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Chapter 2: Probability

The aim of this chapter is to revise the basic rules of probability. By the end
of this chapter, you should be comfortable with:

onditional probability, and what you can and can’t do with conditional
expressions;

e the Partition Theorem and Bayes’ Theorem:;

e First-Step Analysis for finding the probability that a process reaches some
state, by conditioning on the outcome of the first step;

e calculating probabilities for continuous and discrete random variables.

2.1 Sample spaces and events

Definition: A sample space, (2, is a set of possible outcomes of a random
experiment.

Definition: An event, A, is a subset of the sample space.

This means that event A is simply a collection of outcomes.

Example:

Random experiment: Pick a person in this class at random.
Sample space: Q) = {all people in class
Event A: A = {all males in class A= L

Definition: Event A occurs if the outcome of the random experiment is a member
of the setA.

In the example above, event A occurs if the person we pick is male.
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2.2 Probability Reference List

The following properties hold for all events A, B.

e P(0)=0.

e 0 <P(A) <1,

e Complement: P(A) =1—P(A).

e Probability of a union: P(AU B) =P(A) +P(B) — P(AN B).
For three events A, B, C"

P(AUBUC) = P(A)+P(B)+P(C)-P(ANB)—P(ANC)—P(BNC)+P(ANBNC) .

If A and B are mutually exclusive, then P(AU B) = P(A) + P(B).

P(AN B)
P(B)
e Multiplication rule: P(AN B) =P(A| B)P(B) =P(B|A)P(A).

e Conditional probability: P(A|B) =

e The Partition Theorem: if By, B,, ..., B,, form a partition of {2, then

P(A) = zm:IP’(A NB;) = zm:IP’(A | B;))P(B;) for any event A.

i=1 i=1
As a special case, B and B partition €, so:
P(A) = P(ANB)+P(ANB)
= P(A|B)P(B) +P(A|B)P(B) for any A, B.
P(A|B)P(B)
P(A)
More generally, if By, Bo, ..., B,, form a partition of €2, then

_ P(A[Bj)P(B)) -
P(B;j|A) = ST B(A| B)P(By) for any j.

e Bayes’ Theorem: P(B|A) =

e Chains of events: for any events A;, Ay, ..., A,,

P(ANAsN. . .NA,) = P(A)P(As | A)DP(As | AN AL ... B(A, | ApiN...NAD.
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2.3 Conditional Probability

Suppose we are working with sample space
Q = {people in class}. I want to find the
proportion of people in the class who ski. What do I do?

Count up the number of people in the class who ski, and dividéhb total
number of people in the class.

H shius n class
ﬂD(PUJOA Sl’L]J) =

Fotel frpeaple v Class

Now suppose I want to find the proportion of females in the class who ski.
What do I do?

0t de shiut a clase, od Aivede Lo # ales ia class:
c \ #f.yv\ S / @ SI:E . %jﬁ”"lté-@"\

\ ) H dormale sleivs in elags
IP(?J'@“«\(?_ Sle.li) - —ml_:ﬁf.m«laj i clagg

W) g\"é?/\’\ata
P(skis | femde)
By changing from asking about everyone to asking about females only, we have:
o skrided attihon fo Hae Set ot zfema\e_s °/\b ;
@ reduced o Sw\f\rl@ Space f«\om e seb o v one, to Ha

get aa, émﬂ[QS ;
@ CO/‘\A'\{-;a/\ﬂA on Hae owval %d{(’_ﬁ’\ﬁ[d}

We could write the above as:

P (skis | fomald) = # Lomale shivs in clags

tobal 4 ferales (n (e

Conditioning is like changing the sample space: we are now working in
a new sample space of females in class.
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In the above example, we could replace ‘skiing’ with any attribute B. We have:

# skiers in class # female skiers in class

(skis) s (skis | female) # females in class
SO: \V
# B’ A C[MJ
P(B) =
and:

2
P(B |female) =

:H'BEFU"\‘\l{ RB's 11 clegs
T oAl #F ferdles n Clag

Hin class Who ore Lot atlibube B Ann }m\alc
Finclass who ~e Lomake.

Likewise, we could replace ‘female’ with any attribute A:
"Hf TS\L clacs Who e Lot B and A
————

_ﬂ'}/\ clase Who e A

P(B|A) =

This is how we get the definition of conditional probability:

P(B|A) = Pged A) . P(&n A
P (A) P (A)

By conditioning on event A, we have cb\w\\j od e SGW\FLL S[’“\ e fo tie
SC\’ "3/ H;J Of\l:) .

Definition: Let A and B be events on the same sample space: so Ac L ok
R — SL .The conditional probability of event B, given event A, is

PR A A
S

reoAd HAs &S, ! PFOQW‘L‘““U "a' B WITH,"MN Pl |
. prob s @) Wheen _Szdwu'"?:j é/w,v\ wWitbon He A's oa[\.j,
PHSO ) (" FraLm‘:il]’r\j Jaf & civen A )
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Multiplication Rule: (Immediate from above). For any events A and B,

P(AnB) = P(AIBYP(R) = PBIAPEA) = P(BnA)
N « ]

Conditioning as ‘changing the sample space’

(XY

The idea that con dibho A"v:j“ - "changing e sample cpace can be
very helpful in understanding how to manipulate conditional probabilities.

Any ‘unconditional’ probability can be written as a conditional probability:

(8 = P(&|x)

Writing P(B) = P(B|€2) just means that we are looking for the probability of
event B, out of all possible outcomes in the set (2.

In fact, the symbol P belongs to the set ): it has no meaning without ().
To remind ourselves of this, we can write

P =P
Then l?(@} = ?(Bli> = ]"?n_ (&>

Similarly, P(B | A) means that we are looking for the probability of event B,
out of all possible outcomes in the set A

So A is just another sample space. Thus We can mani 0\{’6 condiFional
P,rolw\\a‘ W \ H) JnsY likee M\_'j o Pfﬂbf/‘l: Yies, AS LoNg
P\S We =& W”G_f S{’@ l"'\,giﬂl_.?' H’\L Seme Swr(t 5(3"\02 A

The trick: Because we can think of A as just another sample space, let’s write

| p\) ’)3 ( ) NoOTE I\]oTshAAwal

NnotafRoA o&;_r r”m«jl,\ work

€ Mws»}u»l"/:)

Then we can use P, just like P, as long as we remember to keep the
A subscript on EVERY P that we write.
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This helps us to make quite complex manipulations of conditional probabilities
without thinking too hard or making mistakes. There is only one rule you need
to learn to use this tool effectively:

L
%(&w} = P(& 1CnAY) for ey A 8 c

(Proof: Exercise).
——

The rules: P(-|A) =Pa(-)
P,(B|C)=P(B|CNA)forany A, B, C.

Examples:

—> 1. Probability of a union. In general,

PBuC)= P(B) + [P(c )-"I’PGOC)
e G G oy S,

—> s, P (Buc | A) = P(BIA) + P(cln) = P(Bnc |A).

Stendard
V\o'l‘fsl"wf\ -
2. Which of the following is equal to P(BN C'| A)?
(a) P(B|C N A). (c) P(B|CNAPC|A). E xuense
BB (see H,\,Laél(ul
(b) P(A) (d) P(B|C)P(C| A). nokes online to

CLJ.CL- /;‘jow a0 ).

Solution:
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3.) Which of tke followmg is

z?jue‘? B X
(a) (BIA =1-P (b) P(B|A) =P(B) —P(B|A).
alB)= 1 - ﬁ (B)
Solution: _
- j- o ]Pﬂ (@)
=4 - FP(eln) s (&)

Which offthe following is true?

Exyase .
(af P(BN A))=P(A) —P(BNA).

(b) P(BN A) = P(B)

—P(BN A).

Solution:

Answer:

Vﬂoum:) A\,aw\' 6 Wil A Hf\_l_ P(_g ( /?(B /_})v ‘\’L‘U wd
NoTHINC abouk "J\N‘J( & U 0\9:5 waﬂa e A ‘g

P(81A)
Cowld Le an JHM\»D feorn O Fo i oA )enow\j P (R14) doesa’t +2ll
Fxercise: i

WS myfiing .

if we wish to express P(B|A) in terms of only B and A, show that
- AP(A

b3 | 4) — PB) = P(BIDBC)

— . Note that this does not simplify nicely!
1-P(A)
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2.4 The Partition Theorem (Law of Total Probability)

Definition: Events A and B are mutually exclusive, or @f AnB= q') :

This means events A and B cannot happen together. If A happens, it excludes
B from happening, and vice-versa.

[@Xe)
If A and B are mutually exclusive, I (A UB) =P (ﬂ) + P(8 3
For all other A and B, [’)(QUﬁ) PO + P (@ - P (AnR).

Definition: Any number of events By, By, ..., By are mutually exclusive if every
pair of the events is mutually exclusive: ie. B; N B; =0 for all i, j withi # j.

5o

Definition: A partition of Q is a Collecfion fhz mu\lrv\ctllj 2Xc lnsive cvents
WA ose WA1oA S L.

That is, sets By, Bo, ..., By form a partition of € if

BiNB; = 0 forall 7,7 with ¢ # 7,

and = BlLJBQU...UBk :{ﬁ

N

By, ..., By form a partition of € if they L\a\v{, no OVUL‘«»{’ and co uquilj
covey alk 'OOSS'-LLL ountcomes .
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Examples: B, Ry <L 3 %J_ﬂ_
By | L
— S
[C) g

Any set A can be partitioned: it doesn’t have to be €.
In particular, if By, ..., By form a partition of €, then (AN By),..., (AN By)

form a partition of A.

R 4

24

Partitioning an event A

en

Theorem 2.4: The Partition Theorem (Law of Total Probability)

Leb By, B, @,FM n perfition "fr SL. Then Lo ay vt A |
P () = ZIP Angy S PA]8) Pl (&)

A

NOT  IP(AIR) + PAI6Y)+ .. Yk

Both formulations of the Partition Theorem are very widely used, but especially
the conditional formulation Y ;" P(A| B;)P(B;).
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Intuition behind the Partition Theorem:

The Partition Theorem is easy to understand because it simply states that “the
whole is the sum of its parts.”

AN By AN By

- m :
. Kawl
-

AN B3 AN By

P(A) = ]P)(A N Bl) + ]P)(A N BQ) + P(A N Bg) + P(A N B4)

2.5 Bayes’ Theorem: inverting conditional probabilities

Bayes’ Theorem allows us to “invert” a conditional statement, ie. tO express
P(B|A) interms ofP(A| B).
— T

Theorem 2.5: Bayes’ Theorem

P(A| B)P(B)

For any events A and B: P(B|A) = PlA)

whaa 5 witin S
Proof:

P(BNA) = P(ANB)
P(B|A)P(A) = P(A|B)P(B) (multiplication rule)

P(B|A) — P(AHL@?(B). 0

——
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Extension of Bayes’ Theorem

Suppose that By, Bs, ..., B, form a partition of {2. By the Partition Theorem,

m

P(A) = Y P(A|B)P(B).

1=1

Thus, for any single partition member B;, put B = B; in Bayes’ Theorem

to obtain:
on A BAIBR(B) _ B(A|B)B(B)
i P(A) Y P(A|B)P(By)
o i
e BJ = By

IP(P‘ | 8‘3} = ‘offtk
aren Ay, Aad b
Lo!o{ rﬁC"‘MJ\_,Q S

PR, | A)

P(B1A - Pide area

wided b
/;:jiow o .

Special case: m = 2

Given any event B, the events B and B form a partition of Q. Thus:

P(B| A) = P(A|B)P(B)
~ P(A|B)P(B) +P(A|B)P(B)

Example: In screening for a certain disease, the probability that a healthy person

wrongly gets a positive result 1si‘ii The probability that a diseased person

wrongly gets a negative result § The overall rate of the disease in the
population being screened is 1%. If my test gives a positive result, what is the
probability I actually have the disease?



Pto le in

I Da{/ﬂ& evenks _Q = %f P ,,Jr on Ld:j scrtc/\cij
D - it\avc /U_(e,ajf.} b = %o{p not liave ’L]_ILMQJ
P = i ‘DOS'IHVQ "1,&}*3 N - -rs - NEW ZEALAND

1. Wrte Advwa _'_\LL info \j‘nue/\ ’
) Fﬁlﬂ’-— FOS:'H\/Q’ fo\f-e, s 0.09 =) 1\—) ( P | E) :@"

Flse M\jAHuc robe S 0-002 =
Disense rake s 17, —) fP(i)) - 0.

f_.L_oo[Q'le fﬁ"‘ : IP (D,P>
e have  P(DPY - (’P)’P) Bowgs T

27

Pery o

Now fP(f’lb) =1 -fj]>('f§|b>
=L P(NIY)
=1—- 0.00y

P(PID) = 0 948

Ao P(P) = P(PIDPME) + P(PIDYP(D)  Porribion Tiw.
= 0.99% % 0.0) &+ 0-05 4 (|-0-01)
P = 0054943,
Taws P (1P - 01T k0ol = 0-1L¥%
0. 0594L%
GIV’U\ N ‘OOSﬂ'N& +‘L.S)\" M\j U{/\MCQ J&" (’IO\V}S H"{ A’:jfﬁ’se X Oﬂl\j
I -8 °L, . ‘ 2 erSon & Kk
‘ NV a0 IP(D\ X &M«HJ
j _ So Hwre m’&*’-"
D/’\P More 0SPhue
4’“&5} resvl s wmon
D — ( HEALTHY v
SMhufmoho,.ea,a
Lege jff“rﬁ)m
Lag
R (o oo 2T
#Pec(alz

r’&t{h DQP
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2.6 First-Ste}} Analysis for calculating probabilities in a process

In a stochastic process, what happens at the next step depends upon the cur-
rent state of the process. We often wish to know the probability of eventually

reaching some particular state, given our current position.

Throughout this course, we will tackle this sort of problem using a technique

called F3rs} - Si—era ﬁnm?\js S -

The idea is to consider all possible first steps away from the current state. We
derive a system of equations that specify the probability of the eventual outcome
given each of the possible first steps. We then try to solve these equations for
the probability of interest.

First-Step Analysis depends upon condzitional probability and the Partition
Theorem. Let Sy,..., Sk be the k possible first steps we can take away from our
current state. We wish to find the probability that event E happens eye 1ly.

First-Step Analysis calculates P(E) as follows: v N A4 k=2

P(e) = PlE] I E b lnTT @),
I - +
( Pj?gm m(t(,? Pls) + PlElsHP (s)++ Plelsyps,)

Here, P(S1),...,P(Sk) give the probabilities of taking the different first steps
1,2,.. . k.

Example: Tennis game at Deuce.

Venus and Serena are playing tennis, and have reached
the score Deuce (40-40). (Deuce comes from the French

word Deuzx for ‘two’, meaning that each player needs to win two consecutive
points to win the game.)

For each point, let:
——>  p = P(Venus wins point), q = 1 — p = P(Serena wins point).

— Assume that all points are independent.

Let v be the probability that Venus wins the game eventually, starting fro
Deuce. Find v.
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V= frepe it

P P VENUS
™ AHEAD (A) WINS (W)
| DEUCE (D)] q\
VENUS VENUS
\q\' BEHIND (B) | q . LOSES (L)
)

P

Nse F—‘lrj)r*ghf Ana\bslﬁ. Te f)o_f,_c'.L,Lg Flrr S}—Lr_;) S’}-MHCj T(Sfom

De,mca) e

L Verns Wing He naxd point (proLo\bilib ) ¢ move fo Shak A

2. Vc/\u lasu “ T -

(protatilly gy = =« g
Lk V obe He eved tak Vewne  wins Eve NTUALLY, Strting forom
D-QU\CQ,. SO v = IP( \/ ' b|> D‘ = iy Denan n”'}:/\q( |‘1
VLS\"Y) Hae +oo Fggs',],u sy S)rcfu out s DNewee :
v = P(V1ID)

R‘ (\/) (rO'«J\« Worle AotaRon jﬂ’om $2-3, f-203, \
L
&)(w AR (A + R (V1]8) Py (8) %ﬁ’m

A

- > + VI8
. do B P IF(T Vo
no - OLLFU\AUKCL on ) Lf \ _
CGAC&/U.LA) Le comse we l@\ou [lL-M»/lC(-

\S‘OMQH,G\,:; more Veceal: AZ

s ¢ 24
Se v - P(VIA) p + P(VIED, . &€

Now we aced b HAA F(VIAQ and P(vlgl)) 9\5011'/\ ASiag
3 or Sh() ﬁno\l\jsl_c (FSFO .

POVIAD) = B (V) = B (VIW) IR (W) + B (v]n)Rls)
N —— B £

(b
ﬁz,}
S

_ W
) + + VvV *
(w 00 lread 4) P Whak we waat 0,/



Stats F21 Lélaoﬂ, Pritoherd (uWJ

5 :qS-'??jnMU\b Seme a3 Skaty 326 1 fgs 4 o §
(worw 2°(o eady)
= 326 ¢ worll 3%, eacl,.

L Tesk Seme o Sknks 306 = Wworkh o
— 326 : orh, 10‘(,,

2 EXfra p\'SS;jAM-H : &SS A’ ond 'AFSJ 6, worth 4.2, eac|,
jr?_'l Sf&c‘ml Tof’?‘g Cﬂ\f\r\o“ LE CQAU_/LLLA L:_j PMS&}(;

Cxenm: ~80°, Sera a8 3239
~ 20% on F2I Sloe,c?a\l%fﬁu

Final mark : 0% 325 Ass + FTest + 8% 2L Ass + IS Exen
OR (Plussase) 8% F21 As + 92°% Exam.



EEE)

Se: ﬂj(_vlﬁ.‘ﬂ: ¥ p + v 4 @

P, (VIOR (0 e
+ P (Visy 7 (D)

girv\'.lar\ﬂ) P(vIeD

= O%-T/ + VP
- P(V(8,) = ve @ (’ﬁfjvwﬁ

. ,e/vt/\hf\&ll .
S;,-L,\ﬂ-' @ MA@ info @ = V = (P_I,Vﬁ/) P + (Vf’ )a,/ I/ \j
V= p* + 2p4,v

ST AR S

Note: Because p+ q =1, we have:
2 2
= (p+g) = p AT H2pg =D |=2pg s pttq
So the final probability that Venus wins the game is:
2 2
V = ________..f-—-——- = _L_—
=2r4, P44
Note how this result makes intuitive sense. For the game to finish from Deuce,
either Venus has to win two points in a row (probability p?), or Serena does

(probability ¢*). The ratio p*/(p® + ¢*) describes Venus’s ‘share’ of the winning

probability.

First-step analysis as the Partition Theorem:

Our approach to finding v = P(Venus wins) can be summarized

P \ ; .
W = — : Ef"r& r
Plumaand) = v = 7 Pl |0 Pl
% <t S}‘glnj
First-step analysis is just the Partition Theorem:

The Sermple Space is (L = ZO\U possible routes From Devce to ﬂ(mif}

T . . X
Lok ﬁn eiample of siL sample point is > Dy » B 5D>R8, 2Ly
nother example is: o
¢ space that we use in first-step analysis-s: v’
P AR

gmN\io[q_, The partition of the sa

Spoente

o Ry = §all pessible rowkes from Deunce to Ho end Haak shork with DA}
22 - g - a " v “ “ “ = ‘. w " Bl—')BzR
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Then first-step analysis simply states:

P =P(VIR)PIe,) + P(vIRD)P(RY
=Ty, (VIAD R, (A + By (VIR (B,

Notation for quick solutions of first-step analysis problems

Defining a helpful notation is central to modelling with stochastic
Setting up well-defined notation helps you to solve problems quickly and easily.
Defining your notation is one of the most important steps in modelling, because
it provides the conversion from words (which is how your problem starts) to
mathematics (which is how your problem is solved).

Several marks are allotted on first-step analysis questions for setting
up a well-defined and helpful notation.

P VENUS [(P L VENUS
AHEAD (A) WINS (W

DEUCE (D
q\V/WENUS “VENUS ]

(BEHIND (B @’ | LOSES (L W
p W&% %\l

Here is the correct way to formulate and solve this first-step analysis problem.

NeeA P(VO\M Wins wuh\db) S}W’H:j (‘F«vM @LMQB.

. - o ; ' alw hVe ane oul J?Jf*m nae
|- Defne Notubion lwonys hiwve Hoe gune g S S&%M@ﬂu\w
| ot P(\/mu wins Vbl | Stard ot state D
Al e Vﬁ = P (Vedws Wins wml‘m%] Start al shate A) :ﬁb
probesily Voo = P (Ve/\vu M)A Wu\hﬂe\lb] Stort ab shate B)
T4 e — T

e YA R /SR A G,

Va = p+ |+ 4, vy @ K

& = PV + 440 © il

3. Subsbibe (L) and (9 i () =y = p(p+ay 5 )+ 1(F “s)
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| sk

ﬂ)(l/uwd LJQAJWMH\&J? \ sJ—aﬁ’r“[:j }mm B{hq>,

2.7 Special Process: the/Gambler’s Ruin ?

L

This is a famous problem in probability. A gambler
starts with $x. She tosses a fair coin repeatedly.

If she gets a Head, she wins $1. If she gets a Tail,
she loses $1.

/ f f aﬁa%’mf
The coin tossing is repeated until the gambler has either $0 or $N, whenshe
stops. What is the probablhty of the Gambler’s Ruin, i.e. that the gambler

endg up with $07 =z 2y +4 P

o2 L 1) AR 1/2 1/2
11— 2|—[ 3|---» i E2

‘z)/ \ U SR SR S
1/2 1/2 1/2 1/2 1/2

Degine vt R = §eviatual ruing = §nds with $o
Wisk t gk PR | stk wit $x)

b N f\.O‘{'kHOZ\ :
4 — - P(r |CWMHJLM )

w0

o _ <
: P = P (R IShfLa’rsﬁhx) /

{or’ A=0,1, ..., N.
= i . Ft‘\\j rkuzo\ i g a{z_d-.mi'c

Fo
P.'\J = 0 :ml“"‘”}_‘) LWOoA: A nmpe&j’:LL(‘

COI\PU& }n (ﬁormo\Hm ;

I—




[_-l) é‘D ,/1 A4 )
_ .
P?L 2z P;(_H. + _5 P;;C_] /(F"’" - ] ) " N—I @

Bowdeits =1 wh p -0

Sl oo N-)
Solution of difference equation (x):
Py = %pxﬂ + %px_l forx=1,2,...,N —1;
po = 1 (%)

pN:().

We usually solve equations like this using the theory of 2nd-order difference
equations. For this special case we will also verify the answer by two other

methods.
1. Theory of linear 2nd order fierence equations/ Standerd ua\j>

Theory tells us that the general solution of i$p, = A+ Bx)for some constants

A, B and forx = 0,1,...,N. Our job is to find using the boundary

conditions:
it

P, A+ B ?F‘C_QAJ’"M;Z_S A ¢B
N ?or x=0,1,.., N.

Solop, = A+ % - .
\/\,\/ P —

borend
(_.Of\A 'r'\gfj

25 shaAuky: You et
fold Hag: juy Lave
to Solve d‘?pr fﬂf‘(*-@

72 shs need to domve

Hats

—

P"‘A: O:Pr\l - A+ BN = 14BN = R = _L
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= -_&}—(‘]Corlol ﬂ

—

So our solution is:

For Stats 325, you will be told the general solution of the 2nd-order difference
equation and expected to solve it using the boundary conditions.

For Stats 721, we will study the theory of 2nd-order difference equations. You
will be able to derive the general solution for yourself before solving it.

Question: What is the probablh > tha@e
starting with $x? :

T\D(W:“«f ] Sharks witk X—) = j_ - [P([osc_r ] Skl with 1)

(ends with $N),

1 - P
0sak < 4L-(1-% JEUE
. . . l
)2. Solution by inspection - % oy /e

The problem shown in this section is the symmetric Gambler’s Ruin, where
the probability is l of moving up or down on any step. For this special case,
we can solve the dlfference equation by inspection.

We have: _— @IH +@x_ —sA & J)F. ) At .

%px + lpx — pr-i-l + pr—l
Rear fa”@m@ = @ Boundariesp, = 1,py = 0.

There areV steps to go down =1

frompy, =1 topy = 0. 1"% _____ -
Each step is the same size, f/,\;‘ . (Ba~PR) samesize
because | 7777777 for eachx

(p:r—l - pz) = (px — px+1) for all x. e ----- )
So each step has sizeN,

= =LA LY,

- :O
LW

S . ' ® B
0 1 2 N

pe=1— % as before.
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Donk.

3. Solution by repeated substitution.

In principle, all systems could be solved by this method, but it is usually too
tedious to apply in practice.

Rearrangéx) to give:

Petl = 2Pz — Pa1
) pp o= 2p—1  (recallpy = 1)

1
————— — |
(v =2) p3 = 2]?2—]?1=2(2p1—1)—p1f3p1—2_/
3 4

) @= 2ps —p2 =2(3p1 —2) — (21 — 1)

giving  p, = ap—(x—1)  ingeneral, (xx) Malum aReal
likewise — Np;—(N—1)  atendpoint Laduction

PN = P1 . cL S
Boundary condition: py =0 = Npj—(N-1)=0 = p =1-—1/N.
Substitute inx*):

Pz = xpl—(l'—l)

= 2(1-3) @

r—y—r+1

Pe = 1—+% as before. O

2.8 Independence /& QQAA: FZQ/VU\IO/\,

Definition: Events A and B are statistically independent if and only if

P(AN B) = P(A)P(B).

This implies that A and B are statistically independent if and only if
P(A|B)=P(A).

Note: 1If events are physically independent, they will also be statistically indept.
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For interest: more than two events

Definition: For more than two events, Ay, A, ..., A,, we say that Ay, As,..., A,
are mutually independent if

P (ﬂ AZ-) = [[P(4) for ALL finite subsets] C {1,2,...,n}.

1eJ e

Example: events Ay, Ay, A3, Ay are mutually independent if
i) P(A,NA;NA) =P(A)P(A;)P(A) for all 4, j, k that are all different; AND
iii) P(A; N Ay N A3 Ay) = P(A)P(As)P(A3)P(Ay).

Note: For mutual independence, it is not enough to check that P(4; N A4;) =
P(A;)P(A;) for all i # j. Pairwise independence does not imply mutual inde-
pendence.

2.9 The Continuity Theorem ]\Ia,\,\) . fij “p in ~ChL ¢ /:}.
A

The Continuity Theorem states that probability is a continuous set function:

Theorem 2.9: The Continuity Theorem

a) Let Ay, Ay, ... be an increasing sequence of events: i.e.

A CAC...CACALC... .

Then
IP’( lim An> — lim P(A,).

n— o0 n— 00

o0
Note: because A; C Ay C ..., we have: lim A, = U A,.
n— oo
n=1
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b) Let By, Bs, ... be a decreasing sequence of events: i.e.

BiDBy2...2B,2Bpi12....

Then
IP( lim Bn) — lim P(B,).

n— 00 n— o0

n— 0o

Note: because B; O By D ..., we have: lim B, = ﬂ B,.
n=1

Proof (a) only: for (b), take complements and use (a).

Define C; = Ay, and C; = A\A;_1 fori =2,3,.... Then Cy, (s, ... are mutually
exclusive, and |, C; = U;_; 4i, and likewise, | J;2, C; = U=, 4.

Thus
P(lim A,) =P (U Ai> =P (U C’i) = Z]P’(C’Z-) (C; mutually exclusive)
n—oo
i=1 i=1 i=1

= Jim ) PG
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2.10 Random Variables éJ i $‘io/\

L gl

Definition: A random variable, X, is defined as a function from the sample space
to the real numbersx : Q) — R.

A random variable therefore assigns a real number to every possible outcome of
a random experiment.

A random variable is essentially a rule or mechanism for generating random real
numbers.

The Distribution Function

Definition: The cumulative distribution function of a random variable X is
given by

Fy(z) = P(X < )

Fx(x) is often referred to as simply the distribution function.

Properties of the distribution function

1) Fx(—o0) =P(X < —0) =0.
Fx(+00) =P(X <o0) =1.

2) Fx(z) is a non-decreasing function of x:
if r1 < X9, thean(xl) < FX(.I'Q).

3) If b > a, then P(a < X <b) = Fx(b) — Fx(a).

4) Fx is right-continuous: i.e. limyjo Fx(z + h) = Fx(x).




g THE UNIVERSITY
OF AUCKLAND

NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 39

2.11 Continuous Random Variables

Definition: The random variable X is continuous if the distribution functior¥'x ()
Is a_continuousunction.

In practice, this means that a continuous random variable takes values in a
continuous subset @&t: e.g. X : Q — [0,1] or X : Q — [0, 00).

Probability Density Function for continuous random variables

Definition: Let X be a continuous random variable with continuous distribution
function Fx(z). The probability density function (p.d.f.) of X is defined
as

d

fx(x) = Fx(z) = ——(Fx())

The pdf, fx(z), gives the shapeof the distribution of X.

Normal distribution Exponential distribution Gamma distribution
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By the Fundamental Theorem of Calculus, the distribution function Fy(z) can
be written in terms of the probability density function, fx(x), as follows:

= [*_ fx(u)du

Endpoints of intervals

For continuous random variables, every point z has P(X = z) = 0. This
means that the endpoints of intervals are not important for continuous random
variables.

Thus, P(a < X <b)=Pla< X <b)=Pla< X <b)=Pla<X <b).

This is only true for continuous random variables.

Calculating probabilities for continuous random variables

) CHF
To calculate P(a < X < b), use either /

Pla < X <b) = Fx(b) — Fx(a)
or \ pAE = probeliliby

b
= Pe<X<h) [ fxla)ds Asity
“ 3”\««%‘;04

Example: Let X be @ndom variable with p.d.f. éx 2

(/ )< n<2

A
272 forl<azx< 2, @
fx(r) = ) .
otherwise. ~
—S %

(a) Find the cumulative distribution function, Fx(
(b) Find P (X < 1.5).

I'(f‘“>l



& () ,L) arm S et A
é (D Au Loralla o

J/ NEW ZEALAND

J 2 u O{V\ {ar I<'X,
haman

P(X <)
CCE O

F A~z EASVILT -

21/\-‘ " 0 - <
1 R (7O

-T fer 1kny

Rey = 2-2 g (<
j_ ﬁm‘ 7(22_
N
D) P(X<is):=f(1s)=2-2 _ 2
-3 3
2.12 Discrete Random Variables Qﬂ a A _

Definition: The random variable X is discrete if X takes values in a finite @mount-
able subset of R: thus, X : Q — {1, x9,...}.

When X is a discrete random variable, the distribution function Fx(z) is a Step

function.
Fx(z)

Probability function

Definition: Let X be a discrete random variable with distribution function Fx(z).
The probability function of X is defined as

fx(x) = P(X = x)
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Endpoints of intervals

For discrete random variables, individual points can haveP(X = x) > 0.

This means that the endpoints of intervals ARE important for discrete random
variables.

For example, if X takes values 0,1, 2,..., and a, b are integers with b > a, then

Pla< X <b)=Pla—1<X<b)=Pa<X<btl)=Pla—1<X <b+1).

Calculating probabilities for discrete random variables

To calculate P(X € A) for any countable set A, use

P(X € A) = ZIP’

reA

Partition Theorem for probabilities of discrete random variables

Recall the Partition Theorem: for any event A and for events By, Bs, ... that
form a partition of (1,

P(RY = ZIP ALY P( 8.)

We can use the Partltlon Theorem to ﬁnd probabilities for random variables.
Let X and Y be discrete random variables.

.DQ&TAL et A4S A: %X:x@

i Blﬂ’ﬁ\/\i went @ = - — (oer\a\’qu
- %I j-i }D J” \/Lwe_s Y hh)

* Tlun ‘o\j He PartiFon Theorom -

P(x=x) - 2 P01y Plr-y).
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2.13 Independent Random Variables

Random variables X and Y are independent if they have no effect on each
other. This means that the probability that they both take specified values
simultaneously is the product of the individual probabilities.

Definition: Let X and Y be random variables. The joint distribution function
of X and Y is given by

Fxy(z,y)=P(X <zadY <y)=P(X <z,Y <y).

Definition: Let X and Y be any random variables (continuous or discrete). X and
Y are independent if

FX7y($,y) = FX(.T})Fy(y) for ALL T,y € R.

If X and Y are discrete, they are independent if and only if their joint prob-
ability function is the product of their individual probability functions:

Discrete X, Y areindept <= P(X =z ANDY =y) =P(X =2)P(Y =y)
for ALL z,y
— fxvy(ilf,y) = f)((ilf)fy(y) for ALL z, Y.




