Ch 2: Probability

Chapter 3: Expectation and Variance

(noting) End2)

In the previous chapter we looked at probability, with three major themes:

- 1. Conditional probability: $\mathbb{P}(A \mid B)$.
 - 2. First-step analysis for calculating eventual probabilities in a stochastic process.
- 3. Calculating probabilities for continuous and discrete random variables.

If 2 endings, E (# steps to finish at

In this chapter, we look at the same themes for **expectation** and **variance**. The expectation of a random variable is the

But E(#steps to reach End2) = a

Imagine observing many thousands of independent random values from the random variable of interest. Take the average of these random values. The expectation is the value of this average as the sample size tends to infinity.

We will repeat the three themes of the previous chapter, but in a different order.

- 1. Calculating expectations for continuous and discrete random variables.
 - 2. Conditional expectation: the expectation of a random variable X, conditional on the value taken by another random variable Y. If the value of Y affects the value of X (i.e. X and Y are dependent), the conditional expectation of X given the value of Y will be different from the overall expectation of X.
 - 3. First-step analysis for calculating the expected amount of time needed to reach a particular state in a process (e.g. the expected number of shots before we win a game of tennis).

We will also study similar themes for variance.

The mean, expected value, or expectation of a random variable X is written as $\mathbb{E}(X)$ or μ_X . If we observe N random values of X, then the mean of the N values will be approximately equal to $\mathbb{E}(X)$ for large N. The expectation is defined differently for continuous and discrete random variables.

Definition: Let X be a continuous random variable with ψ .d.f. $f_X(x)$. The expected value of X is EX is a real number

$$E(X) = \int_{-\infty}^{\infty} x f_{X}(x) dx$$

Definition: Let X be a discrete random variable with probability function $f_X(x)$. The expected value of X is

$$\mathbb{E}(X) = \sum_{x} \pi f_{x}(x) = \sum_{x} \pi P(X=x)$$

Expectation of g(X)

Let g(X) be a function of X. We can imagine a long-term average of g(X) just as we can imagine a long-term average of X. This average is written as $\mathbb{E}(g(X))$. Imagine observing X many times (N times) to give results x_1, x_2, \ldots, x_N . Apply the function g to each of these observations, to give $g(x_1), \ldots, g(x_N)$. The mean of $g(x_1), g(x_2), \ldots, g(x_N)$ approaches $\mathbb{E}(g(X))$ as the number of observations N tends to infinity.

Definition: Let X be a continuous random variable, and let g be a function. The expected value of g(X) is

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f_{X}(x) dx$$

Definition: Let X be a discrete random variable, and let g be a function. The expected value of g(X) is

$$\mathbb{E}\left(g(X)\right) = \sum_{n} g(n) f_{\chi}(n) = \sum_{n} g(n) P(X=x)$$

Expectation of XY: the definition of $\mathbb{E}(XY)$

Suppose we have two random variables, X and Y. These might be independent, in which case the value of X has no effect on the value of Y. Alternatively, X and Y might be *dependent*: when we observe a random value for X, it might influence the random values of Y that we are most likely to observe. For example, X might be the height of a randomly selected person, and Y might be the weight. On the whole, larger values of X will be associated with larger values of Y.

To understand what $\mathbb{E}(XY)$ means, think of observing a large number of pairs $(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)$. If X and Y are dependent, the value x_i might affect the value y_i , and vice versa, so we have to keep the observations together in their pairings. As the number of pairs N tends to infinity, the average $\frac{1}{N} \sum_{i=1}^{N} x_i \times y_i$ approaches the expectation $\mathbb{E}(XY)$.

For example, if X is height and Y is weight, $\mathbb{E}(XY)$ is the average of (height \times weight). We are interested in $\mathbb{E}(XY)$ because it is used for calculating the *covariance* and *correlation*, which are measures of how closely related X and Y are (see Section 3.2).

Properties of Expectation

i) Let g and h be functions, and let a and b be constants. For any random variable X (discrete or continuous),

$$\mathbb{E}\Big\{ag(X) + bh(X)\Big\} = a\mathbb{E}\Big\{g(X)\Big\} + b\mathbb{E}\Big\{h(X)\Big\}.$$

In particular,

$$\mathbb{E}(aX + b) = a\mathbb{E}(X) + b.$$

ii) Let X and Y be ANY random variables (discrete, continuous, independent, or non-independent). Then $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$.

More generally, for ANY random variables X_1, \ldots, X_n ,

$$\mathbb{E}(X_1 + \ldots + X_n) = \mathbb{E}(X_1) + \ldots + \mathbb{E}(X_n).$$

0

iii) Let X and Y be **independent** random variables, and g, h be functions. Then

X and Y be independent random variables, and
$$g, h$$
 be functions. Then
$$\mathbb{E}(XY) = (\mathbb{E}X)(\mathbb{E}Y) \text{ only When } X \text{ and } Y$$
are indept.
$$\mathbb{E}\left\{g(X)h(Y)\right\} = \left\{\mathbb{E}\left(g(X)\right)\right\} \left\{\mathbb{E}\left(h(Y)\right)\right\} \text{ indept.}$$

Notes: 1. $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ is ONLY generally true if X and Y are

INDEPENDENT.

2. If X and Y are independent, then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$. However, the converse is not generally true: it is possible for $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ even though X and Y are dependent.

Probability as an Expectation

Let A be any event. We can write $\mathbb{P}(A)$ as an expectation, as follows. Define the *indicator function*:

Then I_A is a **random variable**, and

$$\mathbb{E}(I_A) = \sum_{r=0}^{\infty} r P(I_A = r)$$

$$= O * P(I_A = 0) + 1 * P(I_A = 1)$$

$$= P(I_A = 1)$$

$$= P(A occurs)$$

$$= P(A)$$

Thus

$$P(A) = \mathbb{E}(I_A)$$
 for any event A .

2

 $f_{x}(n)$

3.2 Variance, covariance, and correlation

The variance of a random variable X is a measure of how S predomitis. Are the values of X clustered tightly around their mean, or can we commonly observe values of X a long way from the mean value? The variance measures how far the values of X are from their mean, on average.

Definition: Let X be any random variable. The **variance** of X is

$$Var(X) = \mathbb{E}\left\{ (X - \mu_X)^2 \right\} = \mathbb{E}(X^2) - (\mathbb{E}X)^2$$

The variance is the mean squared deviation of a random variable from its own mean.

If X has high variance, we can observe values of X a long way from the mean.

If X has low variance, the values of X tend to be clustered tightly around the mean value.

Example: Let X be a continuous random variable with p.d.f.

$$f_X(x) = \begin{cases} 2x^{-2} & \text{for } 1 < x < 2, \\ 0 & \text{otherwise.} \end{cases}$$

Find $\mathbb{E}(X)$ and Var(X).

$$E(x) = \int_{-\infty}^{\infty} \pi f_x(n) dx = \int_{1}^{2} \pi \cdot 2\pi^{-2} dx$$

$$= \int_{1}^{2} 2\pi^{-1} dx$$

$$= \left[2 \log \pi \right]_{1}^{2}$$

$$= 2 \log 2 - 2 \log 1$$

$$= 2 \log 2$$

Covariance only measures

linear relationship:

this X 4 Y may

have covariance

close to 0

but they do

have a strong

relationship

It's just not a

linear relationship,

$$Vor(X) = \mathbb{E}(X^{2}) - (\mathbb{E}X)^{2}$$

$$= \mathbb{E}(X*X) - (\mathbb{E}X)*(\mathbb{E}X)$$

$$cov(X,Y) = \mathbb{E}(X*Y) - (\mathbb{E}X)*(\mathbb{E}Y)$$

$$cov(X,Y) = \mathbb{E}(X-M)*(Y-MY)$$

$$X \notin Y \text{ are positively related} : \text{ big } X \longleftrightarrow \text{ big } Y$$

small X () small Y

positive covariance

X & Y are regatively related; big X (-> small Y small X (-> big Y regative covariance.

$$Var(X) = E(X^{2}) - (EX)^{2}$$

$$= \int_{-\infty}^{\infty} n^{2} f_{X}(n) dn - (2 log 2)^{2}$$

$$= \int_{1}^{2} n^{2} \cdot 2n^{-2} dn - 4 (log 2)^{2}$$

$$= \int_{1}^{2} 2 dn - 4 (log 2)^{2}$$

$$= \left[2n \right]_{1}^{2} - 4 (log 2)^{2}$$

$$= 4 - 2 - 4 (log 2)^{2}$$

$$= 0.0782$$

$$= log = ln$$

Covariance

Covariance is a measure of the association or dependence between two random variables X and Y. Covariance can be either positive or negative. (Variance is always positive.)

Definition: Let X and Y be any random variables. The <u>covariance</u> between X and Y is given by

$$Cov(X,Y) = \mathbb{E} \{ (X-\mu_X)(Y-\mu_Y) \} = \mathbb{E}(XY) - (\mathbb{E}X)(\mathbb{E}Y)$$

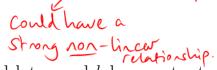
where $\mu_X = \mathbb{E}X$ and $\mu_Y = \mathbb{E}Y$ mean of the product minus the product of the means:

1. cov(X,Y) will be positive if large values of X tend to occur with large values of Y, and small values of X tend to occur with small values of Y. For example, if X is height and Y is weight of a randomly selected person, we would expect cov(X,Y) to be positive.

cov(X,Y) > 0.

- 2. cov(X, Y) will be **regarder** cif large values of X tend to occur with small values of Y, and small values of X tend to occur with large values of Y. For example, if X is age of a randomly selected person, and Y is heart rate, we would expect X and Y to be negatively correlated (older people have slower heart rates).
- 3. If X and Y are independent, then there is no pattern between large values of X and large values of Y, so cov(X, Y) = 0. However, cov(X, Y) = 0 does NOT imply that X and Y are independent, unless X and Y are Normally distributed.

Properties of Variance



i) Let g be a function, and let a and b be constants. For any random variable X (discrete or continuous),

$$V\omega \left\{ ag(X) + b \right\} = a^2 V\omega \left(g(X) \right).$$

$$lar, \quad V\omega \left(aX + b \right) = a^2 V\omega \left(X \right)$$

ii) Let X and Y be **independent** random variables. Then

$$Var(X+Y) = Var(X) + Var(Y)$$
 indept

iii) If X and Y are **NOT independent**, then

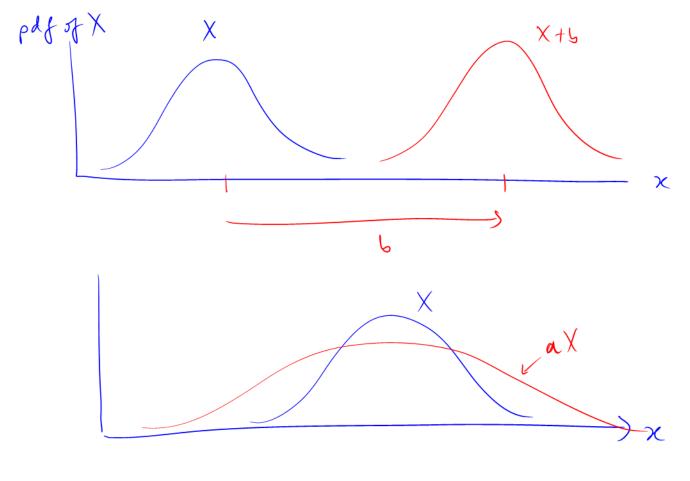
$$V\omega(X+Y) = V\omega(X) + V\omega(Y) + 2 cov(X,Y)$$

Correlation (non-examinable)

The correlation coefficient of X and Y is a measure of the linear association between X and Y. It is given by the covariance, scaled by the overall variability in X and Y. As a result, the correlation coefficient is always between -1 and +1, so it is easily compared for different quantities.

Definition: The <u>correlation</u> between X and Y, also called the <u>correlation coefficient</u>, is given by

$$corr(X, Y) = \frac{cov(X, Y)}{\sqrt{Var(X)Var(Y)}}.$$



$$Y = -X$$

$$Var(X+Y) = Var(X-X) = Var(0) = 0$$

 $Var(X+Y) \neq Var(X) + Var(Y)$ when non-ind.

The correlation measures <u>linear</u> association between X and Y. It takes values only between -1 and +1, and has the same sign as the covariance.

The correlation is ± 1 if and only if there is a perfect linear relationship between X and Y, i.e. $\operatorname{corr}(X,Y)=1 \iff Y=aX+b$ for some constants a and b.

The correlation is 0 if X and Y are independent, but a correlation of 0 does not imply that X and Y are independent.

3.3 Conditional Expectation and Conditional Variance

Throughout this section, we will assume for simplicity that X and Y are discrete random variables. However, exactly the same results hold for continuous random variables too.

Suppose that X and Y are discrete random variables, possibly dependent on each other. Suppose that we fix Y at the value y. This gives us a set of conditional probabilities $\mathbb{P}(X = x \mid Y = y)$ for all possible values x of X. This is called the conditional distribution of X, given Y = y.

Definition: Let X and Y be discrete random variables. The **conditional probability** function of X, given that Y = y, is:

$$P(X=x|Y=y) = \underbrace{P(X=x \text{ AND } Y=y)}_{P(Y=y)}$$

We write the conditional probability function as:

$$f_{XY}(xy) = P(X=x|Y=y).$$

Note: The conditional probabilities $f_{X|Y}(x|y)$ sum to one, just like any other probability function:

$$\sum_{x} \mathbb{P}(X = x \mid Y = y) = \sum_{x} \mathbb{P}_{\{Y = y\}}(X = x) = 1,$$

using the subscript notation $\mathbb{P}_{\{Y=y\}}$ of Section 2.3.

50

We can also find the expectation and variance of X with respect to this conditional distribution. That is, if we know that the value of Y is fixed at y, then we can find the mean value of X given that Y takes the value y, and also the variance of X given that Y = y.

Definition: Let X and Y be discrete random variables. The <u>conditional expectation</u> of X, given that Y = y, is

$$M_{X|Y=y} = \mathbb{E}(X|Y=y) = \sum_{x} x f_{X|Y}(x|y)$$

$$= \sum_{x} x P(X=x|Y=y)$$

 $\mathbb{E}(X | Y = y)$ is the mean value of X, when Y is fixed at y.

Conditional expectation as a random variable

The unconditional expectation of X, $\mathbb{E}(X)$, is just a number :

e.g.
$$EX = 60$$
 or $EX = 72.1$.

The conditional expectation, $\mathbb{E}(X | Y = y)$, is a number depending on y.

If Y has an influence on the value of X, then Y will have an influence on the average value of X. So, for example, we would expect $\mathbb{E}(X|Y=2)$ to be different from $\mathbb{E}(X|Y=3)$. $\mathbb{E}(\text{weight}|\text{height}=180\text{m})$

We can therefore view $\mathbb{E}(X | Y = y)$ as a function of y, say $\mathbb{E}(X | Y = y) = h(y)$

To evaluate this function, $h(y) = \mathbb{E}(X \mid Y = y)$, we:

- i) fix Y at the closer value y,
- ii) find the expectation of X when Y is fixed at this value

h(y) h(Y) ; random variable However, we could also evaluate the function at a random value of Y:

- i) observe a random value of Y,
- ii) fix Y at that observed random value
- iii) evaluate E(X | Y = observed random value).

We obtain a random variable: E(X|Y) = h(Y).

The randomness comes from the randomness in Y, not in X.

Conditional expectation, $\mathbb{E}(X|Y)$ is a random variable with randomness inherited from Y, not X

Example: Suppose $Y = \begin{cases} 1 \text{ with probability } 1/8, \\ 2 \text{ with probability } 7/8, \end{cases}$

and $X \mid Y = \begin{cases} 2Y & \text{with probability } 3/4, \\ 3Y & \text{with probability } 1/4. \end{cases}$

(X | Y=2)= { 4 w.p. 3/4 6 w.p. 1/4

Conditional expectation of X given Y = y is a number depending on y:

If Y=1, then $X | (Y=1) = \begin{cases} 2 & \text{w.p. } 3/4 \end{cases} \leftarrow \begin{cases} 3 & \text{w.p. } 1/4 \end{cases} \leftarrow \begin{cases} 3 & \text{w.p. } 1$

So $\mathbb{E}(X|Y=1) = 2*\frac{3}{4} + 3*\frac{1}{4} =$ If Y=2, then $X|(Y=2) = \{4 \text{ W.p. } 3/4\}$

So $\mathbb{E}(X|Y=2) = 4*\frac{3}{4} + 6*\frac{1}{4} =$

So $\mathbb{E}(X \mid Y=y) = \begin{cases} \frac{\pi}{4} & \text{if } y=1, \\ \frac{18}{4} & \text{if } y=2 \end{cases}$

E(XIT=y) is a number depending on y, i.e. a FUNCTION

Conditional expectation of X given random Y is a random variable:

From above,
$$E(X|Y) = \begin{cases} 9/4 & \text{if } Y=1 \text{ (probability } \frac{1}{8}) \\ 18/4 & \text{if } Y=2 \text{ (notability } \frac{1}{8}) \end{cases}$$

So $E(X|Y) = \begin{cases} 9/4 & \text{with probability } \frac{1}{8} \\ 18/4 & \text{if } \frac{1}{8} \end{cases}$

So $E(X|Y)$ is a random variable.

The randomness in $E(X|Y)$ is inherited from Y , not X . not X 's.

Conditional expectation is a very useful tool for finding the unconditional expectation of X (see below). Just like the Partition Theorem, it is useful because it is often easier to specify conditional probabilities than to specify overall probabilities.

Conditional variance

The conditional variance is similar to the conditional expectation.

- Var(X | Y = y) is the variance of X, when Y is fixed at the value Y = y.
- Var(X | Y) is a random variable, giving the variance of X when Y is fixed at a value to be selected randomly.

Definition: Let X and Y be random variables. The conditional variance of X, given Y, is given by

$$Var(X|Y) = \mathbb{E}(X^2|Y) - \{\mathbb{E}(X|Y)\}^2$$

$$= \mathbb{E}\{(X-\mu_X)^2 \mid Y\}$$
Like $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}X)^2 = \mathbb{E}((X-\mu_X)^2)$ but now all $\mathbb{E}'s$ are conditional: $\mathbb{E}(\cdot |Y)$.

Like expectation, $Var(X|Y=y)$ is a number depending on y (a function of y), while $Var(X|Y)$ is a random variable with randomness inherited from Y .

Laws of Total Expectation and Variance

If all the expectations below are finite, then for ANY random variables X and Y, we have:

LEARN Law of lotal $\mathbb{E}_{\times} \left(\mathbb{E} \left(X \mid Y \right) \right)'$ Expectation Ex is new notation, meaning "expectation over Y" or re calculation to tail expectation as easy as we can! "expectation with respect to the probs ii)

 $\mathbb{E}(g(X)) = \mathbb{E}_{Y} \{ \mathbb{E}(g(X)|Y) \}$ for any function

Law of Total Variance:

Vor (X) = E, (Vor (XIY)) + Vor (E(X

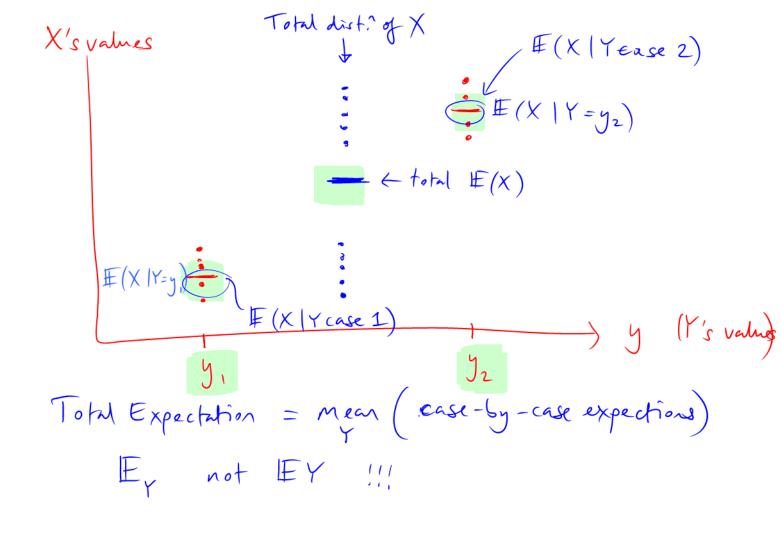
Note: \mathbb{E}_Y and Var_Y denote expectation over Y and variance over Y,

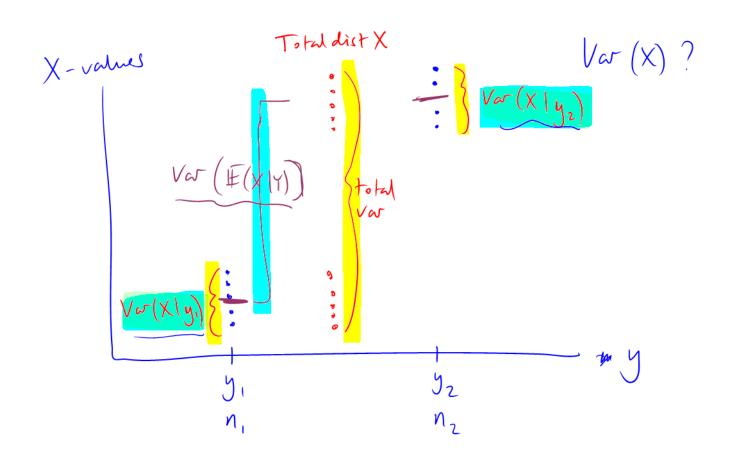
i.e. the expectation or variance is computed over the distribution of the random variable Y.

The Law of Total Expectation says that the total average is the average of case-by-case averages.

- E(X): • The total average is
- The case-by-case averages are $\mathbb{E}(X|Y)$ for the different values of I;
- The average of case-by-case averages is the average over Y of the Y-case averages: EY { E(XIY) }

"the mean of the means is equal to the mean!





Example: In the example above, we had: $\underline{\mathbb{E}(X|Y)} = \begin{cases} 9/4 \text{ with probability } 1/8, \\ 18/4 \text{ with probability } 7/8. \end{cases}$ The total average is:

$$E(X) = E_Y \left\{ E(X|Y) \right\} = \frac{9}{4} * \frac{1}{8} + \frac{18}{4} * \frac{7}{8} = 4.22$$

(i) is a special case of (ii), so we just need to prove (ii). Begin at RHS:

RHS =
$$\mathbb{E}_{Y} \left[\mathbb{E}(g(X) \mid Y) \right] = \mathbb{E}_{Y} \left[\sum_{x} g(x) \mathbb{P}(X = x \mid Y) \right]$$

= $\sum_{y} \left[\sum_{x} g(x) \mathbb{P}(X = x \mid Y = y) \right] \mathbb{P}(Y = y)$
= $\sum_{y} \sum_{x} g(x) \mathbb{P}(X = x \mid Y = y) \mathbb{P}(Y = y)$
= $\sum_{x} g(x) \sum_{y} \mathbb{P}(X = x \mid Y = y) \mathbb{P}(Y = y)$
= $\sum_{x} g(x) \mathbb{P}(X = x)$ (partition rule)
= $\mathbb{E}(g(X)) = \text{LHS}.$

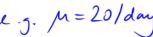
(iii) Wish to prove $Var(X) = \mathbb{E}_Y[Var(X \mid Y)] + Var_Y[\mathbb{E}(X \mid Y)]$. Begin at RHS: $\mathbb{E}_Y[Var(X \mid Y)] + Var_Y[\mathbb{E}(X \mid Y)]$

$$= \mathbb{E}_{Y} \left\{ \mathbb{E}(X^{2} \mid Y) - (\mathbb{E}(X \mid Y))^{2} \right\} + \left\{ \mathbb{E}_{Y} \left\{ [\mathbb{E}(X \mid Y)]^{2} \right\} - \left[\underbrace{\mathbb{E}_{Y} (\mathbb{E}(X \mid Y))}_{\mathbb{E}(X) \text{ by part (i)}} \right]^{2} \right\}$$

$$= \underbrace{\mathbb{E}_{Y} \{ \mathbb{E}(X^{2} \mid Y) \}}_{\mathbb{E}(X^{2}) \text{ by part (i)}} - \mathbb{E}_{Y} \{ [\mathbb{E}(X \mid Y)]^{2} \} + \mathbb{E}_{Y} \{ [\mathbb{E}(X \mid Y)]^{2} \} - (\mathbb{E}X)^{2}$$

$$= \mathbb{E}(X^{2}) - (\mathbb{E}X)^{2}$$

$$= Var(X) = LHS.$$



Fraser runs a dolphin-watch business. Every day, he is unable to run the trip due to bad weather with probability p,

independently of all other days. Fraser works every day except the bad-weather days, which he takes as holiday.

Let Y be the number of consecutive days Fraser has to work between badweather days. Let X be the total number of customers who go on Fraser's trip in this period of Y days. Conditional on Y, the distribution of X is

$$(X \mid Y) \sim \text{Poisson}(\mu Y).$$

- (a) Name the distribution of Y, and state $\mathbb{E}(Y)$ and Var(Y).
 - (b) Find the expectation and the variance of the number of customers Fraser sees between bad-weather days, $\mathbb{E}(X)$ and Var(X).
- (a) Let "success" = "holiday" = "bad-weather day" : prob

 "failure" = "work day" = "good veather day" Y = # failures before the next first success

 So $Y \sim Geometric(p)$ $E(Y) = \frac{1-p}{p}$ $Var(Y) = \frac{1-p}{p^2}$ e.g. $P = \frac{1}{4}$ $E(Y) = \frac{3}{11} = \frac{3}{11}$
- (b) We know (XIY) ~ Poisson (MY)

 So E(XIY) = MY

 and Var(XIY) = MY

$$\frac{1}{P} = \frac{M(1-p)}{P}$$

By the Law of Total Variance:

$$Var(X) = E_{Y} \left\{ Var(X|Y) \right\} + Var_{Y} \left\{ E(X|Y) \right\}$$

$$= E_{Y} \left(MY \right) + Var_{Y} \left(MY \right)$$

$$= M E(Y) + M^{2} Var(Y)$$

$$= M \left(\frac{1-p}{p} \right) + M^{2} \left(\frac{1-p}{p^{2}} \right) L_{Y} (a)$$

$$= \left(\frac{1-p}{p^{2}} \right) M(p+M)$$

Checking your answer in R:

If you know how to use a statistical package like R, you can check your answer to the question above as follows.

```
> # Pick a value for p, e.g. p = 0.2.
> # Pick a value for mu, e.g. mu = 25
>
> # Generate 10,000 random values of Y ~ Geometric(p = 0.2):
> y <- rgeom(10000, prob=0.2)
>
> # Generate 10,000 random values of X conditional on Y:
> # use (X | Y) ~ Poisson(mu * Y) ~ Poisson(25 * Y)
> x <- rpois(10000, lambda = 25*y)</pre>
```

$$n = (63, 18, 58, ----)$$

mean (n) ver (x)

```
> # Find the sample mean of X (should be close to E(X)):
> mean(x)
[1] 100.6606
> # Find the sample variance of X (should be close to var(X)):
> var(x)
[1] 12624.47
                                                         Ho: men=100
> # Check the formula for E(X):
> 25 * (1 - 0.2) / 0.2
[1] 100
> # Check the formula for var(X):
> 25 * (1 - 0.2) * (0.2 + 25) / 0.2^2
[1] 12600
```

The formulas we obtained by working give $\mathbb{E}(X) = 100$ and Var(X) = 12600. The sample mean was $\bar{x} = 100.6606$ (close to 100), and the sample variance was 12624.47 (close to 12600). Thus our working seems to have been correct.

2. Randomly stopped sum

This model arises very commonly in stochastic processes. A random number N of events occur, and each event i has associated with it some cost, penalty, or reward X_i . The question is to find the mean and variance of the total cost / reward:

The difficulty is that the number N of terms in the sum is itself random.

The difficulty is that the number N of terms in the sum is itself random. T_N is called a randomly Stopped sum: it is a sum of Xi's, randomly stopped at the random number of N terms. N=#custs

Example: Think of a cash machine, which has to be loaded with enough money to cover the day's business. The number of customers per day is a random number N. Customer i withdraws a random amount X_i . The total amount withdrawn during the day is a randomly stopped sum: $T_N = (X_1) + \ldots + (X_N)$

Sun is randomly stopped at N terms

Cash machine example

The citizens of Remuera withdraw money from a cash machine according to the following probability function (X):

Amount,
$$x$$
 (\$) 50 100 200 $\mathbb{P}(X = x)$ 0.3 0.5 0.2

The number of customers per day has the distribution $N \sim \text{Poisson}(\lambda)$.

Let $T_N = X_1 + X_2 + \ldots + X_N$ be the total amount of money withdrawn in a day, where each X_i has the probability function above, and X_1, X_2, \ldots are independent of each other and of N.

 T_N is a randomly stopped sum, stopped by the random number of N customers.

- (a) Show that $\mathbb{E}(X) = 105$, and Var(X) = 2725.
- (b) Find $\mathbb{E}(T_N)$ and $\text{Var}(T_N)$: the mean and variance of the amount of money withdrawn each day.

Solution

(a) Exercise.

(b) Let $T_N = \sum_{i=1}^{N} X_i$. If we know N, it would be easy to find $\mathbb{E}(T_N)$ and \mathbb{V} or (T_N) as mean \mathbb{C} ver of a Sum of indept r.v.; So "pretend" we know N, and use conditional $\mathbb{E}(\cdot | N)$ and \mathbb{V} or $(\cdot | N)$. $\mathbb{E}(T_N | N) = \mathbb{E}(X_1 + X_2 + \dots + X_N | N)$ $= \mathbb{E}(X_1 + \dots + X_N) \text{ be cause all } X_i$ is are indept of N, where N is now treated as a constant $= \mathbb{E}(X_1) + \mathbb{E}(X_2) + \dots + \mathbb{E}(X_N) \quad \text{don't need indep}$ $= \mathbb{N} \times \mathbb{E}(X) \text{ be cause all } X_i$ is have the same mean, $\mathbb{E}(X_1) = \mathbb{E}(X_1) = \mathbb{E}(X_1)$

 $\mathbb{E}(T_N|N) = 105N.$ $N \sim Poisson(X)$ $N = \mathbb{E}_N \left\{ \mathbb{E}(T_N|N) \right\} = \mathbb{E}_N \left(105N \right) = 105 \mathbb{E}N = 105 \right\}.$

$$Var(T_N|N) = Var(X_1 + ... + (X_N)|N)$$

$$= Var(X_1 + ... + (X_N)|N)$$
where N is now considered constant

(because Xi's are independent of N). I mark) = Var (X1) + + Var (XN) because Xi's are indept of each other.

= NVar(X) because all Xi's have the same variance which is Var (X).

i. Var (TNN) = 2725 N. (using (a)).

:.
$$V_{\alpha r}(T_{N}) = E_{N} \{ V_{\alpha r}(T_{N} | N) \} + V_{\alpha r} \{ E(T_{N} | N) \}$$

$$= E_{N} \{ 2725 N \} + V_{\alpha r} \{ 105 N \}$$

$$= 2725 E(N) + 105^{2} V_{\alpha r}(N)$$

$$= 2725 \lambda + 105^{2} \lambda$$

$$= 13750 \lambda$$

For a quick (crude) way to cover = 97.5% of days' business, use

Loaded # Money = E(Tw) + 1.96 JVar (Tw) = 105 \ + 1.96 \[13750\ Central Limit Theorem.

Check in R (advanced)

```
> # Create a function tn.func to calculate a single value of T_N
> # for a given value N=n:
> tn.func <- function(n){</pre>
         sum(sample(c(50, 100, 200), n, replace=T,
         prob=c(0.3, 0.5, 0.2))
   }
> # Generate 10,000 random values of N, using lambda=50:
> N <- rpois(10000, lambda=50)</pre>
> # Generate 10,000 random values of T_N, conditional on N:
> TN <- sapply(N, tn.func)</pre>
> # Find the sample mean of T_N values, which should be close to
> # 105 * 50 = 5250:
> mean(TN)
[1] 5253.255
> # Find the sample variance of T_N values, which should be close
> # to 13750 * 50 = 687500:
> var(TN)
[1] 682469.4
```

All seems well. Note that the sample variance is often some distance from the true variance, even when the sample size is 10,000.

General result for randomly stopped sums:

Suppose X_1, X_2, \ldots each have the same mean μ and variance σ^2 , and X_1, X_2, \ldots , and N are mutually independent. Let $T_N = X_1 + \ldots + X_N$ be the randomly stopped sum. By following similar working to that above:

$$\mathbb{E}(T_N) = \mathbb{E}\left\{\sum_{i=1}^N X_i\right\} = \mu \mathbb{E}(N) \quad \text{Wald's Equation . 72}$$

$$\text{Var}(T_N) = \text{Var}\left\{\sum_{i=1}^N X_i\right\} = \sigma^2 \mathbb{E}(N) + \mu^2 \text{Var}(N).$$

$$\text{Copt due to } \text{var of } \text{V's} \quad \text{var in } N$$
The between sets of the s

3.5 First-Step Analysis for calculating expected reaching times

Remember from Section 2.6 that we use <u>First-Step Analysis</u> for finding the <u>probability</u> of eventually reaching a particular state in a stochastic process. First-step analysis for probabilities uses <u>Conditional probability</u> and the Partition Theorem (Law of Total Probability).

In the same way, we can use first-step analysis for finding the expected reaching the for a state.

Process > Stop E (time to stop)?

This is the expected number of steps that will be needed to reach a particular state from a specified start-point, or the expected length of time it will take to get there if we have a continuous time process.

Just as first-step analysis for probabilities uses conditional probability and the law of total probability (Partition Theorem), first-step analysis for expectations uses conditional expectation and the Law of Total Expectation.

First-step analysis for probabilities:

The first-step analysis procedure for probabilities can be summarized as follows:

P(evertual goal) = [St-step options] P(evertual goal option) P(option)
Sample space =
$$\Omega = {\text{all routes from current position to end}}$$

This is because the first-step options form a partition of the sample space I.

First-step analysis for expected reaching times:

The expression for expected reaching times is very similar:

62

This follows immediately from the law of total expectation:

$$\mathbb{E}(X) = \mathbb{E}_{Y} \{ \mathbb{E}(X|Y) \} = \sum_{y} \mathbb{E}(X|Y=y) \mathbb{P}(Y=y)$$

Let X be the reaching time, and let Y be the label for possible options:

We then obtain:

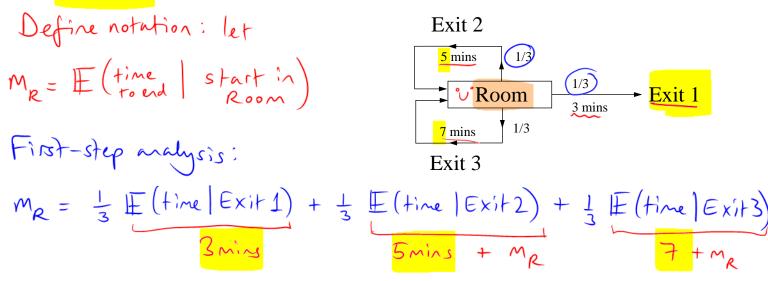
$$\mathbb{E}(X) = \sum_{y} \mathbb{E}(X | Y = y) P(Y = y)$$

Example: Mouse in a maze

A mouse is trapped in a <u>room with three exits</u> at the centre of a maze.

- Exit 1 leads outside the maze after 3 minutes.
- Exit 2 leads back to the room after 5 minutes.
- Exit 3 leads back to the room after 7 minutes.

Every time the mouse makes a choice, it is equally likely to choose any of the three exits. What is the expected time taken for the mouse to leave the maze?



$$M_R = 15 \text{ mins}$$

Expected the to get out, starting from the room.

(Heavy notation way:

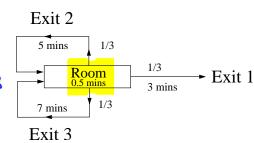
$$E(X|Y=1) = 3 \text{ mins}$$

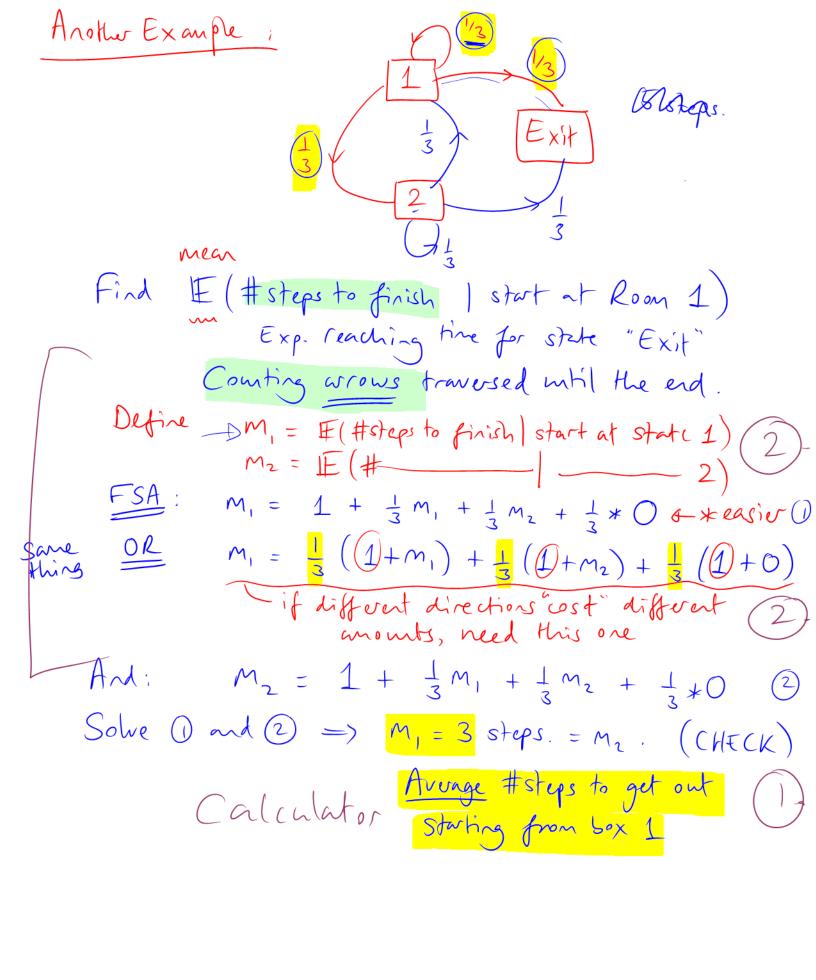
 $E(X|Y=2) = 5 + E(X) \text{ etc.}$) Don't use

Two approaches to first-step analysis for expectations

In some problems, all possible first-step options incur the same initial time penalty.

For example, in the mouse example, suppose that the mouse always takes 0.5 mins to choose an exit every time it enters the room.





In this case, we have two choices:

1. Add the extra 0.5 mins onto each option separately:

$$M_R = \frac{1}{3} \left(\frac{0.5}{10.5} + 3 \right) + \frac{1}{3} \left(\frac{0.5}{10.5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} \right) + \frac{1}{3} \left(\frac{0.5}{10.5} + \frac{1}{5} + \frac{1}{5} \right)$$

Better: 2. Add the 0.5 mins on at the beginning:

$$M_R = 0.5 + \frac{1}{3}(3) + \frac{1}{3}(5 + M_R) + \frac{1}{3}(7 + M_R).$$

In each case, we will get the same answer (check). This is because the option probabilities sum to 1_{\bullet}

3.6 Probability as a conditional expectation

Recall from Section 3.1 that for any event A, we can write $\mathbb{P}(A)$ as an expectation as follows.

Define the indicator random variable: $I_A = \begin{cases} 1 & \text{if event } A \text{ occurs,} \\ 0 & \text{otherwise.} \end{cases}$

Then
$$\mathbb{E}(I_A) = \mathbb{P}(I_A = 1) = \mathbb{P}(A)$$
.

We can refine this expression further, using the idea of conditional expectation. Let Y be any random variable. Then

any random variable. Then
$$P(A) = \mathbb{E}_{Y} \{ \mathbb{E}(I_{A}|Y) \} \quad \text{Law of Total}$$

$$\mathbb{E}_{Y} \{ \mathbb{E}(I_{A}|Y) \} \quad \mathbb{E}_{Y} \{ \mathbb{E}(I_{A}|Y) \} \quad \mathbb{E}_{X} \}$$

$$= 1$$

$$= 1$$

$$= 3.3.$$

But
$$E(I_A | Y) = \sum_{r=0}^{1} r P(I_A = r | Y)$$

$$= 0 * P(I_A \neq 0 | Y) + 1 * P(I_A = 1 | Y)$$

$$= P(I_A = 1 | Y)$$

$$= P(A | Y).$$

Thus if Y is discrete:
$$P(A) = \sum_{y} P(A \mid Y = y) P(Y =$$

This means that for any random variable X (discrete or continuous), and for any set of values S (a discrete set or a continuous set), we can write:

event
$$A = \{X \in S\}$$

• for any discrete random variable Y,

$$P(X \in S) = \sum_{y} P(X \in S | Y = y) P(Y = y)$$

• for any continuous random variable Y,

Example of probability as a conditional expectation: winning a lottery

Suppose that a million people have bought tickets for the weekly lottery draw. Each person has a probability of one-in-a-million of selecting the winning numbers. If more than one person selects the winning numbers, the winner will be shosen at random from all those with matching numbers.

You watch the lottery draw on TV and your numbers match the winning numbers!!! Only a one-in-a-million chance, and there were only a million players, but what is your probability of winning the prize....?

Define X to be the number of matching tickets out of the 1 million tickets sold. (If you are lucky, X = 1 and it's you!)

If there are 1 million tickets and each ticket has a one in a million chance of having the winning numbers, then

The relationship $X \sim \text{Poisson}(1)$ arises because of the Poisson approximation to the Binomial distribution.

(a) You have a matching ticket, so we know that . Let Y be the number of matching tickets, given that there is at least one. Find the probability function of Y, $f_Y(y)$.

(b) What is the probability that there is only one matching ticket, given that there is at least one (i.e. yours)?

(c) The prize is chosen at random from all those who have matching tickets. What is the probability that you win?

Using a computer, this probability evaluates to Disappointing...?

Whole example, sample space $\Omega = \{all draws where I have matchine \}$

Example of probability as a conditional expectation: winning a lottery

Suppose that a million people have bought tickets for the weekly lottery draw. Each person has a probability of one-in-a-million of selecting the winning numbers. If more than one person selects the winning numbers, the winner will be chosen at random from all those with matching numbers.

You watch the lottery draw on TV and your numbers match the winning numbers!!! Only a one-in-a-million chance, and there were only a million players, but what is your probability of winning the prize....?

Define Y to be the number of OTHER matching tickets out of the OTHER 1 million tickets sold. (If you are lucky, Y = 0 so you are the only person who can win the prize!)

If there are 1 million tickets and each ticket has a one in a million chance of having the winning numbers, then

The relationship $Y \sim \text{Poisson}(1)$ arises because of the Poisson approximation to the Binomial distribution. [Exactly, $Y \sim \text{Bin}(1 \text{ mill}, \frac{1}{4 \text{ mill}})$]

(a) What is the probability function of Y, $f_Y(y)$? $Y \sim Poisgon (1)$.

$$f_{Y}(y) = P(Y=y) = \frac{19}{9!}e^{-1} = \frac{1}{e*y!} for y=0,1,2,...$$

(b) What is the probability that yours is the only matching ticket?

$$P(Y=0) = \frac{1}{e * 0!} = \frac{1}{e} = 0.368$$

(c) The prize is chosen at random from all those who have matching tickets. What is the probability that you win if there are Y = y OTHER matching tickets?

$$P(W|Y=y) = \frac{1}{y+1} 66$$

$$y = 0$$
 1
 $y = 1$ $1/2$
 $y = 2$ $1/3$

(d) Overall, what is the probability that you win, given that you have a matching ticket?

$$P_{\text{match}}(W) = \mathbb{E}_{Y} \left\{ P(W|Y=y) \right\} \text{ from p.65}.$$

$$= \sum_{y=0}^{\infty} P(W|Y=y) P(Y=y)$$

$$= \frac{1}{y+1} \left(\frac{1}{y+1} \right) \left(\frac{$$