

Definition: GX(s) = E(sX)

Moments: E(X) = G′

X(1) E

{

X(X − 1) . . . (X − k + 1)

}

= G
(k)
X (1)

Probabilities: P(X = n) =
1

n!
G

(n)
X (0)

4. Geometric Series: 1 + r + r2 + r3 + . . . =
∞∑

x=0

rx =
1

1 − r
for |r| < 1.

Finite sum:

n∑

x=0

rx =
1 − rn+1

1 − r
for r 6= 1.

5. Binomial Theorem: For any p, q ∈ R, and integer n > 0, (p + q)n =
n∑

x=0

(
n

x

)

pxqn−x.

6. Exponential Power Series: For any λ ∈ R,

∞∑

x=0

λx

x!
= eλ.


