Chapter 2: Probability

The aim of this chapter is to revise the basic rules of probability. By the end of this chapter, you should be comfortable with:

- conditional probability, and what you can and can’t do with conditional expressions;
- the Partition Theorem and Bayes’ Theorem;
- First-Step Analysis for finding the probability that a process reaches some state, by conditioning on the outcome of the first step;
- calculating probabilities for continuous and discrete random variables.

2.1 Sample spaces and events

Definition: A sample space, \(\Omega \), is a set of possible outcomes of a random experiment.

Definition: An event, \(A \), is a subset of the sample space.

This means that event \(A \) is simply a collection of outcomes.

Example:

Random experiment: Pick a person in this class at random.
Sample space: \(\Omega = \{ \text{all people in class} \} \)
Event \(A \): \(A = \{ \text{all males in class} \} \).

Definition: Event \(A \) occurs if the outcome of the random experiment is a member of the set \(A \).

In the example above, event \(A \) occurs if the person we pick is male.
2.2 Probability Reference List

The following properties hold for all events A, B.

- $\mathbb{P}(\emptyset) = 0$.
- $0 \leq \mathbb{P}(A) \leq 1$.
- **Complement:** $\mathbb{P}(\overline{A}) = 1 - \mathbb{P}(A)$.
- **Probability of a union:** $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$.

 For three events A, B, C:
 \[
 \mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C).
 \]

 If A and B are **mutually exclusive**, then $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.

- **Conditional probability:** $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$.

- **Multiplication rule:** $\mathbb{P}(A \cap B) = \mathbb{P}(A \mid B) \mathbb{P}(B) = \mathbb{P}(B \mid A) \mathbb{P}(A)$.

- **The Partition Theorem:** if B_1, B_2, \ldots, B_m form a partition of Ω, then
 \[
 \mathbb{P}(A) = \sum_{i=1}^{m} \mathbb{P}(A \cap B_i) = \sum_{i=1}^{m} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i) \quad \text{for any event } A.
 \]

 As a special case, B and \overline{B} partition Ω, so:
 \[
 \mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap \overline{B}) = \mathbb{P}(A \mid B) \mathbb{P}(B) + \mathbb{P}(A \mid \overline{B}) \mathbb{P}(\overline{B}) \quad \text{for any } A, B.
 \]

- **Bayes’ Theorem:** $\mathbb{P}(B \mid A) = \frac{\mathbb{P}(A \mid B) \mathbb{P}(B)}{\mathbb{P}(A)}$.

 More generally, if B_1, B_2, \ldots, B_m form a partition of Ω, then
 \[
 \mathbb{P}(B_j \mid A) = \frac{\mathbb{P}(A \mid B_j) \mathbb{P}(B_j)}{\sum_{i=1}^{m} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i)} \quad \text{for any } j.
 \]

- **Chains of events:** for any events A_1, A_2, \ldots, A_n,
 \[
 \mathbb{P}(A_1 \cap A_2 \cap \ldots \cap A_n) = \mathbb{P}(A_1) \mathbb{P}(A_2 \mid A_1) \mathbb{P}(A_3 \mid A_2 \cap A_1) \ldots \mathbb{P}(A_n \mid A_{n-1} \cap \ldots \cap A_1).
 \]
2.3 Conditional Probability

Suppose we are working with sample space \(\Omega = \{ \text{people in class} \} \). I want to find the proportion of people in the class who ski. What do I do?

Count up the number of people in the class who ski, and divide by the total number of people in the class.

\[
P(\text{person skis}) = \frac{\# \text{ skiers in class}}{\text{total \# people in class}}.
\]

Now suppose I want to find the proportion of females in the class who ski. What do I do?

Count \# female skiers in class, and divide by \# females in class:

\[
P(\text{female skis}) = \frac{\# \text{ female skiers in class}}{\text{total \# females in class}}.
\]

\[P(\text{skis} | \text{female}) = \]

By changing from asking about everyone to asking about females only, we have:

- restricted attention to the set of females only;
- reduced the sample space from the set of everyone, to the set of females;
- conditioned on the event \(\{\text{females}\} \).

We could write the above as:

\[
P(\text{skis} | \text{female}) = \frac{\# \text{ female skiers in class}}{\text{total \# females in class}}.
\]

Conditioning is like changing the sample space: we are now working in a new sample space of females in class.
In the above example, we could replace ‘skiing’ with any attribute \(B \). We have:

\[
\begin{align*}
\mathbb{P}(\text{skis}) &= \frac{\# \text{ skiers in class}}{\# \text{ class}}; \\
\mathbb{P}(\text{skis} | \text{female}) &= \frac{\# \text{ female skiers in class}}{\# \text{ females in class}}; \\
\end{align*}
\]

so:

\[
\mathbb{P}(B) = \frac{\# B\text{'s in class}}{\# \text{ class}}
\]

and:

\[
\mathbb{P}(B | \text{female}) = \frac{\# \text{ female B's in class}}{\text{total } \# \text{ females in class}}
\]

Likewise, we could replace ‘female’ with any attribute \(A \):

\[
\mathbb{P}(B | A) = \frac{\# \text{ in class who are both B and A}}{\# \text{ in class who are A}}.
\]

This is how we get the definition of conditional probability:

\[
\mathbb{P}(B | A) = \frac{\mathbb{P}(B \text{ and } A)}{\mathbb{P}(A)} = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}.
\]

By conditioning on event \(A \), we have changed the sample space to the set of \(A \)'s only.

Definition: Let \(A \) and \(B \) be events on the same sample space: so \(A \subseteq \Omega \) and \(B \subseteq \Omega \). The **conditional probability of event \(B \), given event \(A \)** is

\[
\mathbb{P}(B | A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}.
\]

read this as, “Probability of \(B \) **within** \(A \)” i.e. prob of \(B \), when selecting from within the \(A \)'s only.

Also, “probability of \(B \) **given** \(A \)”.
Multiplication Rule: (Immediate from above). For any events A and B,
\[P(A \cap B) = P(A | B) P(B) = P(B | A) P(A) = P(B \cap A) \]

Conditioning as ‘changing the sample space’

The idea that "conditioning" = "changing the sample space" can be very helpful in understanding how to manipulate conditional probabilities.

Any ‘unconditional’ probability can be written as a conditional probability:
\[P(B) = P(B | \Omega) \]

Writing $P(B) = P(B | \Omega)$ just means that we are looking for the probability of event B, out of all possible outcomes in the set Ω.

In fact, the symbol \mathbb{P} belongs to the set Ω: it has *no meaning without* Ω. To remind ourselves of this, we can write
\[\mathbb{P} = \mathbb{P}_\Omega \]

Then
\[P(B) = P(B | \Omega) = \mathbb{P}_\Omega(B) \]

Similarly, $P(B | A)$ means that we are looking for the probability of event B, out of all possible outcomes in the set A.

So A is just another sample space. Thus we can manipulate conditional probabilities $P(\cdot | A)$ just like any other probabilities, *as long as we always stay inside the same sample space, A.*

The trick: Because we can think of A as just another sample space, let’s write
\[P(\cdot | A) = P_A(\cdot) \]

Note: NOT standard notation: for rough work & understanding

Then we can use P_A just like \mathbb{P}, as long as we remember to keep the A subscript on *EVERY* \mathbb{P} that we write.
This helps us to make quite complex manipulations of conditional probabilities without thinking too hard or making mistakes. There is only one rule you need to learn to use this tool effectively:

\[P_A(B \mid C) = P_B(C \cap A) \text{ for any } A, B, C. \]

(Proof: Exercise).

The rules:

\[
P(\cdot \mid A) = P_A(\cdot) \\
P_A(B \mid C) = P(B \mid C \cap A) \text{ for any } A, B, C.
\]

Examples:

1. Probability of a union. In general,

\[
P(B \cup C) = P(B) + P(C) - P(B \cap C).
\]

So,

\[
P_A(B \cup C) = P_A(B) + P_A(C) - P_A(B \cap C)
\]

Thus,

\[
P(B \cup C \mid A) = P(B \mid A) + P(C \mid A) - P(B \cap C \mid A).
\]

2. Which of the following is equal to \(P(B \cap C \mid A) \)?

(a) \(P(B \mid C \cap A) \).
(b) \(\frac{P(B \mid C)}{P(A)} \).
(c) \(P(B \mid C \cap A)P(C \mid A) \).
(d) \(P(B \mid C)P(C \mid A) \).

Solution:

[Extended solution content here, including steps and exercises]
3. Which of the following is true?
 (a) $P(\overline{B} \mid A) = 1 - P(B \mid A)$.
 (b) $P(\overline{B} \mid A) = P(B) - P(B \mid A)$.

 Solution:
 $$P(\overline{B} \mid A) = P_A(\overline{B}) = 1 - P_A(B) = 1 - P(B \mid A)$$

 Thus the correct answer is (a).

4. Which of the following is true?
 (a) $P(B \cap A) = P(A) - P(B \cap A)$.
 (b) $P(B \cap A) = P(B) - P(B \cap A)$.

 Solution:
 $$P(B \cap A) = P(B \mid A)P(A) = P(B \mid A)P_A(A) = P(B \mid A)P(A)$$

 Thus the correct answer is (a).

5. True or false: $P(B \mid A) = 1 - P(B \mid \overline{A})$?

 Answer:
 Knowing about B within the A's (i.e., $P(B \mid A)$) tells us nothing about what B is doing within the \overline{A}'s. $P(B \mid \overline{A})$ could be anything from 0 to 1, and knowing $P(B \mid A)$ doesn't tell us anything.

 Exercise: if we wish to express $P(B \mid A)$ in terms of only B and \overline{A}, show that
 $$P(B \mid A) = \frac{P(B) - P(B \mid A)P(A)}{1 - P(A)}$$
 Note that this does not simplify nicely!
2.4 The Partition Theorem (Law of Total Probability)

Definition: Events A and B are **mutually exclusive** or **disjoint**, if $A \cap B = \emptyset$.

This means events A and B cannot happen together. If A happens, it excludes B from happening, and vice-versa.

If A and B are mutually exclusive, $P(A \cup B) = P(A) + P(B)$.

For all other A and B, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Definition: Any number of events B_1, B_2, \ldots, B_k are **mutually exclusive** if every pair of the events is mutually exclusive: ie. $B_i \cap B_j = \emptyset$ for all i, j with $i \neq j$.

Definition: A **partition** of Ω is a collection of mutually exclusive events, whose union is Ω.

That is, sets B_1, B_2, \ldots, B_k form a partition of Ω if

$B_i \cap B_j = \emptyset$ for all i, j with $i \neq j$,

and $\bigcup_{i=1}^{k} B_i = B_1 \cup B_2 \cup \ldots \cup B_k = \Omega$.

B_1, \ldots, B_k form a partition of Ω if they have no overlap and collectively cover all possible outcomes.
Examples:

Partitioning an event A

Any set A can be partitioned: it doesn’t have to be Ω. In particular, if B_1, \ldots, B_k form a partition of Ω, then $(A \cap B_1), \ldots, (A \cap B_k)$ form a partition of A.

Theorem 2.4: The Partition Theorem (Law of Total Probability)

Let B_1, \ldots, B_m form a partition of Ω. Then for any event A,

$$P(A) = \sum_{i=1}^{m} P(A \cap B_i) = \sum_{i=1}^{m} P(A \mid B_i)P(B_i).$$

NOT $P(A \mid B_1) + P(A \mid B_2) + \ldots$ Yuk!!

Both formulations of the Partition Theorem are very widely used, but especially the conditional formulation $\sum_{i=1}^{m} P(A \mid B_i)P(B_i)$.
Intuition behind the Partition Theorem:

The Partition Theorem is easy to understand because it simply states that “the whole is the sum of its parts.”

\[P(A) = P(A \cap B_1) + P(A \cap B_2) + P(A \cap B_3) + P(A \cap B_4). \]

2.5 Bayes’ Theorem: inverting conditional probabilities

Bayes’ Theorem allows us to “invert” a conditional statement, i.e., to express \(P(B \mid A) \) in terms of \(P(A \mid B) \).

Theorem 2.5: Bayes’ Theorem

For any events A and B:

\[
P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}.
\]

Proof:

\[
\frac{P(B \cap A)}{P(A)} = \frac{P(A \cap B)}{P(A)}
\]

\[
\Rightarrow \quad P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}.
\]
Extension of Bayes’ Theorem

Suppose that \(B_1, B_2, \ldots, B_m \) form a partition of \(\Omega \). By the Partition Theorem,

\[
\mathbb{P}(A) = \sum_{i=1}^{m} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i).
\]

Thus, for any single partition member \(B_j \), put \(B = B_j \) in Bayes’ Theorem to obtain:

\[
\mathbb{P}(B_j \mid A) = \frac{\mathbb{P}(A \mid B_j) \mathbb{P}(B_j)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A \mid B_j) \mathbb{P}(B_j)}{\sum_{i=1}^{m} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i)}.
\]

Special case: \(m = 2 \)

Given any event \(B \), the events \(B \) and \(\overline{B} \) form a partition of \(\Omega \). Thus:

\[
\mathbb{P}(B \mid A) = \frac{\mathbb{P}(A \mid B) \mathbb{P}(B)}{\mathbb{P}(A \mid B) \mathbb{P}(B) + \mathbb{P}(A \mid \overline{B}) \mathbb{P}(\overline{B})}.
\]

Example: In screening for a certain disease, the probability that a healthy person wrongly gets a positive result is 0.05. The probability that a diseased person wrongly gets a negative result is 0.002. The overall rate of the disease in the population being screened is 1%. If my test gives a positive result, what is the probability I actually have the disease?
1. Define events:

- D = {$have$ $disease$}
- \bar{D} = {do not $have$ $disease$}
- P = {$positive$ $test$}
- $N = \bar{P}$ = {$negative$ $test$}

2. Information given:

- False positive rate is 0.05 $\Rightarrow P(P \mid D) = 0.05$
- False negative rate is 0.002 $\Rightarrow P(N \mid D) = 0.002$
- Disease rate is 1% $\Rightarrow P(D) = 0.01$

3. Looking for: $P(D \mid P)$:

We have $P(D \mid P) = \frac{P(P \mid D)P(D)}{P(P)}$ Bayes' Theorem.

Now $P(P \mid D) = 1 - P(\bar{P} \mid D)$

$= 1 - P(\bar{P} \mid D)$

$= 1 - 0.002$

$\therefore P(P \mid D) = 0.998$

Also $P(P) = P(P \mid D)P(D) + P(P \mid \bar{D})P(\bar{D})$ Partition Theorem.

$= 0.998 \times 0.01 + 0.05 \times (1-0.01)$

$\therefore P(P) = 0.05948.$

Thus $P(D \mid P) = \frac{0.998 \times 0.01}{0.05948} = 0.168$

Given a positive test, my chance of having the disease is only 16.8%.

Reason is that $P(P) is small so there are far more positive test results among HEALTHY people (small fraction of a large # people) than among diseased people (large fraction of a small # people).
2.6 First-Step Analysis for calculating probabilities in a process

In a stochastic process, what happens at the next step depends upon the current state of the process. We often wish to know the probability of eventually reaching some particular state, given our current position.

Throughout this course, we will tackle this sort of problem using a technique called First-Step Analysis.

The idea is to consider all possible first steps away from the current state. We derive a system of equations that specify the probability of the eventual outcome given each of the possible first steps. We then try to solve these equations for the probability of interest.

First-Step Analysis depends upon conditional probability and the Partition Theorem. Let S_1, \ldots, S_k be the k possible first steps we can take away from our current state. We wish to find the probability that event E happens eventually. First-Step Analysis calculates $P(E)$ as follows:

$$P(E) = P(E | S_1) P(S_1) + P(E | S_2) P(S_2) + \ldots + P(E | S_k) P(S_k).$$

Here, $P(S_1), \ldots, P(S_k)$ give the probabilities of taking the different first steps $1, 2, \ldots, k$.

Example: Tennis game at Deuce.

Venus and Serena are playing tennis, and have reached the score Deuce (40-40). (*Deuce* comes from the French word *Deux* for ‘two’, meaning that each player needs to win two consecutive points to win the game.)

For each point, let:

$$p = P(\text{Venus wins point}), \quad q = 1 - p = P(\text{Serena wins point}).$$

Assume that all points are independent.

Let v be the probability that Venus wins the game eventually, starting from Deuce. Find v.
Use First-Step Analysis. The possible First Steps, starting from Deuce, are:
1. Venus wins the next point (probability p): move to state A.
2. Venus loses (probability q): move to state B.

Let V be the event that Venus wins EVENTUALLY, starting from Deuce. So $v = P(V|D)$. D_1 = "in Deuce at time 1"

Using the two possible First Steps out of Deuce:

$$v = P(V|D_1)$$

$$= P_{D_1}(V) \quad \text{(rough work notation from §2.3, p.20).}$$

$$= P(V|A_2) P_{D_1}(A_2) + P(V|B_2) P_{D_1}(B_2) \quad \text{Partition Thm.}$$

Note: dependence on D_1 is cancelled, because we know something more recent: A_2

So $v = P(V|A_2) p + P(V|B_2) q$. (**)

Now we need to find $P(V|A_2)$ and $P(V|B_2)$, again using First Step Analysis (FSA).

$$P(V|A_2) = P_{A_2}(V) = P_{A_2}(V|W_3) P_{A_2}(W_3) + P_{A_2}(V|D_3) P(D_3)$$

$$= \frac{1}{p} \cdot p + \frac{q}{q} \cdot q$$

(won already)
Assignments same as Stats 325: Ass 1 to 5
 (worth 2% each)
 \[\rightarrow 325: \text{worth 3\% each}.\]

Test same as Stats 325: Worth 7%
 \[\rightarrow 325: \text{worth 10\%}.\]

Extra Assignments: Ass A and Ass B, worth 4\% each
 721 Special Topics Cannot be cancelled by PlusTage

Exam: \[\approx 80\% \text{ same as 325}\]
 \[\approx 20\% \text{ on 721 Special Topics}\]

Final mark: \[10\% \; 325 \text{ Ass} + 7\% \text{ Test} + 8\% \; 721 \text{ Ass} + 75\% \text{ Exam}\]
 OR (PlusTage) \[8\% \; 721 \text{ Ass} + 92\% \text{ Exam}.\]
Substituting (a) and (b) into \((\star)\),

\[
v = (p + q v) p + (v p) q
\]

\[
v = p^2 + 2pqv
\]

\[
v(1 - 2pq) = p^2 \quad \Rightarrow \quad v = \frac{p^2}{1 - 2pq}
\]

Note: Because \(p + q = 1\), we have:

\[
1 = (p + q)^2 = p^2 + q^2 + 2pq \quad \Rightarrow \quad 1 - 2pq = p^2 + q^2.
\]

So the final probability that Venus wins the game is:

\[
v = \frac{p^2}{1 - 2pq}
\]

Note how this result makes intuitive sense. For the game to finish from Deuce, either Venus has to win two points in a row (probability \(p^2\)), or Serena does (probability \(q^2\)). The ratio \(p^2/(p^2 + q^2)\) describes Venus’s ‘share’ of the winning probability.

First-step analysis as the Partition Theorem:

Our approach to finding \(v = \mathbb{P}(\text{Venus wins})\) can be summarized as:

\[
\mathbb{P}(\text{Venus wins}) = v = \sum_{\text{first steps}} \mathbb{P}(\text{Venus wins | first step}) \mathbb{P}(\text{first step})
\]

First-step analysis is just the Partition Theorem:

The sample space is \(\Omega = \{\text{all possible routes from Deuce to the end}\}\).

An example of a sample point is: \(\text{D} \rightarrow \text{A2} \rightarrow \text{D3} \rightarrow \text{B4} \rightarrow \text{D5} \rightarrow \text{B6} \rightarrow \text{L}\).

Another example is: \(\text{D} \rightarrow \text{B2} \rightarrow \text{D3} \rightarrow \text{A4} \rightarrow \text{W5}\) or \(\text{D} \rightarrow \text{A2} \rightarrow \text{W3}\).

The partition of the sample space that we use in first-step analysis is:

\(R_1 = \{\text{all possible routes from Deuce to the end that start with } \text{D1} \rightarrow \text{A2}\}\)

\(R_2 = \{\text{all possible routes from Deuce to the end that start with } \text{D1} \rightarrow \text{B2}\}\).
Then first-step analysis simply states:

\[P(V) = P(V | R_1) P(R_1) + P(V | R_2) P(R_2) \]

\[= P_{D_1}(V | A_2) P_{D_1}(A_2) + P_{D_1}(V | B_2) P_{D_1}(B_2) . \]

Notation for quick solutions of first-step analysis problems

Defining a helpful notation is central to modelling with stochastic processes. Setting up well-defined notation helps you to solve problems quickly and easily. Defining your notation is one of the most important steps in modelling, because it provides the conversion from words (which is how your problem starts) to mathematics (which is how your problem is solved).

Several marks are allotted on first-step analysis questions for setting up a well-defined and helpful notation.

Here is the correct way to formulate and solve this first-step analysis problem:

Need: \(P(\text{Venus wins eventually, starting from Deuce}) \).

1. **Define Notation:** always have the same goal

 Let

 \[V_D = P(\text{Venus wins eventually} \mid \text{start at state D}) \]

 \[V_A = P(\text{Venus wins eventually} \mid \text{start at state A}) \]

 \[V_B = P(\text{Venus wins eventually} \mid \text{start at state B}) \]

 starting from different places

2. **FSA:**

 \[V_D = p V_A + q V_B \]

 \[V_A = p \times 1 + q V_D \]

 \[V_B = p V_D + q \times 0 \]

3. Substitute (b) and (c) into (a) \(\Rightarrow V_D = p(p + q V_D) + q(p V_D) \)
3. Substitute (b) and (c) in (a):

\[v_D = p (p + q v_D) + q (pv_D) \]

\[v_D (1 - pq - pq) = p^2 \]

\[v_D = \frac{p^2}{1 - 2pq} \text{ as before.} \]

\[P(\text{Venus wins eventually | starting from Dence}) \]

2.7 Special Process: the Gambler’s Ruin

This is a famous problem in probability. A gambler starts with \$x. She tosses a fair coin repeatedly.

If she gets a Head, she wins \$1. If she gets a Tail, she loses \$1.

The coin tossing is repeated until the gambler has either \$0 or \$N, when she stops. What is the probability of the Gambler’s Ruin, i.e. that the gambler ends up with \$0?

\[P_x = \frac{1}{2} P_3 + \frac{1}{2} P_1 \]

Define event \(R = \{ \text{eventual ruin} \} = \{ \text{ends with } \$0 \} \).

Wish to find \(P(R | \text{starts with } \$x) \).

Define notation: \(P_x = P(R | \text{currently has } \$x) \) or \(P_x = P(R | \text{start at state } x) \) for \(x = 0, 1, \ldots, N \).

Context information: \(P_0 = 1 \) : already ruined: ruin is definite \(P_N = 0 \) : already won: ruin impossible.
FSA: (work directly from diagram):

\[p_x = \frac{1}{2} p_{x+1} + \frac{1}{2} p_{x-1} \quad \text{for} \quad x = 1, 2, \ldots, N-1 \]

Boundaries: \(p_0 = 1 \) and \(p_N = 0 \)

Solution of difference equation (*):

\[p_x = \frac{1}{2} p_{x+1} + \frac{1}{2} p_{x-1} \quad \text{for} \quad x = 1, \ldots, N-1 \]

\[p_0 = 1 \]
\[p_N = 0 \]

We usually solve equations like this using the theory of 2nd-order difference equations. For this special case we will also verify the answer by two other methods.

1. Theory of linear 2nd order difference equations

Theory tells us that the general solution of (*) is \(p_x = A + Bx \) for some constants \(A, B \) and for \(x = 0, 1, \ldots, N \). Our job is to find \(A \) and \(B \) using the boundary conditions:

\[p_x = A + Bx \quad \text{for constants} \quad A, B \]

and for \(x = 0, 1, \ldots, N \).

So \(1 = p_0 = A + 0 \times 0 \Rightarrow A = 1 \)

And: \(0 = p_N = A + BN = 1 + BN \Rightarrow B = -\frac{1}{N} \).
So our solution is:

\[p_x = A + B x = 1 - \frac{x}{N} \quad \text{for } x = 0, 1, \ldots, N. \]

For Stats 325, you will be told the general solution of the 2nd-order difference equation and expected to solve it using the boundary conditions.

For Stats 721, we will study the theory of 2nd-order difference equations. You will be able to derive the general solution for yourself before solving it.

Question: What is the probability that the gambler wins (ends with N), starting with x?

\[P(\text{wins | starts with } x) = 1 - P(\text{loses | starts with } x) = 1 - p_x = 1 - \left(1 - \frac{x}{N}\right) \]

2. Solution by inspection

The problem shown in this section is the **symmetric** Gambler’s Ruin, where the probability is \(\frac{1}{2} \) of moving up or down on any step. For this special case, we can solve the difference equation by inspection.

We have:

\[p_x = \frac{1}{2} p_{x+1} + \frac{1}{2} p_{x-1} \]

\[\frac{1}{2} p_x + \frac{1}{2} p_x = \frac{1}{2} p_{x+1} + \frac{1}{2} p_{x-1} \]

Rearranging:

\[p_{x-1} - p_x = p_x - p_{x+1} \]

There are N steps to go down from $p_0 = 1$ to $p_N = 0$.

Each step is the same size, because

\[(p_{x-1} - p_x) = (p_x - p_{x+1}) \quad \text{for all } x. \]

So each step has size $1/N$,

\[\Rightarrow \quad p_0 = 1, p_1 = \frac{1}{2}, p_2 = \frac{1}{2}, \ldots, p_N = 0. \]

So

\[p_x = 1 - \frac{x}{N} \quad \text{as before.} \]
3. Solution by repeated substitution.

In principle, all systems could be solved by this method, but it is usually too tedious to apply in practice.

Rearrange \((\ast)\) to give:

\[
p_{x+1} = 2p_x - p_{x-1}
\]

\[
\Rightarrow \quad (x = 1) \quad p_2 = 2p_1 - 1 \quad \text{(recall } p_0 = 1) \]

\[
(x = 2) \quad p_3 = 2p_2 - p_1 = 2(2p_1 - 1) - p_1 = 3p_1 - 2
\]

\[
(x = 3) \quad p_4 = 2p_3 - p_2 = 2(3p_1 - 2) - (2p_1 - 1) = 4p_1 - 3 \quad \text{etc}
\]

\[
\vdots
\]

Giving

\[
p_x = xp_1 - (x - 1) \quad \text{in general, } (\ast\ast)
\]

Likewise

\[
p_N = Np_1 - (N - 1) \quad \text{at endpoint.}
\]

Boundary condition:

\[
p_N = 0 \Rightarrow Np_1 - (N - 1) = 0 \Rightarrow p_1 = 1 - 1/N.
\]

Substitute in (\(\ast\ast\)):

\[
p_x = xp_1 - (x - 1)
\]

\[
= x \left(1 - \frac{1}{N}\right) - (x - 1)
\]

\[
= x - \frac{x}{N} - x + 1
\]

\[
p_x = 1 - \frac{x}{N} \quad \text{as before.} \quad \square
\]

2.8 Independence

\textbf{Definition:} Events \(A\) and \(B\) are \textbf{statistically independent} if and only if

\[
\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).
\]

This implies that \(A\) and \(B\) are statistically independent if and only if

\[
\mathbb{P}(A \mid B) = \mathbb{P}(A).
\]

\textbf{Note:} If events are \textit{physically} independent, they will also be statistically indept.
For interest: more than two events

Definition: For more than two events, \(A_1, A_2, \ldots, A_n\), we say that \(A_1, A_2, \ldots, A_n\) are **mutually independent** if

\[
P \left(\bigcap_{i \in J} A_i \right) = \prod_{i \in J} P(A_i) \quad \text{for ALL finite subsets } J \subseteq \{1, 2, \ldots, n\}.
\]

Example: events \(A_1, A_2, A_3, A_4\) are mutually independent if

i) \(P(A_i \cap A_j) = P(A_i)P(A_j)\) for all \(i, j\) with \(i \neq j\); AND

ii) \(P(A_i \cap A_j \cap A_k) = P(A_i)P(A_j)P(A_k)\) for all \(i, j, k\) that are all different; AND

iii) \(P(A_1 \cap A_2 \cap A_3 \cap A_4) = P(A_1)P(A_2)P(A_3)P(A_4)\).

Note: For mutual independence, it is **not** enough to check that \(P(A_i \cap A_j) = P(A_i)P(A_j)\) for all \(i \neq j\). Pairwise independence does not imply mutual independence.

2.9 The Continuity Theorem

The Continuity Theorem states that probability is a *continuous set function*:

Theorem 2.9: The Continuity Theorem

a) Let \(A_1, A_2, \ldots\) be an increasing sequence of events: i.e.

\[
A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n \subseteq A_{n+1} \subseteq \ldots
\]

Then

\[
P \left(\lim_{n \to \infty} A_n \right) = \lim_{n \to \infty} P(A_n).
\]

Note: because \(A_1 \subseteq A_2 \subseteq \ldots\), we have:

\[
\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n.
\]
b) Let B_1, B_2, \ldots be a *decreasing sequence of events*: i.e.

$$B_1 \supseteq B_2 \supseteq \ldots \supseteq B_n \supseteq B_{n+1} \supseteq \ldots .$$

Then

$$\mathbb{P} \left(\lim_{n \to \infty} B_n \right) = \lim_{n \to \infty} \mathbb{P}(B_n).$$

Note: because $B_1 \supseteq B_2 \supseteq \ldots$, we have: $\lim_{n \to \infty} B_n = \bigcap_{n=1}^{\infty} B_n$.

Proof (a) only: for (b), take complements and use (a).

Define $C_1 = A_1$, and $C_i = A_i \setminus A_{i-1}$ for $i = 2, 3, \ldots$. Then C_1, C_2, \ldots are mutually exclusive, and $\bigcup_{i=1}^{n} C_i = \bigcup_{i=1}^{n} A_i$, and likewise, $\bigcup_{i=1}^{\infty} C_i = \bigcup_{i=1}^{\infty} A_i$.

Thus

$$\mathbb{P}(\lim_{n \to \infty} A_n) = \mathbb{P} \left(\bigcup_{i=1}^{\infty} A_i \right) = \mathbb{P} \left(\bigcup_{i=1}^{\infty} C_i \right) = \sum_{i=1}^{\infty} \mathbb{P}(C_i) \quad (C_i \text{ mutually exclusive})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \mathbb{P}(C_i)$$

$$= \lim_{n \to \infty} \mathbb{P} \left(\bigcup_{i=1}^{n} C_i \right)$$

$$= \lim_{n \to \infty} \mathbb{P} \left(\bigcup_{i=1}^{n} A_i \right) = \lim_{n \to \infty} \mathbb{P}(A_n). \quad \square$$
2.10 Random Variables

Definition: A random variable, X, is defined as a function from the sample space to the real numbers: $X : \Omega \rightarrow \mathbb{R}$.

A random variable therefore assigns a real number to every possible outcome of a random experiment.

A random variable is essentially a rule or mechanism for generating random real numbers.

The Distribution Function

Definition: The cumulative distribution function of a random variable X is given by

$$F_X(x) = \mathbb{P}(X \leq x)$$

$F_X(x)$ is often referred to as simply the distribution function.

Properties of the distribution function

1) $F_X(-\infty) = \mathbb{P}(X \leq -\infty) = 0$.
 $F_X(+\infty) = \mathbb{P}(X \leq \infty) = 1$.

2) $F_X(x)$ is a non-decreasing function of x:
 if $x_1 < x_2$, then $F_X(x_1) \leq F_X(x_2)$.

3) If $b > a$, then $\mathbb{P}(a < X \leq b) = F_X(b) - F_X(a)$.

4) F_X is right-continuous: i.e. $\lim_{h \downarrow 0} F_X(x + h) = F_X(x)$.
2.11 Continuous Random Variables

Definition: The random variable X is continuous if the distribution function $F_X(x)$ is a continuous function.

In practice, this means that a continuous random variable takes values in a continuous subset of \mathbb{R}: e.g. $X : \Omega \rightarrow [0, 1]$ or $X : \Omega \rightarrow [0, \infty)$.

\[F_X(x) \]

Probability Density Function for continuous random variables

Definition: Let X be a continuous random variable with continuous distribution function $F_X(x)$. The probability density function (p.d.f.) of X is defined as

\[f_X(x) = F'_X(x) = \frac{d}{dx}(F_X(x)) \]

The pdf, $f_X(x)$, gives the shape of the distribution of X.

Normal distribution Exponential distribution Gamma distribution
By the Fundamental Theorem of Calculus, the distribution function \(F_X(x) \) can be written in terms of the probability density function, \(f_X(x) \), as follows:

\[
F_X(x) = \int_{-\infty}^{x} f_X(u) \, du
\]

Endpoints of intervals

For continuous random variables, every point \(x \) has \(\mathbb{P}(X = x) = 0 \). This means that the endpoints of intervals are not important for continuous random variables.

Thus, \(\mathbb{P}(a \leq X \leq b) = \mathbb{P}(a < X \leq b) = \mathbb{P}(a \leq X < b) = \mathbb{P}(a < X < b) \).

This is *only* true for *continuous* random variables.

Calculating probabilities for continuous random variables

To calculate \(\mathbb{P}(a \leq X \leq b) \), use *either*

\[
\mathbb{P}(a \leq X \leq b) = F_X(b) - F_X(a)
\]

or

\[
\mathbb{P}(a \leq X \leq b) = \int_{a}^{b} f_X(x) \, dx
\]

Example: Let \(X \) be a continuous random variable with p.d.f.

\[
f_X(x) = \begin{cases}
2x^{-2} & \text{for } 1 < x < 2, \\
0 & \text{otherwise.}
\end{cases}
\]

(a) Find the cumulative distribution function, \(F_X(x) \).

(b) Find \(\mathbb{P}(X \leq 1.5) \).
2.12 Discrete Random Variables

Definition: The random variable X is **discrete** if X takes values in a finite or countable subset of \mathbb{R}: thus, $X : \Omega \rightarrow \{x_1, x_2, \ldots\}$.

When X is a discrete random variable, the distribution function $F_X(x)$ is a **step function**.

Probability function

Definition: Let X be a discrete random variable with distribution function $F_X(x)$. The **probability function** of X is defined as

$$f_X(x) = \mathbb{P}(X = x).$$
Endpoints of intervals

For discrete random variables, *individual points can have* $P(X = x) > 0$.

This means that *the endpoints of intervals ARE important for discrete random variables*.

For example, if X takes values 0, 1, 2, ..., and a, b are integers with $b > a$, then

$$P(a \leq X \leq b) = P(a - 1 < X \leq b) = P(a \leq X < b + 1) = P(a - 1 < X < b + 1).$$

Calculating probabilities for discrete random variables

To calculate $P(X \in A)$ for any countable set A, use

$$P(X \in A) = \sum_{x \in A} P(X = x).$$

Partition Theorem for probabilities of discrete random variables

Recall the Partition Theorem: for any event A, and for events B_1, B_2, \ldots that form a *partition* of Ω,

$$P(A) = \sum_{y} P(A | B_y) P(B_y).$$

We can use the Partition Theorem to find probabilities for random variables. Let X and Y be *discrete* random variables.

- Define event A as $A = \{X = x\}$.
- Define event $B_y = \{Y = y\}$ for $y = 0, 1, 2, \ldots$ (for whatever values Y can take).
- Then by the Partition Theorem:

$$P(X = x) = \sum_{y} P(X = x | Y = y) P(Y = y).$$
2.13 Independent Random Variables

Random variables X and Y are independent if they have no effect on each other. This means that the probability that they both take specified values simultaneously is the product of the individual probabilities.

Definition: Let X and Y be random variables. The **joint distribution function** of X and Y is given by

$$F_{X,Y}(x, y) = \mathbb{P}(X \leq x \text{ and } Y \leq y) = \mathbb{P}(X \leq x, Y \leq y).$$

Definition: Let X and Y be any random variables (continuous or discrete). X and Y are **independent** if

$$F_{X,Y}(x, y) = F_X(x)F_Y(y) \text{ for ALL } x, y \in \mathbb{R}.$$

If X and Y are **discrete**, they are independent if and only if their joint probability function is the product of their individual probability functions:

Discrete X, Y are indept $\iff \mathbb{P}(X = x \text{ AND } Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y)$ for ALL x, y

$\iff f_{X,Y}(x, y) = f_X(x)f_Y(y)$ for ALL x, y.