Appendix: Discrete Random Variables

1. Binomial distribution

Notation: $X \sim \text{Binomial}(n, p)$.

<u>Description:</u> number of successes in n independent trials, each with probability p of success.

Probability function:

$$f_X(x) = \mathbb{P}(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 for $x = 0, 1, \dots, n$.

Mean: $\mathbb{E}(X) = np$.

Variance: Var(X) = np(1-p) = npq, where q = 1 - p.

<u>Sum:</u> If $X \sim \text{Binomial}(n, p)$, $Y \sim \text{Binomial}(m, p)$, and X and Y are independent, then

$$X + Y \sim \text{Bin}(n + m, p).$$

2. Poisson distribution

Notation: $X \sim \text{Poisson}(\lambda)$.

<u>Description:</u> arises out of the Poisson process as the number of events in a fixed time or space, when events occur at a constant average rate. Also used in many other situations.

Probability function:
$$f_X(x) = \mathbb{P}(X = x) = \frac{\lambda^x}{x!}e^{-\lambda}$$
 for $x = 0, 1, 2, ...$

Mean: $\mathbb{E}(X) = \lambda$.

Variance: $Var(X) = \lambda$.

<u>Sum:</u> If $X \sim \text{Poisson}(\lambda)$, $Y \sim \text{Poisson}(\mu)$, and X and Y are <u>independent</u>, then

$$X + Y \sim \text{Poisson}(\lambda + \mu).$$

3. Geometric distribution

Notation: $X \sim \text{Geometric}(p)$.

<u>Description:</u> number of failures before the <u>first</u> success in a sequence of independent trials, each with $\mathbb{P}(\text{success}) = p$.

Probability function: $f_X(x) = \mathbb{P}(X = x) = (1 - p)^x p$ for x = 0, 1, 2, ...

Mean:
$$\mathbb{E}(X) = \frac{1-p}{p} = \frac{q}{p}$$
, where $q = 1-p$.

Variance:
$$\operatorname{Var}(X) = \frac{1-p}{p^2} = \frac{q}{p^2}$$
, where $q = 1-p$.

Sum: if $X_1, ..., X_k$ are **independent**, and each $X_i \sim \text{Geometric}(p)$, then $X_1 + ... + X_k \sim \text{Negative Binomial}(k, p)$.

4. Negative Binomial distribution

Notation: $X \sim \text{NegBin}(k, p)$.

<u>Description:</u> number of failures before the <u>kth</u> success in a sequence of independent trials, each with $\mathbb{P}(\text{success}) = p$.

Probability function:

$$f_X(x) = \mathbb{P}(X = x) = \binom{k+x-1}{x} p^k (1-p)^x$$
 for $x = 0, 1, 2, ...$

Mean:
$$\mathbb{E}(X) = \frac{k(1-p)}{p} = \frac{kq}{p}$$
, where $q = 1 - p$.

Variance:
$$Var(X) = \frac{k(1-p)}{p^2} = \frac{kq}{p^2}$$
, where $q = 1 - p$.

<u>Sum:</u> If $X \sim \text{NegBin}(k, p), Y \sim \text{NegBin}(m, p), \text{ and } X \text{ and } Y \text{ are } \underline{\text{independent}},$ then

$$X + Y \sim \text{NegBin}(k + m, p).$$

5. Hypergeometric distribution

Notation: $X \sim \text{Hypergeometric}(N, M, n)$.

Description: Sampling without replacement from a finite population. Given N objects, of which M are 'special'. Draw n objects without replacement. X is the number of the n objects that are 'special'.

Probability function:

$$f_X(x) = \mathbb{P}(X = x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}}$$
 for
$$\begin{cases} x = \max(0, n+M-N) \\ \text{to } x = \min(n, M). \end{cases}$$

<u>Mean:</u> $\mathbb{E}(X) = np$, where $p = \frac{M}{N}$.

<u>Variance:</u> $\operatorname{Var}(X) = np(1-p)\left(\frac{N-n}{N-1}\right)$, where $p = \frac{M}{N}$.

6. Multinomial distribution

Notation: $X = (X_1, \dots, X_k) \sim \text{Multinomial}(n; p_1, p_2, \dots, p_k).$

Description: there are n independent trials, each with k possible outcomes. Let $p_i = \mathbb{P}(\text{outcome } i)$ for i = 1, ..., k. Then $\mathbf{X} = (X_1, ..., X_k)$, where X_i is the number of trials with outcome i, for i = 1, ..., k.

Probability function:

$$f_{\mathbf{X}}(\mathbf{x}) = \mathbb{P}(X_1 = x_1, \dots, X_k = x_k) = \frac{n!}{x_1! \dots x_k!} p_1^{x_1} p_2^{x_2} \dots p_k^{x_k}$$

for
$$x_i \in \{0, ..., n\} \ \forall_i$$
 with $\sum_{i=1}^k x_i = n$, and where $p_i \ge 0 \ \forall_i$, $\sum_{i=1}^k p_i = 1$.

Marginal distributions: $X_i \sim \text{Binomial}(n, p_i) \text{ for } i = 1, \dots, k.$

Mean: $\mathbb{E}(X_i) = np_i \text{ for } i = 1, \dots, k.$

Variance: $Var(X_i) = np_i(1 - p_i)$, for i = 1, ..., k.

Covariance: $cov(X_i, X_j) = -np_ip_j$, for all $i \neq j$.

Continuous Random Variables

1. Uniform distribution

Notation: $X \sim \text{Uniform}(a, b)$.

Probability density function (pdf): $f_X(x) = \frac{1}{b-a}$ for a < x < b.

Cumulative distribution function:

$$F_X(x) = \mathbb{P}(X \le x) = \frac{x-a}{b-a}$$
 for $a < x < b$.

$$F_X(x) = 0$$
 for $x \le a$, and $F_X(x) = 1$ for $x \ge b$.

 $\underline{\mathbf{Mean:}} \quad \mathbb{E}(X) = \frac{a+b}{2}.$

<u>Variance:</u> $Var(X) = \frac{(b-a)^2}{12}$.

2. Exponential distribution

Notation: $X \sim \text{Exponential}(\lambda)$.

Probability density function (pdf): $f_X(x) = \lambda e^{-\lambda x}$ for $0 < x < \infty$.

Cumulative distribution function:

$$F_X(x) = \mathbb{P}(X \le x) = 1 - e^{-\lambda x}$$
 for $0 < x < \infty$.

$$F_X(x) = 0$$
 for $x \leq 0$.

 $\underline{\mathbf{Mean:}} \ \mathbb{E}(X) = \frac{1}{\lambda}.$

<u>Variance:</u> $Var(X) = \frac{1}{\lambda^2}$.

<u>Sum:</u> if X_1, \ldots, X_k are **<u>independent</u>**, and each $X_i \sim \text{Exponential}(\lambda)$, then

$$X_1 + \ldots + X_k \sim \operatorname{Gamma}(k, \lambda).$$

3. Gamma distribution

Notation: $X \sim \text{Gamma}(k, \lambda)$.

Probability density function (pdf):

$$f_X(x) = \frac{\lambda^k}{\Gamma(k)} x^{k-1} e^{-\lambda x}$$
 for $0 < x < \infty$,

where $\Gamma(k) = \int_0^\infty y^{k-1} e^{-y} dy$ (the Gamma function).

Cumulative distribution function: no closed form.

 $\underline{\mathbf{Mean:}} \ \ \mathbb{E}(X) = \frac{k}{\lambda}.$

<u>Variance:</u> $Var(X) = \frac{k}{\lambda^2}$.

<u>Sum:</u> if X_1, \ldots, X_n are **independent**, and $X_i \sim \text{Gamma}(k_i, \lambda)$, then

$$X_1 + \ldots + X_n \sim \text{Gamma}(k_1 + \ldots + k_n, \lambda).$$

4. Normal distribution

Notation: $X \sim \text{Normal}(\mu, \sigma^2)$.

Probability density function (pdf):

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\{-(x-\mu)^2/2\sigma^2\}}$$
 for $-\infty < x < \infty$.

Cumulative distribution function: no closed form.

Mean: $\mathbb{E}(X) = \mu$.

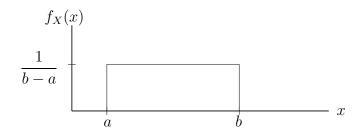
Variance: $Var(X) = \sigma^2$.

<u>Sum:</u> if X_1, \ldots, X_n are **<u>independent</u>**, and $X_i \sim \text{Normal}(\mu_i, \sigma_i^2)$, then

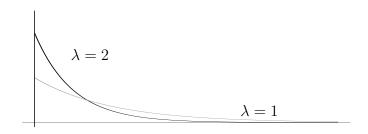
$$X_1 + \ldots + X_n \sim \text{Normal}(\mu_1 + \ldots + \mu_n, \ \sigma_1^2 + \ldots + \sigma_n^2).$$

Probability Density Functions

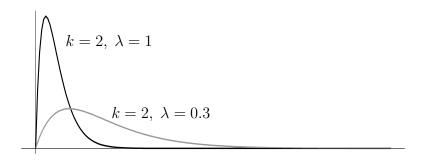
Uniform(a, b)



$\operatorname{Exponential}(\lambda)$



$\overline{\mathrm{Gamma}(k,\,\lambda)}$



$\mathrm{Normal}(\mu,\,\sigma^2)$

