THE UNIVERSITY OF AUCKLAND

SECOND SEMESTER, 2005
 Campus: City

STATISTICS

Stochastic Processes

Topics in Statistics 2
(Time allowed: THREE hours)

NOTE: Attempt ALL questions. Marks for each question are shown in brackets. An Attachment containing useful information is found on page 8.

1. Let A and B be any events.
(a) Show that $\mathbb{P}(A \cup B)=\mathbb{P}(A \cap B)+\mathbb{P}(A \cap \bar{B})+\mathbb{P}(\bar{A} \cap B)$.
(b) By rearranging the expression in part (a), we obtain:

$$
\mathbb{P}(A \cup B)-\mathbb{P}(A \cap B)=\mathbb{P}(A \cap \bar{B})+\mathbb{P}(\bar{A} \cap B)
$$

Give a sentence in plain English to explain what probability the left-hand side and the righthand side both represent. Example: if the probability were $\mathbb{P}(A \cap B)$, a suitable sentence would be 'Probability that A and B both occur.'
(c) Let A and B be any events with $\mathbb{P}(A)=\frac{1}{3}$ and $\mathbb{P}(B)=\frac{3}{4}$. Show that

$$
\begin{equation*}
\frac{1}{12} \leq \mathbb{P}(A \cap B) \leq \frac{1}{3} \tag{4M}
\end{equation*}
$$

[Hint: consider $\mathbb{P}(A \cup B)$.]
2. Let $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ be a Markov chain on the state space $S=\{1,2,3\}$, with transition matrix

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \tag{2E}\\
\frac{1}{4} & 0 & \frac{3}{4} \\
1 & 0 & 0
\end{array}\right)
$$

(a) Draw the transition diagram.
(b) Find an equilibrium distribution for P.
(c) Does X_{t} converge to the distribution in (b) as $t \rightarrow \infty$? Explain why or why not.
3. Let $\left\{Z_{0}, Z_{1}, Z_{2}, \ldots\right\}$ be a branching process, where Z_{n} denotes the number of individuals born at time n, and $Z_{0}=1$. Let Y be the family size distribution, and let γ be the probability of ultimate extinction.
Suppose that $Y \sim \operatorname{Binomial}(n, p)$, so that

$$
\mathbb{P}(Y=y)=\binom{n}{y} p^{y} q^{n-y} \quad \text { for } y=0,1, \ldots, n,
$$

where $q=1-p$.
(a) Let $G(s)=\mathbb{E}\left(s^{Y}\right)$ be the probability generating function of Y. Show that

$$
\begin{equation*}
G(s)=(p s+q)^{n} \quad \text { for } s \in \mathbb{R} \tag{3E}
\end{equation*}
$$

(b) Suppose that $Y \sim \operatorname{Binomial}(n=2, p=0.6)$. Let $G_{2}(s)$ be the probability generating function of Z_{2}. Write down an expression for $G_{2}(s)$. (You do not need to simplify your answer.)
(c) Continue to assume that $Y \sim \operatorname{Binomial}(2,0.6)$. Find the probability of eventual extinction, γ.
(d) Find the probability that the branching process goes extinct by generation $n=4$. [Hint: use part (b). You do not need to calculate a general expression for $G_{4}(s)$.]
(e) Suppose there are 10 individuals alive at generation 8. What is the probability of eventual extinction?
4. Let $\left\{Z_{0}, Z_{1}, Z_{2}, \ldots\right\}$ be a branching process, where Z_{n} denotes the number of individuals born at time n, and $Z_{0}=1$. Let Y be the family size distribution, and let $G(s)=\mathbb{E}\left(s^{Y}\right)$ be the probability generating function of Y. Let $\mu=\mathbb{E}(Y)$, and let γ be the probability of eventual extinction.

The diagram below shows a graph of $t=s$ for $0 \leq s \leq 1$.

(a) Suppose that $\gamma<1$. Copy the diagram above and mark on it the following features:
(i) The curve $t=G(s)$;
(ii) γ;
(iii) $\mathbb{P}(Y=0)$;
(iv) μ.
(b) State whether $\mu>1, \mu=1$, or $\mu<1$. Give a reason for your answer.
5. Let $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ be a Markov chain on the state space $S=\{1,2,3\}$, with transition matrix P. The general solution for P^{t} is as follows:

$$
P^{t}=\frac{1}{8}\left\{\left(\begin{array}{lll}
1 & 3 & 4 \\
1 & 3 & 4 \\
1 & 3 & 4
\end{array}\right)+(-1)^{t}\left(\begin{array}{rrr}
1 & 3 & -4 \\
1 & 3 & -4 \\
-1 & -3 & 4
\end{array}\right)\right\} \quad \text { for } t=1,2,3, \ldots
$$

(a) Draw the transition diagram of the Markov chain.
(b) Suppose that $X_{0} \sim\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)^{T}$. Find a vector describing the distribution of X_{1}.
(c) Again suppose that $X_{0} \sim\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)^{T}$. Find $\mathbb{P}\left(X_{0}=3, X_{2}=3, X_{5}=1\right)$.
(d) Using only the formula given for P^{t}, state whether or not the Markov chain converges to an equilibrium distribution as $t \rightarrow \infty$. If the chain does converge to equilibrium, state what the equilibrium distribution is. If the chain does not converge to equilibrium, explain why.
6. Consider a stochastic process with the following transition diagram.

Starting from state A, we wish to find the probability that all states A, B, and C are visited before stopping. We will call this probability p_{A}.
We aim to find p_{A} by defining a new stochastic process with the following states:

$$
\begin{aligned}
& A: \\
& A B: \\
& \text { visited state } A \text { only, and currently in state } A . \\
& A B A: \\
& A C: \text { visited states } A \text { and } B \text { and currently in state } B \text {, and currently in state } A . \\
& A C A: \text { visited states } A \text { and } C \text {, and currently in state } C . \\
& \text { Success }: \text { visited all three states } A, B \text {, and currently in state } A . \\
& \text { Fail }: \text { reached state Stop before all three states } A, B \text {, and } C \text { are visited. }
\end{aligned}
$$

The incomplete transition diagram for the redefined process is shown below.

Copy the incomplete transition diagram above, and add all transition arrows and probabilities to the diagram. Hence find p_{A}, the probability that all states A, B, and C are visited before stopping, starting from state A.
7. Let $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ be a random walk on the integers, with transition diagram below.

Let T be the number of steps taken to reach state 1 , starting at state 0 . Let $H(s)=\mathbb{E}\left(s^{T}\right)$ be the probability generating function of T.
(a) Show that $H(s)$ must be either the $(+)$ root or the $(-)$ root of the following expression:

$$
\begin{equation*}
H(s)=\frac{5 \pm \sqrt{25-16 s^{2}}}{8 s} \tag{5M}
\end{equation*}
$$

(b) By considering $H(0)$, prove that $H(s)$ can not be the $(+)$ root in the expression above.
(c) Using the expression $H(s)=\frac{5-\sqrt{25-16 s^{2}}}{8 s}$, find whether T is a defective random variable.
(d) What is the probability that we never reach state 1 , starting from state 0 ?
(e) Let W be the number of steps required to reach state 3, starting from state 0 . Define $G(s)=\mathbb{E}\left(s^{W}\right)$ to be the probability generating function of W. Find $G(s)$ in terms of $H(s)$.
8. Four friends stand in a circle in the park and throw a frisbee to each other according to the following transition diagram. For example, when person 1 has the frisbee, he throws it to person 2 or to person 4 with probability $1 / 2$ each.

Let $T_{i j}$ be the number of times the frisbee is thrown before it first returns to person j, starting with person i. For example, if the frisbee is thrown person $1 \rightarrow$ person $2 \rightarrow$ person 1 , then $T_{11}=2$. If the frisbee is thrown person $2 \rightarrow$ person 3 , then $T_{23}=1$.
(a) For each of the following pairs of random variables, state whether or not the two random variables have the same distribution as each other.
(i) T_{11} and T_{21}.
(ii) T_{21} and T_{41}.
(iii) T_{11} and T_{31}.
(b) Find $\mathbb{E}\left(s^{T_{11}}\right)$, and state whether or not T_{11} is defective.
9. Let $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ be a Markov chain on the state space $\{1,2,3,4\}$. The incomplete transition diagram is shown below. The diagram shows the states of the Markov chain, but arrows and probabilities are not marked.

2

1

4

Let $\boldsymbol{h}=\left(\frac{1}{2}, 1, \frac{1}{4}, 0\right)$ be the vector of hitting probabilities $\boldsymbol{t o}$ one of the states on the diagram above, which we shall call state x. That is,
$h_{i}=\mathbb{P}($ the chain hits state x at any time $t \geq 0$, starting from state $i), \quad$ for $i=1,2,3,4$.
(a) State x is either $1,2,3$, or 4 . Identify state x.
(b) Reproduce the diagram above and add arrows and probabilities to give a transition diagram that produces the vector \boldsymbol{h} of hitting probabilities to state x. [Hint: there are many possible solutions; you are asked to produce just one. A simple diagram is sufficient.]
(c) What is the communicating class containing State 4 in your answer to part (b)? Explain why every possible solution to part (b) has the same communicating class for State 4.
(d) Now suppose $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ is a Markov chain on the state space $\{1,2,3\}$ with the transition diagram below.

Let $\boldsymbol{m}=(2,3,0)$ be the vector of mean hitting times to state 3 . That is,
$m_{i}=\mathbb{E}$ (number of steps to hit state 3, starting from state i), for $i=1,2,3$.
Find the missing probabilities p, q, r, and s, and draw the completed transition diagram.
10. Let $\left\{Z_{0}, Z_{1}, Z_{2}, \ldots\right\}$ be a branching process, where Z_{n} denotes the number of individuals born at time n, and $Z_{0}=1$. Let Y be the family size distribution. Define

$$
P(s)=\mathbb{E}\left(s^{Y}\right), \quad G_{n}(s)=\mathbb{E}\left(s^{Z_{n}}\right) .
$$

Note: we usually write $G(s)$ instead of $P(s)$, but we will need the notation $P(s)$ for this question.
(a) Using the fact that $Z_{n+1}=Y_{1}+\ldots+Y_{Z_{n}}$ where each $Y_{i} \sim Y$ and all the Y_{i} 's are independent, prove that

$$
\begin{equation*}
G_{n+1}(s)=G_{n}(P(s)) . \tag{4M}
\end{equation*}
$$

Now suppose that we have a branching process with additional immigration. For each generation n, the process continues as usual, with the addition of a random number of M_{n} immigrants that join the population from outside. Assume that M_{n} is independent of Z_{n-1} and of $Y_{1}, \ldots, Y_{Z_{n-1}}$ in any generation. Each of the M_{n} immigrants behaves exactly like any other individual: it reproduces in the following generation independently of all other individuals, with family size $\sim Y$. Under the immigration model, we have:

$$
\begin{aligned}
Z_{1} & =Y_{1}+M_{1} \\
& \vdots \\
Z_{n} & =Y_{1}+\ldots+Y_{Z_{n-1}}+M_{n} \\
Z_{n+1} & =Y_{1}+\ldots+Y_{Z_{n}}+M_{n+1},
\end{aligned}
$$

where M_{1}, \ldots, M_{n+1} are the random number of immigrants that join the population at generations $1,2, \ldots, n+1$.
Let M_{1}, \ldots, M_{n+1} be independent and identically distributed with probability generating function $H(s)=\mathbb{E}\left(s^{M}\right)$. As before, let $P(s)=\mathbb{E}\left(s^{Y}\right)$ and $G_{n}(s)=\mathbb{E}\left(s^{Z_{n}}\right)$. Also, define $P_{n}(s)$ to be the n-fold iterate of P : that is,

$$
P_{n}(s)=\underbrace{P(P(P(\ldots P(s) \ldots))) .}_{n \text { times }}
$$

We wish to prove by mathematical induction that

$$
G_{n}(s)=H(s) \times H\left(P_{1}(s)\right) \times H\left(P_{2}(s)\right) \times \ldots \times H\left(P_{n-1}(s)\right) \times P_{n}(s)
$$

(b) Prove that equation (\star) holds when $n=1$: that is, prove that

$$
\begin{equation*}
G_{1}(s)=\mathbb{E}\left(s^{Z_{1}}\right)=H(s) P_{1}(s) . \tag{3H}
\end{equation*}
$$

(c) Complete the proof of equation (\star) by mathematical induction.

ATTACHMENT

1. Discrete Probability Distributions

Distribution	$\mathbb{P}(X=x)$	$\mathbb{E}(X)$	$\operatorname{PGF}, \mathbb{E}\left(s^{X}\right)$
$\operatorname{Geometric}(p)$	$p q^{x}($ where $q=1-p)$,	$\frac{q}{p}$	$\frac{p}{1-q s}$
	for $x=0,1,2, \ldots$		

Number of failures before the first success in a sequence of independent trials, each with $\mathbb{P}($ success $)=p$.

$\operatorname{Binomial}(n, p)$	$\binom{n}{x} p^{x} q^{n-x}($ where $q=1-p)$,
for $x=0,1,2, \ldots, n$.	$n p$

Number of successes in n independent trials, each with $\mathbb{P}($ success $)=p$.
$\operatorname{Poisson}(\lambda) \quad \frac{\lambda^{x}}{x!} e^{-\lambda}$ for $x=0,1,2, \ldots \quad \lambda \quad e^{\lambda(s-1)}$
2. Uniform Distribution: $X \sim \operatorname{Uniform}(a, b)$.

Probability density function, $f_{X}(x)=\frac{1}{b-a}$ for $a<x<b$. Mean, $\mathbb{E}(X)=\frac{a+b}{2}$.
3. Properties of Probability Generating Functions

Definition:	$G_{X}(s)=\mathbb{E}\left(s^{X}\right)$
Moments:	$\mathbb{E}(X)=G_{X}^{\prime}(1) \quad \mathbb{E}\{X(X-1) \ldots(X-k+1)\}=G_{X}^{(k)}(1)$
Probabilities:	$\mathbb{P}(X=n)=\frac{1}{n!} G_{X}^{(n)}(0)$

4. Geometric Series: $1+r+r^{2}+r^{3}+\ldots=\sum_{x=0}^{\infty} r^{x}=\frac{1}{1-r}$ for $|r|<1$.

Finite sum: $\quad \sum_{x=0}^{n} r^{x}=\frac{1-r^{n+1}}{1-r}$ for $r \neq 1$.
5. Binomial Theorem: For any $p, q \in \mathbb{R}$, and integer $n>0,(p+q)^{n}=\sum_{x=0}^{n}\binom{n}{x} p^{x} q^{n-x}$.
6. Exponential Power Series: For any $\lambda \in \mathbb{R}, \quad \sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}=e^{\lambda}$.

