THE UNIVERSITY OF AUCKLAND

SECOND SEMESTER, 2008 Campus: City

STATISTICS

Stochastic Processes

(Time allowed: THREE hours)

NOTE: Attempt **ALL** questions. Marks for each question are shown in brackets. An **Attachment** containing useful information is found on page 7.

(3E)

1. Let $\{X_0, X_1, X_2, \ldots\}$ be a Markov chain on the state space $S = \{1, 2, 3\}$, with transition matrix

$$P = \begin{pmatrix} 0 & \frac{1}{3} & \frac{2}{3} \\ 1 & 0 & 0 \\ \frac{1}{4} & \frac{3}{4} & 0 \end{pmatrix}$$

(a) Draw the transition diagram.	(2E)
(b) Identify all communicating classes. For each class, state whether or not it is closed.	(2E)
(c) Find an equilibrium distribution π for P .	(4E)

- (d) Does X_t converge to the distribution in (c) as $t \to \infty$? Explain why or why not. (2M)
- (e) Let $\boldsymbol{m} = (m_1, m_2, m_3)$ be the vector of expected reaching times for reaching state 3. Find the vector \boldsymbol{m} .
- 2. Let X_1, X_2, \ldots be a sequence of independent, identically distributed discrete random variables, with common probability generating function $G_X(s)$. Let N be a discrete random variable with probability generating function $G_N(s)$, where N is independent of X_1, X_2, \ldots

Let $T = X_1 + X_2 + \ldots + X_N$ be the randomly stopped sum of the X_i 's, and let $G_T(s)$ be the probability generating function of T.

(a) Show that
$$G_T(s) = G_N(G_X(s)).$$
 (4M)

(b) For each i, let

$$X_i = \begin{cases} 1 & \text{with probability } p, \\ 0 & \text{with probability } 1 - p. \end{cases}$$

Write down $G_X(s)$, the common probability generating function of X_1, X_2, \dots (2E)

(c) Suppose that $N \sim \text{Poisson}(\lambda)$. Using the list of probability generating functions in the Attachment, find the probability generating function of $T = X_1 + \ldots + X_N$. Hence name the distribution of T. (3M)

- 3. Weetbix breakfast cereals are having a promotion. Every packet of Weetbix contains a discount card. The card is worth \$1, \$2, \$3, or \$4 with equal probability, independently of the cards in other packets. Cards are coloured red, yellow, green, or blue, according to their value. The \$1 cards are coloured red, the \$2 cards are coloured yellow, and so on.
 - (a) Three different Markov chains $\{Y_0, Y_1, Y_2, Y_3, ...\}$ are defined below. In each case, we begin with 0 packets at time 0, and define $Y_0 = 0$. For each chain, write down the transition matrix. Label the state space in the margins of your matrix.
 - (i) Y_t is the **maximum** card value obtained in the first t packets.
 - (ii) Y_t is the number of different colours in the cards obtained from the first t packets.
 - (iii) Y_t is the **number of blue cards** obtained in the first t packets. (9M)
 - (b) Define T to be the number of packets required before all four colours have been collected. Find $\mathbb{E}(T)$. [Hint: one of your answers to part (a) will be helpful.] (5H)
- 4. Let $\{Z_0, Z_1, Z_2, \ldots\}$ be a branching process, where Z_n denotes the number of individuals born at time n, and $Z_0 = 1$. Let Y be the family size distribution, and suppose that $Y \sim \text{Binomial}(2, \frac{4}{5})$.
 - (a) Let $G(s) = \mathbb{E}(s^Y)$ be the probability generating function of Y. Working from the probability function of Y, show that

$$G(s) = \frac{1}{25}(4s+1)^2$$
 for $s \in \mathbb{R}$.
(3E)

- (b) Let $G_2(s)$ be the probability generating function of Z_2 . Find $G_2(s)$. (Do **not** simplify the expression.) (2E)
- (c) Show that $\mathbb{P}(Z_4 = 0) = 0.061.$ (3M)
- (d) Find the probability of eventual extinction, γ . (3E)
- (e) Suppose that $Z_2 = 5$. Find the probability of eventual extinction.
- (f) Suppose again that $Z_2 = 5$. Using part (c), find the probability that all 5 of the individuals that were alive at generation 2 still have living descendents in generation 6. (3M)

(2E)

5. Let $\{X_0, X_1, X_2, \ldots\}$ be a symmetric random walk on the integers, with transition diagram below.

Let T be the number of steps taken to reach state 1, starting at state 0. Let $H(s) = \mathbb{E}(s^T)$ be the probability generating function of T.

(a) Show that H(s) must be either the (+) root or the (-) root of the following expression:

$$H(s) = \frac{1 \pm \sqrt{1 - s^2}}{s} \,. \tag{4M}$$

(b) By considering H(0), prove that H(s) can **not** be the (+) root in the expression above. (2M)

(c) Using the expression $H(s) = \frac{1 - \sqrt{1 - s^2}}{s}$, find whether T is a defective random variable. (2M)

(d) Using
$$H(s)$$
, find $\mathbb{E}(T)$. (3M)

- (e) What is the probability that we *never* reach state 1, starting from state 0? (1M)
- (f) Let $p_t = \mathbb{P}(T = t)$ for $t = 0, 1, 2, 3, \ldots$ State the values of p_0, p_1 , and p_2 , and show that

$$p_t = \frac{1}{2} \sum_{x=0}^{t-1} p_x \, p_{t-1-x}$$

for all $t = 3, 4, 5, \dots$ (6H)

6. Let $\{X_0, X_1, X_2, \ldots\}$ be a Markov chain on the state space $S = \{0, 1, 2, 3, \ldots\}$, with the transition diagram below. You may assume that the pattern continues indefinitely, in other words that the transition probabilities are:

$$p_{i,i+1} = \frac{3}{5}$$
 for all $i = 1, 2, 3, ...$
 $p_{i,i-1} = \frac{2}{5}$ for all $i = 1, 2, 3, ...$

For any state x, define h_x to be the probability that the process eventually reaches state 0, starting from state x.

(a) Using first-step analysis, show that

$$3h_{x+1} - 5h_x + 2h_{x-1} = 0$$
 for $x = 1, 2, 3, \dots$, (*)

and state the boundary condition for h_0 .

(b) The general solution to the difference equation (\star) is

$$h_x = At_1^x + Bt_2^x$$
 for $x = 0, 1, 2, 3, \dots$

where A and B are constants to be found, and t_1 and t_2 are the two roots of the following quadratic equation:

 $3t^2 - 5t + 2 = 0.$

Find the roots t_1 and t_2 of the quadratic equation, and thus state the general solution of (\star) in terms of the unknown constants A and B. Hence use the boundary condition for h_0 to show that

$$h_x = 1 - A\left\{1 - \left(\frac{2}{3}\right)^x\right\}, \text{ for } x = 0, 1, 2, 3, \dots$$

where A is an unknown constant.

- (c) Using the theorem that the hitting probabilities $(h_0, h_1, h_2, ...)$ are the minimal non-negative solution to the hitting probability equations, find A. Hence give a formula for h_x for all x = 0, 1, 2, ... (4H)
- (d) Would it be possible to prove your formula in (c) by mathematical induction? Explain why or why not. (2H)
- (e) Let T be a random variable giving the number of steps taken to reach state 0, starting from state 1. Is T a defective random variable? Explain your answer. (2H)

(3E)

(4M)

7. Let $\{Z_0, Z_1, Z_2, \ldots\}$ be a branching process, where Z_n denotes the number of individuals born at time n, and $Z_0 = 1$. Let Y be the family size distribution, where $Y \sim \text{Geometric}(p)$ and $\mathbb{E}(Y) = \mu = (1-p)/p$.

Let $G_n(s) = \mathbb{E}(s^{Z_n})$ be the probability generating function of Z_n , and let $G(s) = G_1(s) = \mathbb{E}(s^Y)$ be the probability generating function of Y. You may assume that

$$G(s) = \frac{1}{\mu + 1 - \mu s}$$

Define

 $\gamma_n = \mathbb{P}(\text{extinction by generation } n) = \mathbb{P}(Z_n = 0),$

and let γ be the probability of ultimate extinction. You may assume that

$$\gamma_n = G_n(0).$$

- (a) The diagram below shows a graph of G(s), with missing values a, b, c, d, and e. Each of the missing values is included on the following list:
 - $0 \quad 1 \quad \mu \quad \sigma^2 \quad \gamma \quad \gamma_0 \quad \gamma_1 \quad \gamma_2 \quad \gamma_3$

By reference to the list above, state the values of a, b, c, d, and e.

(b) State whether $\mu < 1$, $\mu = 1$, or $\mu > 1$ in the diagram above, and explain why.

(c) We wish to prove by mathematical induction that

$$\gamma_n = \frac{\mu^n - 1}{\mu^{n+1} - 1}$$
 for $n = 1, 2, 3, \dots,$ (*)

for any μ with $\mu \neq 1$. Prove (\star) by mathematical induction. You may assume without proof the branching process recursion formula. Marks will be given for good layout of your answer.

(8H)

(2M)

(5M)

ATTACHMENT

1. Discrete Probability Distributions

Distribution	$\mathbb{P}(X=x)$	$\mathbb{E}(X)$	PGF, $\mathbb{E}(s^X)$
$\operatorname{Geometric}(p)$	pq^x (where $q = 1 - p$),	$\frac{q}{p}$	$\frac{p}{1-qs}$
	for $x = 0, 1, 2, \dots$	-	-

Number of failures before the first success in a sequence of independent trials, each with $\mathbb{P}(\text{success}) = p$.

$\operatorname{Binomial}(n,p)$	$\binom{n}{x} p^{x} q^{n-x}$ (where $q = 1 - p$),	np	$(ps+q)^n$
	for $x = 0, 1, 2, \dots, n$.		

Number of successes in n independent trials, each with $\mathbb{P}(\text{success}) = p$.

Poisson (λ) $\frac{\lambda^x}{x!}$	$e^{-\lambda}$ for $x = 0, 1, 2,$	λ	$e^{\lambda(s-1)}$
--	-----------------------------------	-----------	--------------------

2. Uniform Distribution: $X \sim \text{Uniform}(a, b)$. Probability density function, $f_X(x) = \frac{1}{b-a}$ for a < x < b. Mean, $\mathbb{E}(X) = \frac{a+b}{2}$.

3. Properties of Probability Generating Functions

Definition:
$$G_X(s) = \mathbb{E}(s^X)$$

Moments: $\mathbb{E}(X) = G'_X(1)$ $\mathbb{E}\left\{X(X-1)\dots(X-k+1)\right\} = G^{(k)}_X(1)$
Probabilities: $\mathbb{P}(X=n) = \frac{1}{n!}G^{(n)}_X(0)$

4. Geometric Series: $1 + r + r^2 + r^3 + \dots = \sum_{x=0}^{\infty} r^x = \frac{1}{1-r}$ for |r| < 1. Finite sum: $\sum_{x=0}^{n} r^x = \frac{1-r^{n+1}}{1-r}$ for $r \neq 1$.

- 5. Binomial Theorem: For any $p, q \in \mathbb{R}$, and integer n > 0, $(p+q)^n = \sum_{x=0}^n \binom{n}{x} p^x q^{n-x}$.
- 6. Exponential Power Series: For any $\lambda \in \mathbb{R}$, $\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{\lambda}$.