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1. Let {X1,X2,X3, . . .} be a Markov chain on the state space S = {1, 2}, with the following
transition diagram:

1 2
1−α

β

1−β

α

Assume that 0 < α < 1 and 0 < β ≤ 1. (Note that β can be 1, but α can not be 1.)

(a) Write down the transition matrix for the Markov chain represented by this diagram. Be
careful to insert α and β in the matrix correctly. (2E)

(b) Suppose the chain is equally likely to be in either of the two states at time 1.
Find P(X1 = 2,X2 = 2,X3 = 1). (2E)

(c) Find an equilibrium distribution, π, for this Markov chain. (3E)

(d) Does the Markov chain converge to the equilibrium distribution in (c) as t → ∞, for all
possible α and β with 0 < α < 1 and 0 < β ≤ 1? Explain why or why not. (3E)

A factory relies on a machine that is often faulty. Every day, the machine is switched on. If it
was working on the previous day, it fails with probability 0.1 when switched on for the new day’s
business. When the machine fails, the day’s business is lost and an engineer is hired to fix it.

Every day that the machine is not working, the manager spends amount $100p on repairing it.
With this amount of money spent on repairs, the machine is fixed on that day with probability p,
independently of outcomes on other days. Once fixed, the machine works again on the following
day.

Overall, on each day that the machine is working, it earns $100. For each day that it is being
fixed and therefore not working, it costs $100p in repair bills.

(e) The factory problem can be formulated as a two-state Markov chain. The states are W for
days that the machine is working, and F for days when the machine has failed and is being
fixed. Copy the diagram below and add the correct probabilities to each arrow, taken from
the description in the previous paragraph. (2M)

W F

(f) Let f(p) be the long-term expected daily earnings from the machine for a chosen value
of p. Show that

f(p) =
90p

0.1 + p
.

You must fully justify all parts of your answer. (3M)

(g) Recall that the machine is fixed with probability p if $100p is spent. Use the expression in
part (f) to say what value of p the factory manager should choose.
[Hint: what is the gradient of f(p)?] (3M)

[18 marks]
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2. A test for a particular disease operates as follows. The patient provides a blood sample, which
goes through a first test. If the test shows that the patient is infected with the disease, the blood
sample is sent for a second test to diagnose cause and severity.

The first test takes 3 + X days to complete, where X ∼ Poisson(1). The second test takes a
further Y days to complete, where Y ∼ Poisson(2). Assume that X and Y are independent.

Define the indicator random variable D, such that

D =

{

1 if patient has the disease,
0 if patient is healthy.

Suppose that P(D = 1) = 0.2 in the population being tested.

A patient’s progress through the testing process is shown in the diagram below.

First Test
Time = 3 + X

0.2

0.8

Healthy:
Stop

Infected:
Perform Second Test

Time = Y

Define the random variable T to be the total time taken before the sample testing is complete.
Thus T is the total time taken for the first test and (if needed) the second test.

(a) Show that the total expected testing time is E(T ) = 4.4 days. You may use any results from
the Attachment that you need. (2E)

(b) The probability generating functions (PGFs) of X and Y are GX(s) = E(sX) = e(s−1) for
X ∼ Poisson(1), and GY (s) = E(sY ) = e2(s−1) for Y ∼ Poisson(2). Find GX+Y (s), the PGF
of X + Y , and hence name the distribution of X + Y , giving the values of any parameters. (3E)

(c) Find P(T ≥ 5 |D = 0), the probability that a healthy sample will take at least 5 days to
process; and P(T ≥ 5 |D = 1), the probability that a diseased sample will take at least 5 days
to process. (3M)

(d) An anxious patient has already waited 5 days for her test result. She wants to know the
probability that she has the disease, given that her sample has taken at least 5 days to
process. Find P(D = 1 |T ≥ 5). (2M)

(e) Using the law of total variance, or otherwise, find Var(T ). (5H)

[15 marks]
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3. Let {X0,X1,X2, . . .} be a random walk on the integers, with transition diagram below.

−1 0 1 2

1/4 1/4 1/4

3/4 3/4

3

3/4

1/4 1/4 1/4

3/43/4 3/4

Let U be the number of steps taken to reach state 1, starting at state 0. Let HU (s) = E(sU ) be
the probability generating function of U .

(a) Show that HU(s) must be either the (+) root or the (−) root of the following expression:

HU (s) =
4±

√
16− 12s2

2s
. (4M)

(b) By considering lims→0HU (s), prove that HU (s) can not be the (+) root in the expression
above. (2M)

(c) Using the expression HU(s) =
4−

√
16− 12s2

2s
, find whether U is a defective random variable.

Hence state the probability that the process never reaches state 1, starting from state 0. (3M)

(d) Let V be the number of steps taken to reach state −1, starting at state 0. Let HV (s) = E(sV )
be the probability generating function of V . You may assume that

HV (s) =
4−

√
16− 12s2

6s
.

What is the probability that the process never reaches state −1, starting from state 0? (2M)

(e) Let T be the number of steps taken to first return to state 0, starting at state 0. For
example, if X0 = 0, X1 = 1, and X2 = 0, then T = 2 steps are taken to return from 0 to 0
again. Let G(s) = E(sT ) be the probability generating function of T . Using G(s), find the
probability that the process never returns to state 0, starting from state 0. (3M)

(f) Now suppose that the random walk has a boundary at state 100, as shown in the transition
diagram below. Are your calculations for the probabilities in parts (c), (d), and (e) still valid?
Briefly say why or why not. (2M)

3−1 0 1 2

1/4 1/4 1/4

3/4 3/4

1/4 1/4

3/43/4

1/4

3/43/4

1/4

3/4

99

3/4

100 1

[16 marks]
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4. A man owns N umbrellas. Every day, he walks between his home and his workplace and back
again. On each of his trips, from home to work or from work to home, he carries an umbrella
only if he has an umbrella available and it is raining. It rains on each trip with probability r,
independently of all other trips, where 0 < r < 1.

Let {X1,X2,X3, . . .} be a Markov chain on the state space S = {0, 1, 2, . . . , N}, such that Xt is
the number of umbrellas available on trip t. For example, if trip t is a trip from home to
work, then Xt = n if there are n umbrellas at home, with the other N − n umbrellas being at
work.

(a) Draw the transition diagram when the man owns N = 1 umbrella. Write down the equilibrium
equations, and solve them to find the equilibrium distribution π

T = (π0, π1) when N = 1. (4E)

(b) Draw the transition diagram when the man owns N = 2 umbrellas. By direct substitution
into the appropriate equilibrium equations, verify that the Markov chain has the following
equilibrium distribution when N = 2:

π
T = (π0, π1, π2) =

(

1− r

3− r
,

1

3− r
,

1

3− r

)

.

(4M)

(c) Suppose the man has N umbrellas. We wish to prove that the Markov chain has the following
equilibrium distribution:

π
T
⋆ = (π0, π1, π2, . . . , πN ) =

1

N + 1− r

(

1− r, 1, 1, . . . , 1
)

.

Find E
(

sXt+1 |Xt

)

, and hence show that Xt+1 ∼ Xt if Xt ∼ π⋆. Deduce that π⋆ is the
equilibrium distribution for this Markov chain, and (with justification) state the long-term
probability that the man gets wet on a trip. You may assume that the chain is aperiodic for
any value of N . (6H)

[14 marks]
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5. Let {X1,X2,X3, . . .} be a Markov chain on the state space S = {1, 2, . . . , N}, with transition
matrix P = (pij), such that:

• for i = 2, 3, . . . , N ,

pij =

{

1
i

for j = 1, . . . , i ,

0 for j = i+ 1, . . . , N ;

• for i = 1,

p1j =

{

0 for j = 1, . . . , N − 1 ,

1 for j = N .

(a) Draw the transition diagram for N = 4. (2M)

(b) Does the Markov chain {Xt}t≥1 converge to an equilibrium distribution as t → ∞, for any
N ≥ 2? Explain why or why not. (2M)

(c) For x = 1, 2, . . . , N , define mx to be the expected reaching time for state 1, starting from
state x: that is,

mx = E( number of steps taken to hit state 1 | start at state x ).

We define m1 = 0. Using first-step analysis, show that

mx+1 = mx +
1

x
for x = 2, . . . , N − 1,

and find m2. (4H)

(d) A theorem that we have not studied states that, for an irreducible Markov chain on a finite
state space, the equilibrium distribution π satisfies

πk =
1

Rkk

where Rkk is the expected return time for state k. That is, Rkk is the expected number
of steps needed to return to state k for the first time, starting at state k.

(Note that Rkk ≥ 1, because at least one step is needed to return to state k, starting from
state k. The expected return times differ from the expected reaching times, which are defined
as 0 when starting at the target state.)

Show that the long-run proportion of time that the Markov chain spends in state 1 is

π1 =

(

2 +
N−1
∑

r=1

1

r

)−1

.

You must fully justify all parts of your answer. (4H)

[12 marks]
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6. Let {Z0, Z1, Z2, . . .} be a branching process, where Zn denotes the population size at time n, and
Z0 = 1. Let Y be the family size distribution. Suppose that Y ∼ Geometric(p = 0.5), so that

P(Y = y) =

(

1

2

)y+1

for y = 0, 1, 2, . . .

(a) Let G(s) = E(sY ) be the probability generating function of Y . Show that

G(s) =
1

2− s
,

and state the range of values of s for which this expression is valid. (3E)

(b) Find the probability of eventual extinction, γ. (3E)

(c) Let Gn(s) = E
(

sZn

)

be the probability generating function of the population size at time n.
State (without calculation) the correct expression for Gn+1(s) in terms of Gn(s). That is,
rewrite the expression below, with ⋆ replaced by the correct quantity:

Gn+1(s) = Gn

(

⋆
)

.

(1E)

(d) For Y ∼ Geometric(p = 0.5) as above, prove by mathematical induction that

Gn(s) =
n− (n− 1)s

(n+ 1)− ns
for n = 1, 2, 3, . . .

(6M)

(e) Using the expression shown in (d), state expressions for the following probabilities:

(i) γn, that the process is extinct by generation n: that is, γn = P(Zn = 0);

(ii) ρn, that there are surviving individuals in generation n: that is, ρn = P(Zn > 0). (2M)

(f) An idea of interest in branching processes is the Most Recent Common Ancestor. If there
are z individuals alive in generation n, we can trace back the parents, grandparents, and so
on, for each of the z individuals until we get to a single individual in an earlier generation
who is a common ancestor for all z individuals. The most recent common ancestor is the
most recent of all common ancestors: that is, the common ancestor that lived closest in time
to generation n.

Let Tn be the generation number of the most recent common ancestor for individuals surviving
at generation n. For example, if all individuals at time n had the same parent at time n− 1,
then Tn = n− 1. Alternatively, if there is no common ancestor until the single individual at
generation 0, then Tn = 0. (Note that the individual who started the branching process at
time 0 is always a common ancestor to all individuals alive at generation n.)

For the branching process above, with Y ∼ Geometric(p = 0.5), show that

P(Zn > 0 and Tn = 0) =

∞
∑

y=2

(

1

2

)y+1
{

1−
(

n− 1

n

)y

− y

(

n− 1

n

)y−1( 1

n

)

}

.

Hence find an expression for αn, 0: the conditional probability, given that there are individuals
still alive in generation n, that their most recent common ancestor lived in generation 0.

Lastly, find a similar expression for αn, 1 in terms of αn−1, 0, where αn,1 = P(Tn = 1 |Zn > 0).
(10H)

[25 marks]
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ATTACHMENT

1. Discrete Probability Distributions

Distribution P(X = x) E(X) Var(X) PGF, E(sX)

Geometric(p) pqx (where q = 1− p),
q

p

q

p2
p

1− qs
for x = 0, 1, 2, . . .

Number of failures before the first success in a sequence of independent
trials, each with P(success) = p.

Binomial(n, p)

(

n

x

)

pxqn−x (where q = 1− p), np npq (ps+ q)n

for x = 0, 1, 2, . . . , n.

Number of successes in n independent trials, each with P(success) = p.

Poisson(λ)
λx

x!
e−λ for x = 0, 1, 2, . . . λ λ eλ(s−1)

2. Uniform Distribution: X ∼ Uniform(a, b).
Probability density function, fX(x) = 1

b−a
for a < x < b. Mean, E(X) = a+b

2 .

3. Properties of Probability Generating Functions

Definition: GX(s) = E(sX)

Moments: E(X) = G′
X(1) E

{

X(X − 1) . . . (X − k + 1)

}

= G
(k)
X (1)

Probabilities: P(X = n) =
1

n!
G

(n)
X (0)

4. Geometric Series: 1 + r + r2 + r3 + . . . =

∞
∑

x=0

rx =
1

1− r
for |r| < 1.

Finite sum:

n
∑

x=0

rx =
1− rn+1

1− r
for r 6= 1.

5. Binomial Theorem: For any p, q ∈ R, and integer n > 0, (p + q)n =

n
∑

x=0

(

n

x

)

pxqn−x.

6. Exponential Power Series: For any λ ∈ R,

∞
∑

x=0

λx

x!
= eλ.


