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Chapter 1: Stochastic Processes ™ ¢

What are Stochastic Processes, and how do they fit in?

STATS 310
- Statistics
STATS 210 Randomness in Patte
Foundations of
Statistics and Probability
Tools for understanding randomngss
(random variables, distributions) STATS 325
I Probability

Randomness in Proce

Stats 210: laid the foundations of both Statistics and Probability: the tools for
understanding randomness.

Stats 310: develops the theory for understanding randommness in pattern: tools
for estimating parameters (maximum likelihood), testing hypotheses, modelling
patterns in data (regression models).

Stats 325: develops the theory for understanding randomness in process. A
process is a sequence of events where each step follows from the last after a
random choice.

What sort of problems will we cover in Stats 3257

Here are some examples of the sorts of problems that we study in this course.

Gambler’s Ruin

You start with $30 and toss a fair coin
repeatedly. Every time you throw a Head, you
win $5. Every time you throw a Tail, you lose
$5. You will stop when you reach $100 or when
you lose everything. What is the probability that
you lose everything? Answer: 70%.
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Winning at tennis

What is your probability of winning a game of tennis,
starting from the even score Deuce (40-40), if your
probability of winning each point is 0.3 and your
opponent’s is 0.77

P VENUS e VENUS
WINS (W
Answer: 15%. "m Wik

VENUS VENUS
R BEHIND (B) | q ™ L LOSES (L

Winning a lottery P

q

A million people have bought tickets for the weekly lottery
draw. Each person has a probability of one-in-a-million
of selecting the winning numbers. If more than one person
selects the winning numbers, the winner will be chosen

at random from all those with matching numbers.

You watch the lottery draw on TV and your numbers match the winning num-
bers!!! Only a one-in-a-million chance, and there were only a million players,
so surely you will win the prize?

Not quite... What is the probability you will win? Answer: only 63%.

Drunkard’s walk

A very drunk person staggers to left and right as he walks along. With each
step he takes, he staggers one pace to the left with probability 0.5, and one
pace to the right with probability 0.5. What is the expected number of paces
he must take before he ends up one pace to the left of his starting point?

Arrived!

=
*@ﬁ*ﬁﬁ¥&£

Answer: the expectation is infinite!
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Have you received a chain letter like this one? Just send $10 to the person
whose name comes at the top of the list, and add your own name to the bottom
of the list. Send the letter to as many people as you can. Within a few months,

the letter promises, you will have received $77,000 in $10

P WAS AMAZED WHEN [ SAW HOW MUCH MONEY CAME
FLOODING THROUGH MY LETTER BOX...I TURNED 5218
INTO $78190 WITHIN THE FIRST 80 DAYS OF OFERATING
THIS BUSINESS PLAN

DO NOT BIN THIS IMMEDIATELY
THINK ABOUT IT FOR A FEW DAYS
FILE IN PENDING

My name is David Rhodes and in September 1997 1 lost my job. At the time E
| ras living at the edge of my means amd in debt, Consequently, ihis staited a
chaiz reaction that ended with the repossessien of my home and car, If that

notes! Will you?

wasi't encugh several debt collectors were constanily howndi

jmagine iife Isoled Hleak . THIS 1S HOW THE S¥STEM WORKS
- WITHIN 60 DAYS

Ta Japuary 1995 T received a letter telling me bow to make ov

apaxt from that, I conldn’t step mysel from thinking what I eserve it.

fn the summer of 1999 my family aud Twent on a cruise and
siew Mercedes with cash and we are enrrently pusiding our §
Lome and Edon't owe a single cent.

To date 1 have made ovek 1,100,000 Jiven e s T ovrite thi I 605y 3% of 1200 peoplé xespord fo youit letfer, 36 pecple
it hiaxd o come fo torms W o ihat tike most paople, T | 17200 lefters with your name 2t o3

letters with your wame at Nod.’

543,200 letters with vonr name at NaoZ.

1='259,200 letters with your name at Nok.

$77,760.09in $10 notes

time. Lignored it hcn,“‘““ Twas scept‘icali Hnwevu;pyul\:lalrch ouhiave sert off yonr§10 note then mailed 200 letters (winimum) your defails are
ir: debt. T finalfy veatised thut | had absolutely nothing fa lose printed at NoS on pach 'of them. Your tasks zre now:complete. Sit back and relax- you. | :

T anly 3% ol 200 people respord‘to yourletier; 6 peonds witl mail 200 letter each =1200

will mail 200 Teiters gach =

1f only 3% of 7,200 people respond ta yougletter, 2i6 people will mail 206 letters each
It only 3% 01 43,200 pooplé redpond:to.your letter; 1296 peoplawill Tnail 200 letiers cach

T onky 3% n(259,209'pe0p[e réspond to thoir letters 7,776 people:wiliseadynu.$10 each
Ibcoause your darie s At N1 position therefore you will receive”

Answer: it depends upon the response rate. However, with a fairly realistic
assumption about response rate, we can calculate an expected return of $76

with a 64% chance of getting nothing!

Note: Pyramid selling schemes like this are prohibited under the Fair Trading Act,

and it is illegal to participate in them.

SINGAPORE SARS STORY

Spread of SARS

of the disease SARS (Severe Acute

SN

t

_.“
#2 m?

Respiratory Syndrome) through Singapore fl[é ié HQ'?'
in 2003. With this pattern of infections,
what is the probability that the disease '

STYITITITLLL

SUPER
SUPER SPRERDER
itd

SPREADER
3

9GH CLUSTER

eventually dies out of its own accord? "*Q‘*’* T}
Answer: 0.997. ’_‘

LHITIITY
¢
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Markov’s Marvellous Mystery Tours

Mr Markov’s Marvellous Mystery Tours promises an All-Stochastic Tourist Ex-
perience for the town of Rotorua. Mr Markov has eight tourist attractions, to
which he will take his clients completely at random with the probabilities shown
below. He promises at least three exciting attractions per tour, ending at either
the Lady Knox Geyser or the Tarawera Volcano. (Unfortunately he makes no
mention of how the hapless tourist might get home from these places.)

What is the expected number of activities for a tour starting from the museum?

1/3
2. Cruise —®{4. Flying Fox~_ 1
1/3 6. Ge ser/D 1
13 1/3| [1/3 1/3 Y
, . : 1/3
1. Museum—®| 3. Buried Village—®| 5. Hangi
1/3 1/3
1/3
1/3 1/3

7. Helicopter—® 8. Volcano/D 1
1 Answer: 4.2.

Structure of the course

e Probability. Probability and random variables, with special focus on
conditional probability. Finding hitting probabilities for stochastic pro-
cesses.

e Fxpectation. Expectation and variance. Introduction to conditional ex-
pectation, and its application in finding expected reaching times in stochas-
tic processes.

e Generating functions. Introduction to probability generating func-
tions, and their applications to stochastic processes, especially the Random
Walk.

e Branching process. This process is a simple model for reproduction.
Examples are the pyramid selling scheme and the spread of SARS above.
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e Markov chains. Almost all the examples we look at throughout the
course can be formulated as Markov chains. By developing a single unify-
ing theory, we can easily tackle complex problems with many states and
transitions like Markov’s Marvellous Mystery Tours above.

The rest of this chapter covers:
e quick revision of sample spaces and random variables;

e formal definition of stochastic processes.

1.1 Revision: Sample spaces and random variables

Definition: A random experiment is a physical situation whose outcome cannot
be predicted until it is observed.

Definition: A sample space, €, is a set of possible outcomes of a random experi-
ment.

FExample:
Random experiment: Toss a coin once.
Sample space: Q) ={head, taif

Definition: A random variable, X, is defined as a function from the sample space
to the real numbers: X : 2 — R.

That is, @ random variable assigns a real number to every possibiemetof a
random experiment.

Example:
Random experiment: Toss a coin once.
Sample space: Q) = {head, tail}.
An example of a random variable: X : 2 — R maps “head” — 1, “tail” — 0.

Essential point: | A random variable is a way of producing random real numbers.
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1.2 Stochastic Processes

Definition: A stochastic process is a

Definition: {X(t) : t € T} is a discrete-time process if

In practice, this generally means

Thus a discrete-time process is

Definition: {X(t) : t € T} is a continuous-time process if 7' iS notfinite or
countable.

In practice, this generally means

Thus a continuous-time process

(Note that X (¢) need not change at every instant in time, but it is allowed to
change at any time; i.e. not just at t =0, 1,2, ..., like a discrete-time process.)

Definition: The state space, S, is

Every X (t) takes a value in R, but S will often be a smaller set: S C R. For
example, if X (¢) is the outcome of a coin tossed at time ¢, then the state space
18

Definition: The state space S is discrete if it is finite or countable.
Otherwise it is continuous.

The state space S is the set of states that the stochastic process can be in.
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For Reference: Discrete Random Variables

1. Binomial distribution

Notation: X ~ Binomial(n, p).

Description: number of successes in n independent trials, each with proba-
bility p of success.

Probability function:

>px(1 —p)"* for x=0,1,...,n.

Mean: E(X) = np.

Variance: Var(X) = np(l — p) = npq, where ¢ =1 — p.

Sum: If X ~ Binomial(n,p), Y ~ Binomial(m, p), and X and Y are
independent, then

X +Y ~ Bin(n +m, p).

2. Poisson distribution

Notation: X ~ Poisson(\).

Description: arises out of the Poisson process as the number of events in a
fixed time or space, when events occur at a constant average rate. Also
used in many other situations.

)\IL’
Probability function: fy(z)=P(X =2) =~

for x=0,1,2,...
x!

Mean: E(X) = A\
Variance: Var(X) = .

Sum: If X ~ Poisson(\), Y ~ Poisson(u), and X and Y are independent,
then

X +Y ~ Poisson(A + p).
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3. Geometric distribution

Notation: X ~ Geometric(p).

Description: number of failures before the first success in a sequence of in-
dependent trials, each with P(success) = p.

Probability function: fy(z)=P(X =2z)=(1—-p)'p for z=0,1,2,...

1—
Mean: E(X) = i g, where ¢ =1 — p.
p p
1—
Variance: Var(X) = 2p = %, where ¢ =1 —p.
p p

Sum: if Xj,..., X} are independent, and each X; ~ Geometric(p), then

X1+ ...+ Xj ~ Negative Binomial(k, p).

4. Negative Binomial distribution

Notation: X ~ NegBin(k,p).

Description: number of failures before the kth success in a sequence of in-

dependent trials, each with P(success) = p.

Probability function:

k —1
fX(x):IP’(X:x):< i )pk(l—p)m for z=0,1,2,...
x
k(1 — k
Mean: E(X) = ML= p) = —q, where ¢ =1 — p.
p p
1—
Variance: Var(X) = LQP) = k_;], where ¢ = 1 — p.
p p
Sum: If X ~ NegBin(k, p), Y ~ NegBin(m, p), and X and Y are independent,

then
X +Y ~ NegBin(k +m, p).
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5. Hypergeometric distribution

Notation: X ~ Hypergeometric(N, M, n).

Description: Sampling without replacement from a finite population. Given
N objects, of which M are ‘special’. Draw n objects without replacement.
X is the number of the n objects that are ‘special’.

Probability function:

B (M)(ZYI Jx\/[) for {a::max(O, n+ M — N)

(]X) to x = min(n, M).
M
Mean: E(X) = np, where p = w
N M
Variance: Var(X) = np(1 (N ) where p = N

6. Multinomial distribution

Notation: X = (Xi,..., X}) ~ Multinomial(n; p1,ps, ..., Dr)-

Description: there are n independent trials, each with k& possible outcomes.
Let p; = P(outcome i) for i = 1,... k. Then X = (Xy,..., X}), where X;
is the number of trials with outcome ¢, for e =1, ..., k.

Probability function:

n! P

fx(@)=P(Xy =z1,..., X) =13) = PRLRCE Py

5131'

3 k
for x; € {0,...,n} V,; with le =n, and where p; > 0V}, sz- =1.
i=1 i=1
Marginal distributions: X; ~ Binomial(n,p;) fori=1,... k.
Mean: E(X;) =np; fori=1,... k.

Variance: Var(X;) =np;(1 —p;), fori=1,... k.

Covariance: cov(X;, X;) = —np;p;, for all i # j.
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Continuous Random Variables

1. Uniform distribution

Notation: X ~ Uniform(a,b).

1
Probability density function (pdf): fx(z)= A for a <z <D.
—a
Cumulative distribution function:
FX(x):]P’(XSJ:):x_a for a <x <D.
—a

Fx(z) =0 for z < a, and Fx(z) =1 for x > b.

b
Mean: E(X) = a—2|— :

(b—ay

Variance: Var(X) = 5

2. Exponential distribution

Notation: X ~ Exponential()\).

Probability density function (pdf): fx(z)= e ** for 0 <z < oo.

Cumulative distribution function:
Fx(z)=P(X <z)=1-—¢"*" for 0 <z < o0.
Fx(z) =0 for z <0.

Mean: E(X) =

1
N
1

Variance: Var(X) = PeR

Sum: if Xi,..., X} are independent, and each X; ~ Exponential()), then
X1+ ...+ X ~ Gammal(k, \).
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3. Gamma distribution

Notation: X ~ Gammal(k, \).

Probability density function (pdf):

fx(z) = %ajkle/\x for 0 <z < o0,

where I'(k) = [;" y" e ¥ dy (the Gamma function).

Cumulative distribution function: no closed form.

Mean: E(X) = ;

k
pu— p.
Sum: if X;,..., X, are independent, and X; ~ Gamma(k;, A), then

Variance: Var(X)

X1+ ...+ X, ~ Gamma(ky + ...+ kp, A).

4. Normal distribution

Notation: X ~ Normal(u, 0?).

Probability density function (pdf):

1 2 2
fx(x) = == /2% for — 00 < 1 < 0.

V2mo?

Cumulative distribution function: no closed form.

Mean: E(X) = p.

Variance: Var(X) = o

Sum: if X;,..., X, are independent, and X; ~ Normal(y;, ¢?), then

X1+ ...+ X, ~ Normal(pg + ... + py, J%—I—...—I—Jz).
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Probability Density Functions

fx(x)
Uniform(a, b) '
b—a
T
a b
Exponential(\)
Gamma(k, \)

Normal(u, o?)




