# THE UNIVERSITY OF AUCKLAND 

## SECOND SEMESTER, 2008 <br> Campus: City

## STATISTICS

## Stochastic Processes

(Time allowed: THREE hours)

NOTE: Attempt ALL questions. Marks for each question are shown in brackets. An Attachment containing useful information is found on page 7.

1. Let $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ be a Markov chain on the state space $S=\{1,2,3\}$, with transition matrix

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{3} & \frac{2}{3}  \tag{2E}\\
1 & 0 & 0 \\
\frac{1}{4} & \frac{3}{4} & 0
\end{array}\right)
$$

(a) Draw the transition diagram.
(b) Identify all communicating classes. For each class, state whether or not it is closed.
(c) Find an equilibrium distribution $\boldsymbol{\pi}$ for $P$.
(d) Does $X_{t}$ converge to the distribution in (c) as $t \rightarrow \infty$ ? Explain why or why not.
(e) Let $\boldsymbol{m}=\left(m_{1}, m_{2}, m_{3}\right)$ be the vector of expected reaching times for reaching state 3 . Find the vector $\boldsymbol{m}$.
2. Let $X_{1}, X_{2}, \ldots$ be a sequence of independent, identically distributed discrete random variables, with common probability generating function $G_{X}(s)$. Let $N$ be a discrete random variable with probability generating function $G_{N}(s)$, where $N$ is independent of $X_{1}, X_{2}, \ldots$.
Let $T=X_{1}+X_{2}+\ldots+X_{N}$ be the randomly stopped sum of the $X_{i}$ 's, and let $G_{T}(s)$ be the probability generating function of $T$.
(a) Show that $G_{T}(s)=G_{N}\left(G_{X}(s)\right)$.
(b) For each $i$, let

$$
X_{i}= \begin{cases}1 & \text { with probability } p  \tag{2E}\\ 0 & \text { with probability } 1-p\end{cases}
$$

Write down $G_{X}(s)$, the common probability generating function of $X_{1}, X_{2}, \ldots$.
(c) Suppose that $N \sim$ Poisson( $\lambda$ ). Using the list of probability generating functions in the Attachment, find the probability generating function of $T=X_{1}+\ldots+X_{N}$. Hence name the distribution of $T$.
3. Weetbix breakfast cereals are having a promotion. Every packet of Weetbix contains a discount card. The card is worth $\$ 1, \$ 2, \$ 3$, or $\$ 4$ with equal probability, independently of the cards in other packets. Cards are coloured red, yellow, green, or blue, according to their value. The $\$ 1$ cards are coloured red, the $\$ 2$ cards are coloured yellow, and so on.
(a) Three different Markov chains $\left\{Y_{0}, Y_{1}, Y_{2}, Y_{3}, \ldots\right\}$ are defined below. In each case, we begin with 0 packets at time 0 , and define $Y_{0}=0$. For each chain, write down the transition matrix. Label the state space in the margins of your matrix.
(i) $Y_{t}$ is the maximum card value obtained in the first $t$ packets.
(ii) $Y_{t}$ is the number of different colours in the cards obtained from the first $t$ packets.
(iii) $Y_{t}$ is the number of blue cards obtained in the first $t$ packets.
(b) Define $T$ to be the number of packets required before all four colours have been collected. Find $\mathbb{E}(T)$. [Hint: one of your answers to part (a) will be helpful.]
4. Let $\left\{Z_{0}, Z_{1}, Z_{2}, \ldots\right\}$ be a branching process, where $Z_{n}$ denotes the number of individuals born at time $n$, and $Z_{0}=1$. Let $Y$ be the family size distribution, and suppose that $Y \sim \operatorname{Binomial}\left(2, \frac{4}{5}\right)$.
(a) Let $G(s)=\mathbb{E}\left(s^{Y}\right)$ be the probability generating function of $Y$. Working from the probability function of $Y$, show that

$$
\begin{equation*}
G(s)=\frac{1}{25}(4 s+1)^{2} \quad \text { for } s \in \mathbb{R} \tag{3E}
\end{equation*}
$$

(b) Let $G_{2}(s)$ be the probability generating function of $Z_{2}$. Find $G_{2}(s)$. (Do not simplify the expression.)
(c) Show that $\mathbb{P}\left(Z_{4}=0\right)=0.061$.
(d) Find the probability of eventual extinction, $\gamma$.
(e) Suppose that $Z_{2}=5$. Find the probability of eventual extinction.
(f) Suppose again that $Z_{2}=5$. Using part (c), find the probability that all 5 of the individuals that were alive at generation 2 still have living descendents in generation 6 .
5. Let $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ be a symmetric random walk on the integers, with transition diagram below.


Let $T$ be the number of steps taken to reach state 1 , starting at state 0 . Let $H(s)=\mathbb{E}\left(s^{T}\right)$ be the probability generating function of $T$.
(a) Show that $H(s)$ must be either the $(+)$ root or the $(-)$ root of the following expression:

$$
\begin{equation*}
H(s)=\frac{1 \pm \sqrt{1-s^{2}}}{s} . \tag{4M}
\end{equation*}
$$

(b) By considering $H(0)$, prove that $H(s)$ can not be the $(+)$ root in the expression above.
(c) Using the expression $H(s)=\frac{1-\sqrt{1-s^{2}}}{s}$, find whether $T$ is a defective random variable.
(d) Using $H(s)$, find $\mathbb{E}(T)$.
(e) What is the probability that we never reach state 1 , starting from state 0 ?
(f) Let $p_{t}=\mathbb{P}(T=t)$ for $t=0,1,2,3, \ldots$. State the values of $p_{0}, p_{1}$, and $p_{2}$, and show that

$$
\begin{equation*}
p_{t}=\frac{1}{2} \sum_{x=0}^{t-1} p_{x} p_{t-1-x} \tag{6H}
\end{equation*}
$$

for all $t=3,4,5, \ldots$.
6. Let $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ be a Markov chain on the state space $S=\{0,1,2,3, \ldots\}$, with the transition diagram below. You may assume that the pattern continues indefinitely, in other words that the transition probabilities are:

$$
\begin{aligned}
& p_{i, i+1}=\frac{3}{5} \text { for all } i=1,2,3, \ldots \\
& p_{i, i-1}=\frac{2}{5} \text { for all } i=1,2,3, \ldots
\end{aligned}
$$



For any state $x$, define $h_{x}$ to be the probability that the process eventually reaches state 0 , starting from state $x$.
(a) Using first-step analysis, show that

$$
3 h_{x+1}-5 h_{x}+2 h_{x-1}=0 \quad \text { for } x=1,2,3, \ldots,
$$

and state the boundary condition for $h_{0}$.
(b) The general solution to the difference equation $(\star)$ is

$$
h_{x}=A t_{1}^{x}+B t_{2}^{x} \quad \text { for } \quad x=0,1,2,3, \ldots
$$

where $A$ and $B$ are constants to be found, and $t_{1}$ and $t_{2}$ are the two roots of the following quadratic equation:

$$
3 t^{2}-5 t+2=0
$$

Find the roots $t_{1}$ and $t_{2}$ of the quadratic equation, and thus state the general solution of $(\star)$ in terms of the unknown constants $A$ and $B$. Hence use the boundary condition for $h_{0}$ to show that

$$
\begin{equation*}
h_{x}=1-A\left\{1-\left(\frac{2}{3}\right)^{x}\right\}, \quad \text { for } x=0,1,2,3, \ldots \tag{4M}
\end{equation*}
$$

where $A$ is an unknown constant.
(c) Using the theorem that the hitting probabilities $\left(h_{0}, h_{1}, h_{2}, \ldots\right)$ are the minimal non-negative solution to the hitting probability equations, find $A$. Hence give a formula for $h_{x}$ for all $x=0,1,2, \ldots$.
(d) Would it be possible to prove your formula in (c) by mathematical induction? Explain why or why not.
(e) Let $T$ be a random variable giving the number of steps taken to reach state 0 , starting from state 1 . Is $T$ a defective random variable? Explain your answer.
7. Let $\left\{Z_{0}, Z_{1}, Z_{2}, \ldots\right\}$ be a branching process, where $Z_{n}$ denotes the number of individuals born at time $n$, and $Z_{0}=1$. Let $Y$ be the family size distribution, where $Y \sim \operatorname{Geometric}(p)$ and $\mathbb{E}(Y)=\mu=(1-p) / p$.
Let $G_{n}(s)=\mathbb{E}\left(s^{Z_{n}}\right)$ be the probability generating function of $Z_{n}$, and let $G(s)=G_{1}(s)=\mathbb{E}\left(s^{Y}\right)$ be the probability generating function of $Y$. You may assume that

$$
G(s)=\frac{1}{\mu+1-\mu s} .
$$

Define

$$
\gamma_{n}=\mathbb{P}(\text { extinction by generation } n)=\mathbb{P}\left(Z_{n}=0\right)
$$

and let $\gamma$ be the probability of ultimate extinction. You may assume that

$$
\gamma_{n}=G_{n}(0) .
$$

(a) The diagram below shows a graph of $G(s)$, with missing values $a, b, c, d$, and $e$. Each of the missing values is included on the following list:

$$
\begin{array}{lllllllll}
0 & 1 & \mu & \sigma^{2} & \gamma & \gamma_{0} & \gamma_{1} & \gamma_{2} & \gamma_{3} \tag{5M}
\end{array}
$$

By reference to the list above, state the values of $a, b, c, d$, and $e$.

(b) State whether $\mu<1, \mu=1$, or $\mu>1$ in the diagram above, and explain why.
(c) We wish to prove by mathematical induction that

$$
\gamma_{n}=\frac{\mu^{n}-1}{\mu^{n+1}-1} \quad \text { for } n=1,2,3, \ldots
$$

for any $\mu$ with $\mu \neq 1$. Prove ( $\star$ ) by mathematical induction. You may assume without proof the branching process recursion formula. Marks will be given for good layout of your answer.

## ATTACHMENT

## 1. Discrete Probability Distributions

$\left.\begin{array}{lccc}\text { Distribution } & \mathbb{P}(X=x) & \mathbb{E}(X) & \text { PGF, } \mathbb{E}\left(s^{X}\right) \\ \hline \text { Geometric }(p) & p q^{x}(\text { where } q=1-p), & \frac{q}{p} & \frac{p}{1-q s} \\ & \text { for } x=0,1,2, \ldots\end{array} \begin{array}{l}\text { Number of failures before the first success in a sequence of independent } \\ \text { trials, each with } \mathbb{P}(\text { success })=p .\end{array}\right]$
2. Uniform Distribution: $X \sim \operatorname{Uniform}(a, b)$.

Probability density function, $f_{X}(x)=\frac{1}{b-a}$ for $a<x<b$. Mean, $\mathbb{E}(X)=\frac{a+b}{2}$.

## 3. Properties of Probability Generating Functions

| Definition: | $G_{X}(s)=\mathbb{E}\left(s^{X}\right)$ |
| :--- | :--- |
| Moments: | $\mathbb{E}(X)=G_{X}^{\prime}(1) \quad \mathbb{E}\{X(X-1) \ldots(X-k+1)\}=G_{X}^{(k)}(1)$ |
| Probabilities: | $\mathbb{P}(X=n)=\frac{1}{n!} G_{X}^{(n)}(0)$ |

4. Geometric Series: $1+r+r^{2}+r^{3}+\ldots=\sum_{x=0}^{\infty} r^{x}=\frac{1}{1-r}$ for $|r|<1$.

Finite sum: $\quad \sum_{x=0}^{n} r^{x}=\frac{1-r^{n+1}}{1-r}$ for $r \neq 1$.
5. Binomial Theorem: For any $p, q \in \mathbb{R}$, and integer $n>0,(p+q)^{n}=\sum_{x=0}^{n}\binom{n}{x} p^{x} q^{n-x}$.
6. Exponential Power Series: For any $\lambda \in \mathbb{R}, \quad \sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}=e^{\lambda}$.

