P(X=2)=F (n) = F (2=1) .
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Chapter 4: (Generating Functions

This chapter looks at Probability Generating Functions (PGFs) for discrete
random variables. PGFs are useful tools for dealing with sums and limits of
random variables. For some stochastic processes, they also have a special role
in telling us whether a anocess will ever reach a particular state. X+ Y

Y

) I ‘/li E(SX‘*Y) Ff{qll
By the end of this chapter, you should be able to: Prosine”
\\ — v‘
e find the sum of Geometric, Binomial, and Exponential series; U: (f ) (s’ )

e know the definition of the PGF, and use it to calculate the mean, Varlance 'M{‘f}
and probabilities;

e calculate the PGF for Geometric, Binomial, and Poisson distributions;
e calculate the PGF for a randomly stopped sum,;
e calculate the PGF for first reaching times in the random walk;

e use the PGF to determine whether a process will ever reach a given state.

- = = Fr €T
4.1 Common sums Pro"k" ler S Z N F o o
Haan .«vS r+r R
— 1. Geometric Series S0 S- ) S(f r)vl Q""'
W
|—rr+r?'#r3+.__d = Z\V = ] W hen I-l< 1.
=0

This formula proves that Y >° (P(X = z) = 1 when X ~ Georpetric(p):

- LEARN AND
TE AY Gaomeric (p) RECOGN ISE

Hoa 2 (X = *)-F(Ip\ for =0, 1
So Z P(x=-y = 2 p (-p)

- Io %o ((_P) [z{' = (+F N Oﬂormv\ la\

"\la'?'u’(. .

;g =

P * | &— Lecanse ] i_f’

|- 95| .
_ _% ? FS lé' P s a fV‘OLaL,][]b)D_

|

<

i
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()= P(x=0) =p bhere Se R
ECOD £ (0=POED =p7 ). | |
% X) }( ’L\: ‘? (X"Z) =p e QX (5) f A 'F'V\a\d‘\oq ?‘V'DM IIR-B)R

‘ Falee oy real Al s

n - valw
ot Ha "‘P("l\j 4)( (5‘) Fo %, we Sa_k oo
Asch Feal A Lor,

(valune X can ‘Tolu)

P "¢ W \‘)er con S fank Cafﬁ-,h]hb‘;

Pouwo Seres //
G (5) ‘—“+f°i/ +%SQ+~,
selR s Q -

TE s=0, G () = Glo) TP
6/ = P+ 2p S 4 3[:3{‘ Hhp oot
_—L&- $=0, q/(Sj:: q,/a): P ‘
TE0 (V0= G0y -2p v g

Thea s Kok 5O ealles s to recovs ALL w%raw\
Po 4 P; / ﬁz /T Lvmw\'j~

So 69 conbin alling floe is b0 know aboct Hasep

6 () = P(X=0)'t P(X-Ds + P(x=)s + P(x-d< 4.

= D PO T T gk E(5(x))
E( ) & e g00<s
= S

N A
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2. Binomial Theorem {:ir % ) c [R , o ;A{.-(_JU_ ",
(pry) =2 (W)r 47"

Noke ('_l\ _ "‘C‘L _ ...:}-L——-_ R iqu button on calculator,

QAR
The Binomial Theorem proves that Zn P(X = z) = 1 when X ~ Binomial(n, p):
———

2, P (X Z(x),o (,a)"" for X~ Bin(a,p)

%’ P+ (I.. F\ \3 MS%S 6;A0M?alTLAn wr L
, 17 ke
=1

1

\

3. Exponential Power Series

- x A
'{‘_OFOV\J’)\él’R) L_}._ 56

—_— — =0 x'

This proves that >~ /P(X = z) when X ~ Poisson(\):

P (X = x) N 6‘* for =0,1,2, . o K”Pa.‘s;oa(m)
So Z [P(X:x> = i 2\16_’\

A=0 2!

N e

Note: Another useful identity is:

o Lim § |+>~7S Lo NeR. <oto,‘

N— oo ’{N‘A
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4.2 Probability Generating Functions

The probability generating function (PGF) is a useful tool for dealing
with discrete random variables taking values 0, 1,2, . ... Its particular strength
is that it gives us an easy way of characterizing the distribution of X +Y when
X and Y are independent. In general it is difficult to find the distribution of
a sum using the traditional probability function. The PGF transforms a sum
into a product and enables it to be handled much more easily.

Sums of random variables are particularly important in the study of stochastic
processes, because many stochastic processes are formed from the sum of a
sequence of repeating steps: for example, the Gambler’s Ruin from Section 2.7.

The name probability generating function also gives us another clue to the role

of the PGF. The PGF can be used to generate all the probabilities of the distri-

bution. This is generally tedious and is not often an efficient way of calculating

probabilities. However, the fact that it can be done demonstrates that}.LL \
AL

PCF +ells ws ,w@m\aj Here is fo kroy about a Adiskibubo

Definition: Let X be a discrete random variable taking values in the non-negative
integers {0,1,2,...}. The probability generating function (PGF) of X is

QX (5) = HZ_(—SX> , éor all SG[R '(ﬁor whicl, TP €.XPeo{—nH04

S conv UjLS R

Calculating the probability generating function

S

Gy (& = HZ(SX - s P (X =) . J et
) KZ::O ) E(j(X))

X
LJLU"Q J (X): S .
Properties of the PGF':

[
1. Gx(0) = P(X = 0):

S=0 — ﬂd’Lq(k P = IP(X=0).
O o

X S - /\z/\xﬂ
Gy (o) = E(0 ) ——/o [P(X=0) + 51\{?@)( O P (XD

o

Nobe O =4 (defsdas £ s = 1)
So Gy ()= L+ P(X=0), 7
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2. Gx()=1: (G, (1) :i 1" P (X=x) :f IP(X:*) =1.

(+rne for any non -defeckive v.ov. X - see labe ).

Example 1: Binomial Distribution

Let X ~ Binomial(n,p), so P(X = x) = (Z)pxq"_x forx=0,1,...,n.
: )
QX(Q=|£($X) H,\:,\l(ﬂ_;l.ﬁ_g E(
500 fr 9(X) 2
" /?HZ s" P (X=x) froem g X \j“ﬁ\:sxj
not 00 o so reell B(500)= = 909 P (xex)
25 S ames A
Ao X~ BN = Z_ | e

= 2 () ey ()
. ., - Valid for
() Tl g ) xommmamon

Check Gx(0): for selR L0%)

¢ -0 /

Cx (0= (pr041p) 8 S
S N

(T?\j S=0

50 100 150 200

- Pxeo) T S
Check Gx(1): s 5o a
G (D) = (prl 4 f—ﬂ

(s=1) - (f’*l'[’)n




B

G- ) el
NUICAGR RS :

Example 2: Poisson Distribution

"

)\SE
LetXNPoisson(A),soIP’(X::E):—'e_)‘ forx =0,1,2,....
!
X 29 % 5 -N\
O (- E(s7) = S & N> o
=0 ')(l A

it tre for
6 A=0 ! / _Cé':Q(jR
g @ (peabiel seiss )
Jlé 6“%‘*7\5 X ~ Poisson(4)

_& ° Gy (€) 4
= c) = =
X N g o Qx(‘ﬂ :@
Valid for SclR. ; \\

Y

-1.0 -0.5 0.0 0.5 1.0 15 2.0

loﬂlou) 3:'5‘)5 Hwe s no ‘OfaLLUV\ wi i
He &\MLHO«__P_ Lbub 1t no [onja’
Example 3: Geometric Distribution

A
repreSents M‘Z,prea{'nf"-of\ ]-E(Sx)'
Let X ~ Geometric(p), so P(X|= z) = p(1 — p)* = pq* for x = 0,1,2,.. .,

where ¢ = 1;]?. X~Q eom (P:O'S)éé-:g
qX (\_93 — [E ( Ky ) o X ~ Geom(0.8) toinfinityfh&'q/t vagl,
20 2 710N i _ i o -
- Z 31 P ?/ \Y me-—l_%s __LlLJ S S/
A=0 jdr"ﬁ'ﬁmkm:,, \_} | Togs 250
ass ~« é---—iﬁ ‘ ~_9
-5 (49 D L
= P —Tl—?g r ]@SI <1 (Geomﬁz w"ae&)
= QX (h = ﬁz aiof* <] < —% . PG Fa{or G eopmebric
ﬂ{ﬁ@m.
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4.3 Using the probability generating function to calculate probabilities

The probability generating function gets its name because the power series can
be expanded and differentiated to reveal the individual probabilities. Thus,

given on\\cj Hoe PC,F; GX ($) = LE_{SX)) lue coan Yecovy all
Progm\."l\r\\"\\u F(sz)'

For shorthand, write p, = P(X = x). Then
v 4

4, (mﬁz(ﬁ):éﬂs* S H RS g S

N~ — -

Thus P, = P(Xs0) =64 (o). = -O%G,( (o)

/ 7z 3
First derivative: qX (S) = f‘ + ()—fL S + 3&3 + Q«rq‘S +-
/ | /
Thus P = 'P(X:l) = Gx (O) . T T CX(O_)
. . 2
Second derivative: GX” (s) = 2 e + 22X F?, S 4 4_*3‘1 S 4.
A, M

Thus PL = [?()(:2_> - —:l?_— C;; (O) = -i—'g; (O)

Third derivative: GXM (f) = (3 ¥ 2 % 1) ?3 -+ (@%3%7.)19%5 + .-

Thus P, = P(X=2) = T;”T 4):” (0) .

In general:
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Example: Let X be a discrete random variable with PGF Gx(s) = g(? + 3s57%).
Find the distribution of X.

/
G () - s, 2% 1G(e)=0 = IP(X=0)
S s 0!
G (5 - < ¥ %Sl & J,TQX/(O%ES.; = fP(x:\)
Gy (9= 25 L6 (e)=0 X=2)
WO L e R Py
(S) ?or all [’>4, %TQSKS(CO -0 :ﬂ)(x:r) Oﬁ:r
ol =45, ¢,

Uniqueness of the PGF
The formula p, =P(X =n) =

probabilities pg, p1, p2, . .. is determlned by the values of the PGF and its deriv-
atives at s = 0. It follows that the PGF specifies a unique set of probabilities.

ct: If two power series agree on any interval containing 0, however small, then
all terms of the two series are equal.

Formally: let A(s) and B(s) be PGFs with A(s) = > jans™, B(s) = > bus".
If there exists some R’ > 0 such that A(s) = B(s) for all —R' < s < R/, then
a, = b, for all n.

—

Practical use: If we can show that two random variables have the same PGF
in some interval containing 0, then we have shown that fle oo raadom

vart Abus must have He Same AistAbuhon,

I

Another way of expressing this is to say that H.. PCE 96,_, X tells s
-@VQ{_‘)H/\\U H"U-f’- s ‘h’ knou p\\v""‘% H'dl s AL ubon "6r X .
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4.4 Expectation and moments from the PGF

As well as calculating probabilities, we can also use the PGF to calculate the
moments of the distribution of X. The moments of a distribution are } ,

Mean , verronte , ¢hc.,

Theorem 4.4: Let X be a discrete random variable with PGF Gx (s). Then: l‘//

>t B0 - 6 (1) LM

,ﬁ;lng(x-m(x-a (X- l«m)g q (1)

-

(TL\_& s He la 4% Efﬂtf‘orm\ MOM ent aa— X) o{g S=|
Proof: (Sketch: see Section 4.8 for more details)
L0 o 1 _ X~ Poisson(4)
LG Z T g by depaikon zgrim s
. =0
D‘FH?‘”"‘H f‘t&: bo . jrfwlw& i G at
Gl (D=3 xsp 50 ISR g
A=0 | \/ Ko (6)
= Subsk S=,

x| -~ i
e Qx (i) Z o 1 Pv(, = Z?LP :E(XYO 05 1.0
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Let X ~ Poisson(\). The PGF of X is Gx(s) = =Y. Find E(X)

Example:
and Var(X). X ~ Poisson(4)
PNEED
Solution: G (H=¢ N
/ EE)
= G (H=N€ o
>  EN) < 4 (D) )
= >\-€>\(i_ D i 0.0 05 1.0 15
- 2e’ As we alr dls ke
. ol Aw
= EX = X @ bt it deleesTvory Gl

= S Lorle .
For e variance, e peed E(X7)-(EXY. Nore Kk He POF will
not 3‘:\/& ‘I(\(l) Aireckly,  TusY gives [E X (X-1) LE( — EX.
Consider ]_El: X (X- l)]l? QXJ// (i) )\ 615\(5 N ll )

So Ve ()= E(X) - (Ex)
- E[ X (X-D) + Ex - (Ex)

| = X+ A - N\
- \/o\r(x) N (C) we hneo Prﬂl/mvd\ JEX = \/J(X)“/\
= Olen XPoisson (3 bt o proog i
em&\wj

4.5 Probability generating function for a sum of independent r.v.s

One of the PGF’s greatest strengths is that it turns a sum into a product

——-%E( (X1+X2) ) _ ( XlSXQ) .
T =Xi+X,
This makes the PGF useful for finding the probabilities and moments of & Sum

ithPENDENT’ \f'o\Nlo/v\ veriallo¢: Lecanse J, X L X, we
ndepk, fan E (s X)) = EGXYE(S).
, X, are tndependent random variables, and

Theorem 4.5: Suppose that X1, ..
let Y =X+ ...+ X,. Then

Gv(ﬂ = T G, ()
| [:; L




SogT heve vve Xoad Y iadeph
\/\Jo\/& JFo erwu Fle u{kj+f\ a’&, T - X+ \'/

R S
u,‘;ln He rﬂ’bo\L |+ (@kA(/I_‘GA',

P(T=6) = S P(Xox A Y=t x)

=0

= Z /P(X x)P(Y (.-x)LJ 3
Hos is alled Cot\JVDLuHor\J o ©

T X « V.
a (ot ’a' Lolle ‘(’ M&\Lj\,e, ta abmtrally, S .

A A

P -0 R
Yooz

I X, 7 2 wuf\r et Ak o TaXayY 4z
P(T-p - z z P (X=x) P (Y=9) P (2 =2y

CE/\)\\rkl L\IM'\\' TL\QO."U/\ r'\“f 'QJXC'*'H\/j QLM Loe gSCAPE %om

(_,o,\volm\—;ou (VAT 2\ Morr\nql ﬁw/—ox;,ﬂﬂh\o,\.

6(,_;.{- LAQQE n, Xa T ><,1 ?r«(—tr)‘
T = X\ o4 X;\ ,\:/ OK(JF/O)( NO/M&l ©

CLT torks only for LACGE w.
What 7§ w s NoT (w@&? —>  P4F @
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Proof: 4\/ (s) = E(SY) /

j ] PE( gx,+.,,.+®> @
Fa)

iy ( K PR Always Trae l

il

= E(sC)E () B> becawse X, X,
= Q)& () 4,(1(5) qx4 /3) L\lj 0{0\?‘;/::\:1.;

]

I\T Qxi (S) as fﬂtlv\\lrcd, O

Example: Suppose that X and Y are independent with X ~ Poisson(\) and
Y ~ Poisson(u). Find the distribution of X + Y. o o

Solution: C;XJ_Y () = Gy (9 qy (s) Lij Tmi{,fo T X ¢ Y
_ e/)\(S—;) e//,‘ (_Y-ﬂ)
_ (>\+/V\X-S"l)
= &

@m\'. Hos s fe PGF N Polsson (>\+/V(> AisFAlubon. 80) !i_j

H< WA g heness oa- PCFs, we have proved fhet TJ’ X ~ Poisson ()\) ond.
Molosson (M), X4V iadygy, Hua X+Y ~ Poisson (X4 m).

4.6 Randomly stopped sum

RATIONAL BANK OF REMUERA

Remember the randomly stopped sum model from

Section 3.4. A random number N of events occur,

and each event ¢ has associated with it a cost or
reward X;. The question is to find the distribution
of the total cost or reward: Ty = X7 + Xo + ... + Xx.

Ty is called a randomly stopped sum because it has a random number of terms.

Example: Cash machine model. N customers arrive during the day. Customer ¢

withdraws amount X;. The total amount withdrawn during the day is Ty =
X1 +...+ Xy
N is RANDOm

s s U e Al
from what we jud Aid) Wlee A wag
f}(c/\,



Gy (oofin D = B (myhin)™)

C!N< Qx(s)) - EC 4X(5)N >

= LE( “N () # G () ¥ . x Cw)((.())
v\/

N +imes
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In Chapter 3, we used the Laws of Total Expectation and Variance to show
that E(Ty) = pE(N) and Var(Ty) = 02 E(N) + p? Var(N), where p = E(X;)
and o? = Var(X;).

In this chapter we will now use probability generating functions to investigate
the Wwole Aigkibukion T -

PaNE X i = Md/\@ wiHArews Ly cudomea |
Theorem 4.6: Let X;, X, ... be a sequence of independent and identically dis-
tributed random variables with common PGF Gx. Let N_be a random variable,
independent of the X;’s, with PGF Gy, andlet Ty = X14+...+ Xy = Zf\il X;.

Then the PGF of Ty is:
N LJ, (\J:—‘H'cksi‘omuj

q,r (5) = ql\/ ( C;X (5))

G, (0 - E(s™)
X, 2t Xy
= E ( S o X ) L:J Abd—n_j
= E P = R {_,ou—d ‘f“*?f““(
% ]E ( | M> } ?;]*AhOA
pra’rma{ N % constant
Pol'm*\“"’\ of (\j as we're aside

(gnw/bj E E,\;% [E(SX.+...+X,\, )\3 Lo comse X7 ML:AAJ_f}

wrke ™ (so k N ixes 4t D&MN od ten o
o knowin Xes S in < 0
WUI\/)Y j V\°Hmlf_‘j\2(_k to He |~(uuw{l—m\ XW> N
o = By 4( E(S"E) E(sXv) § L e
?yw 4 5 (s >3 echinse Kils indeph
x () ) 7S f’afeacl.\ ol

s ecamsSe (8 ‘)?ﬁl (\:)

kb . r_en 1 9

NS Y :l -i?% F @? E
) N :Q (“‘”) by Mpre 6,0
&Lw\
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use e PGF to
Example: Let X1, X5,... and N be as above.ﬂ?ind the mean of Tly.

(M) =6 (1) = zLG,\,(axm)]

G,\j ( Gx(9) G () } Clwn rule
= 60 (G0 6/ (1) suter ooy

L,_———\__J
:]LJ§¢»1 =EX L Y Tha G4

=6 (D EOX
‘:IEN*]:EX : SG\M(,MSIAJUJ'

Ezxample: Heron goes fishing al We found

in Seckon it
My aunt was asked by her neighbours to feed the prize
goldfish in their garden pond while they were on holiday.
Although my aunt dutifully went and fed them every day,
she never saw a single fish for the whole three weeks. It
turned out that all the fish had been eaten by a heron
when she wasn’t looking!

Let N be the number of times the heron visits the pond
during neighbeurs’ absence. Suppose that N ~ Geometric(1 — 6),
, far n. = 0,1,2,.... When the heron visits the pond

Q

it has pro ability 1ing a prize goldfish, independently of what happens

on any other visit {Fhi umes that there are infinitely many goldfish to be
caught!) Find the distribution o Qimiler fo Acs 3
Ll <s
A Q) mn(c)\

= total number of goldfish caught.

nwse PGF
Solution: ® s ° . . NE: 2R A
1 ‘—(— Lwron cabdas \[/ l :{/ j/ i MNCIQO (" 8)
Lot X = 4( A 55 on VIGHT o 4 1 o =5 uisiks
XI:D x‘l:.l Lu}t,

O OHW.I-S-L

J= X 3%, 4. X,y = 2 on Has
— Ad agrann.

T[_U\ T= ﬁ‘fé&\q cm:(j\,k
I ‘-S On fMI‘LOMl J"}‘off{* SL\M'I

= X X bk X,
Hos is &~ rov\AoMij s)ror,rwk St

So Gr (9) = G ([ ax(9) @




Se we ned Gy () and Gy ().

EEE)
g

NOLJ q)( (ﬂ = !E(SX)
- SO [P(X-‘— O) +S\ IP(X:') 86
QX(Q = l-p + ps @
Also 4!\} (r) : (VLSL r TJ‘\-JJrMA T S be canse e o\cf’u\d\lj Lant
C‘/\l( ax(ﬂj = QN ( l-f»+fu>, So to\d* (= |—P+P_c
me\'u% }

N=0
(L) S (or) & Qeomencsne

nN=0

= (I—TI), { as lonq ag ,%r I’< 1.
RS (-9 r
L Gulr) = o7 fer Irl< L @
Sulsbhdine (D ad . ko (B
C; (0\2 C\ (q () ) = L Ph‘lﬁf\ \F:Q (© Tﬂ"o@
T N - &Gy (9 Do

s _ % A/

= G () = — L
- =B (1-p +ps) 5 ©

L,\/\—’\--——'\.

Question : could flis Le @ Geomebnc ¢ v, 7 We would need some

Uﬁ\lﬂ\l— Tr SL\(L\ Hf\‘*\' C‘_‘_(Q = l_-‘ﬂ_ . ?OL T‘quo([-'ﬂ">
|- s
A (AYs

Couﬁd' TUM_F i S on e 'soﬂ“cmq {, (“Lgcgl fo Mmalee |— T
il \(!LVQ&\. el TG TL,\ see i He top i adeed T 0

T (‘zﬁ\L\lp N Geomblric ,

l
I-©

( SO)
S =P
So : C\T.(S) = | . = l-%rpfyf,
|- 9+Dp ~Tps -9 +9 S ps
|—%’+%‘r m



I_% L/(LwasHo,\ VS, s Wor = |- 7
= G (9 = (M} +<a¢) .
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-9,

S—— Hus munst be o T

|—% +%") — %']o
- [—cb'rcb”]o

1 - Fe o
l_%—‘f%'f

%.
- e
- i |—S +%P

i - ®p > S
’_—%‘4’%"3

|-
= QT(D = _— Whoe T = o
(— TS I_C&_!_%'D

This ic e PoF F te Georetac (1-7), So by taiguencss

I fo POFs, e bt distovred T~ Gemetsc (em)in (£
N ~ Geo (1-9) “Ur
T = |-
Xt~ Renouli(p) )77 ! X**"‘*XN ’“’Cublo(lﬂ%Lﬁ
Why did we need to use the PGF? 1

R eak (ki )

We could have solved the heron problem without using the PGF, but it is much
more difficult. PGFs are very useful for dealing with sums of random variables,
which are difficult to tackle using the standard probability function.

Here are the first few steps of solving the heron problem without the PGF.
Recall the problem:

e Let N ~ Geometric(1 —60), so P(N =n) = (1—0)0"

e Let X7, Xy, ... beindependent of each other and of N, with X; ~ Binomial(1, p)
(remember X; = 1 with probability p, and 0 otherwise);

o Let T'= X1+ ...+ Xy be the randomly stopped sum;
e Find the distribution of 7.
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Without using the PGF, we would tackle this by looking for an expression for
P(T = t) for any t. Once we have obtained that expression, we might be able
to see that T has a distribution we recognise (e.g. Geometric), or otherwise we
would just state that 1" is defined by the probability function we have obtained.

To find P(T = t), we have to partition over dfferent values oN :
P(T=t)=Y P(T=t|N=n)P(N=n). (%)
n=0

Here, we are lucky that we can write down the distribution of T'| N = n:

e if N = n is fixed, then T" = X; 4+ ... 4+ X,, is a sum of n independent
Binomial(1, p) random variables, so (T'| N = n) ~ Binomialn, p).

For most distributions of X, it would be dfficult or impossible to write down the

distribution ofX; + ... + X,,: Convol, .
on /

we would have to use an expression like (//

t—xy t—(x14...+Tp—2)

PXi 4.+ Xy=tIN=n)=Y Y ... ¥ {P(Xlle)x

$1:0 1'2:0 zn,1:0

P(Xy = a9) X .. X P(Xp1 = 1) X P[Xp =t — (21 + ... + xnl)]} .

Back to the heron problem: we are lucky in this case that we know the distri-
bution of (T'| N = n) is Binomial(N = n, p), so

P(T=t|N=n)= (?)pt(l—p)"t fort=0,1,...,n.

Continuing from (x):

P(T=t) = iP(T:t\N:n)P(N:n)
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= ...7

As it happens, we can evaluate the sum in (x%) using the fact that Negative
Binomial probabilities sum to 1. You can try this if you like, but it is quite
tricky. [Hint: use the Negative Binomial (¢t + 1,1 — 6(1 — p)) distribution.]

1—46
Overall, we obtain the same answer that T" ~ Geometric | ———— |, but
1—60+06p

hopefully you can see why the PGF is so useful.
Without the PGF, we have two majorficulties:

1. Writing downP(T =t|N =n);
2. Evaluating the sum overin (xx).

For a general problem, both of these steps might be too difficult to do without
a computer. The PGF has none of these difficulties, and even if G(s) does not
simplify readily, it still tells us everything there is to know about the distribution
of T.

4.7 Summary: Properties of the PGF

Definition: Gx(s) = E(s¥Y)
Used for: Discrete r.v.s with values 0, 1, 2, ...
Moments: E(X) = G (1) ]E{X(X 1) (X — ke 1)} =P

L
Probabilities: P(X =n) = EGQ(O)

Sums: Gxiy(s) = Gx(s)Gy(s) for independent X, Y




THE UNIVERSITY
OF AUCKLAND

NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 90

4.8 Convergence of PGFs Non-E xam)aoble

We have been using PGFs throughout this chapter without paying much at-
tention to their mathematical properties. For example, are we sure that the
power series Gx(s) = > -, s"P(X = ) converges? Can we differentiate and
integrate the infinite power series term by term as we did in Section 4.47 When
we said in Section 4.4 that E(X) = G’y (1), can we be sure that Gx (1) and its
derivative G’ (1) even exist?

This technical section introduces the radius of convergence of the PGF.
Although it isn’t obvious, it is always safe to assume convergence of Gx(s) at
least for |s| < 1. Also, there are results that assure us that E(X) = Gy (1) will
work for all non-defective random variables X.

Definition: The radius of convergence of a probability generating function is a
numberR > 0, such that the suntx(s) = > .-, s"P(X = xz) converges if
|s| < R and diverges- oo) if |s| > R.

(No general statement is made about what happens when |s| = R.)

Fact: For any PGF, the radius of convergence exists.
It is always > 1: every PGF converges for at least s € (—1,1).

The radius of convergence could be anything from R =1 to R = oo.

Note: This gives us the surprising result that the set of s for which the PGF Gx (s)
converges is symmetric about 0: the PGF converges for all s € (=R, R), and
for no s < —R or s > R.

This is surprising because the PGF itself is not usually symmetric about 0: i.e.
Gx(—s) # Gx(s) in general.

Example 1: Geometric distribution

Let X ~ Geometric(p = 0.8). What is the radius of convergence of Gx(s)?
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As in Section 4.2,

Gx(s) = 3 s7(0.8)(0.2)" = O.8§:(O.23)$

0.8
= —— forall h that0.2 1.
1= 03: or all s suc at0.2s| <

This is valid for alls with |0.2s| < 1, so it is valid for alls with |s| < 55 = 5.
(.e.—5 < s <5.)
The radius of convergence is= 5.

The figure shows the PGF of the Geometric(p = 0.8) distribution, with its
radius of convergence R = 5. Note that although the convergence set (—5,5) is
symmetric about 0, the function Gx(s) = p/(1 —¢s) =4/(5 — s) is not.

Geometric(0.8) probability generating function
G(9) to infinity f

2
|

T
-5 0 5 s

; .
Radius of Convergenee—/

In this region, p/(1-gs) remains finite and well-behaved,
but it is no longer equal to E(s ).

At the limits of convergence, strange things happen:

e At the positive end, as s T 5, both Gx(s) and p/(1 — ¢s) approach infinity.
So the PGF is (left)-continuous at +R:

limGx(s) = Gx(5) = oc.

sTH

However, the PGF does not converge at s = +R.
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e At the negative end, as s | —5, the function p/(1 — ¢gs) = 4/(5 — s) is

continuous and passes through 0.4 when s = —5. However, when s <
—5, this function no longer represents Gx(s) = 0.8 ,(0.2s)", because
10.2s] > 1.

Additionally, when s = —5, Gx(=5) = 0.8> .~ ,(—1)" does not exist.
Unlike the positive end, this means that G'x(s) is not (right)-continuous
at —R:

;im5 Gx(S) =04 7§ Gx(—5).

Like the positive end, this PGF does not converge at s = —R.

FExample 2: Binomial distribution

Let X ~ Binomial(n,p). What is the radius of convergence of Gx(s)?

As in Section 4.2,
. T n Tr N—I
Gx(s) = ;S <x>p q
n n .
= > (V)
=0

= (ps+q)" by the Binomial Theorem: true for &l

This is true for all- < s < oo, S0 the radius of convergencels= oc.

Abel’s Theorem for continuity of power series at s =1

Recall from above that if X ~ Geometric(0.8), then Gx(s) is not continuous
at the negative end of its convergence (—R):

lim Gx (s) # Gx(=5).

Abel’s theorem states that this sort of effect can never happen at s = 1 (or at
+R). In particular, Gx(s) is always left-continuous at s = 1:

ligl Gx(s) = Gx(1) always, even if Gx(1) = oc.
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Theorem 4.8: Abel’s Theorem.

Let G(s) = Zpisi for any pg, p1, p2, . .. with p; > 0 for all 7.
i=0

Then G(s) is left-continuous at s = 1:

imG(s) =Y p = G(1),
im G(s) ;p (1)

whether or not this sum is finite.

Note: Remember that the radius of convergence R > 1 for any PGF, so Abel’s
Theorem means that even in the worst-case scenario when R = 1, we can still
trust that the PGF will be continuous at s = 1. (By contrast, we can not be
sure that the PGF will be continuous at the the lower limit —R).

Abel’s Theorem means that for any PGF, we can write Gx (1) as shorthand for
limsﬂ Gx(S).

It also clarifies our proof that E(X) = G’y (1) from Section 4.4. If we assume
that term-by-term differentiation is allowed for G'x(s) (see below), then the
proof on page 81 gives:

.¢]

Gx(s) = Y s"pa,

=0

SO Gy (s) = Z rs" p, (term-by-term differentiation: see below).
r=1
Abel’s Theorem establishes that E(X) is equal to limg G'x(s):
E(X) - prx
r=1

= Gx(1)
— lim &’
im G (s),
because Abel’s Theorem applies to G (s) = > -, xs* !p,, establishing that
G'x(s) is left-continuous at s = 1. Without Abel’s Theorem, we could not be
sure that the limit of G’y (s) as s T 1 would give us the correct answer for E(.X).
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Absolute and uniform convergence for term-by-term differentiation

We have stated that the PGF converges for all |s| < R for some R. In fact,
the probability generating function converges absolutely if |s| < R. Absolute
convergence is stronger than convergence alone: it means that the sum of abso-
lute values, "7 |s"P(X = z)|, also converges. When two series both converge
absolutely, the product series also converges absolutely. This guarantees that

Gx(s) x Gy(s) is absolutely convergent for any two random variables X and Y.
This is useful because Gx(s) X Gy (s) = Gx.y(s) if X and Y are independent.

The PGF also converges uniformly on any set {s : |s| < R'} where R’ < R.
Intuitively, this means that the speed of convergence does not depend upon the
value of s. Thus a value ng can be found such that for all values of n > ny,
the finite sum > _ s"P(X = x) is simultaneously close to the converged value
Gx(s), for all s with |s|] < R'. In mathematical notation: Ve > 0, Iny €
Z such that Vs with |s| < R/, and Vn > ny,

n

ZSQCIP’(X =z)—Gx(s)| <

=0

Uniform convergence allows us to differentiate or integrate the PGF term by
term.

Fact: Let Gx(s) =FE(s*) =07, s"P(X =), and let s < R.

1. G'X(s):% (Z s"IP ) z%;l— = x)):Za:sx_lIP’(X = ).

(term by term differentiation).

2 [ G- [ (z B — @) =3 ([ wpec =)

=0

00 1
:ZS P(X =2x) for —R<a<b<R.

8
_I_
—_

(term by term integration).
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OL(LJ":‘)J on LNXEM -

Special Process: the Random Walk

We briefly saw the Drunkard’s Walk in Chapter 1: a drunk person staggers
to left and right as he walks. This process is called the Random Walk in
stochastic processes. Probability generating functions are particularly useful
for processes such as the random walk, because the process is defined as the
sum of a single repeating step. The repeating step is a move of one unit, left
or right at random. The sum of the first ¢ steps gives the position at time t¢.

The transition diagram below shows the SUMM@I"( ¢ raadom walle (a (| Frang tioy

Whave PfoL,aL;‘;tlj P~ J?:B

1/2 1/2 1/2 1/2 1/2 1/2
-0 {1 {2 |—»] 3]|---
A T WA WA W W W S

1/2 1/2 1/2 1/2 1/2 1/2 1/2

Question:

What is the key difference between the random walk and the gambler’s ruin?

Tle 5leu:s ruin S)N(JJ aF bLoHa £ dy,

This fact has two important consequences:

e The random walk is hard to tackle using first-step analysis, because we
would have to solve an #nfinite number of simultaneous equations. In this
respect it might seem to be more difficult than the gambler’s ruin.

e Because the random walk never stops,

In the gambler’s ruin, states are not equal: the states closest to 0 are
more likely to end in ruin than the states closest to winning. By contrast,
the random walk has no end-points, so (for example) the distribution of
the time to reach state 5 starting from state 0 is exactly the same as the
distribution of the time to reach state 1005 starting from state 1000. We
can exploit this fact to solve some problems for the random walk that
would be much more difficult to solve for the gambler’s ruin.
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PGF's for finding the distribution of reaching times

For random walks, we are particularly interested in reaching times:
e How long will it take us to reach state j, starting from state 27

e [s there a chance that we will never reach state j, starting from state 7

In Chapter 3 we saw how to find_expected reaching times: the expected
number of steps taken to reach a particular state. We used .o (2w oa, Fotal

{}QPQ,C\':«\HM\ MA j(%rﬁ'r&‘r'e-f: f\/\hi\j&ﬂ (§3~§)_

However, the expected or average reaching time doesn’t tell the whole story.
Think back to the model for gene spread in Section 3.7. If there is just one
animal out of 100 with the harmful allele, the expected number of generations to
fixation is quite large at 10.5: even though the allele will usually die out after one
or two generations. The high average is caused by a small chance that the allele
will take hold and grow, requiring a very large number of generations before it
either dies out or saturates the population. In most stochastic processes, the
average is of limited use by itself, without having some idea about the variaate

an A Shew /S‘L\‘\fat y&, He Astibubon,

With our tool of PGFs, we can characterise the whole distribution of the time
T taken to reach a particular state, by finding its PGF. This will give us the
mean, variance, and skew by differentiation. In principle the PGF could even
give us the full set of probabilities, P(T" = t) for all possible t = 0,1,2,.. .,
though in practice it may be computationally infeasible to find more than the
first few probabilities by repeated differentiation.

However, there is a new and very useful piece of information that the PGF can
tell us quickly and easily:

Wl s Ha fr.otao\la{f'-tj Mt e I\JE\/EQ read, S)f'”‘{»‘ \:)) 3+‘fd'*<‘j
fme Shbe (1

For example, imagine that the random walk represents the share value for an
investment. The current share price is ¢ dollars, and we might decide to sell
when it reaches 7 dollars. Knowing how long this might take, and whether there
is a chance we will never succeed, is fundamental to managing our investment.
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) To tackle this problem, we define the random variable T to be the time taken
(number of steps) to reach state j, starting from state i. We find the PGF of
T, and then use the PGF to discover P(T = o0). If P(T = 00) > 0, there is a
positive chance that we will NEVER reach state j, starting from state .

We will see how to determine the probability of never reaching our goal in
Section 4.11. First we will see how to calculate the PGF of a reaching time T’
in the random walk.

—3 Finding the PGF of a reaching time in the random walk

&rst

Define T}; to be the ) o~ o-d, Slﬂ‘u (:H eI 0 LUS crojjxl{) talegn o /(
AN S)rh\’e. Q)) S}‘a\r\r@ ~F 5}'9&@ -L.

T;; is called the /cfﬂrg}' re,axcln;{j Fiave a’mm Shate (o Siate \]

We will focus on Ty, = #S}a ° 9 2t df;’mM grnte O, to shate 1

ﬁo ]’L.L f»r&} Fine .
Problem: Let H(s) =E (s™) be the PGF of Tp;. Find H(s).

/\J To,  Arrived!
i \LTOI —3&')‘!{1.{%% '-]—0|-_61S)}(‘PS
, . ’

0 -

SterFa oan0Haer fu\l iLabion 3
- * —_—
"ot al Joy SU To, , wler I ~To,

shate O Hare _ﬁv*::}&ﬁf:,



98

Solution: [ ¢k Yﬂ Le He \g)nf taleen ob time n: 2iHws wp or Aown.

v/ | w,p, 0.9 .
. = % _ w';‘ o o (SUMMdn'c. rondon wd@}
G/\A \l/. ’ Y1 , \[/3J . eve Iai{fmib\,{*,
Recall Ta\', = 4=}'~9)rf-fu fo \jﬁr (fww\ Shate @ P Shte ) ‘Ufpr
T MJ EJJHJI
o\,\a\ ‘H (5) = LE( $ 0|> w o Hae PQF Fmih'rxj{_
Use £ A) ParHJr}g,\}:j ovy e Fiest Ctep, Y, o
Wio = E(s™) (LoTE)
= E (s LX) R - BG4 ) R
1 )
. H(J) - —\ig E(JSTO"Y‘;i) +E(¢T0j \]/]___lyg @

o

i({? Y =1, Hen we reacdhud skate 4 :mmp_,{?a\h\[-j on the Pt
Step, So Toy = ) Skep. @
To '
Se E(sT X)) = E(s')-s. R
T'JUNT0| _r::cﬁj-l_m
| Y |
w2 t=l e te 1/2 1/2 1/2
-2 -1} 2 3]---»
e s e e e
172 172 T 2 12 ) 12 172 172
-~
S}'N‘»" &jm:,\
Luse af

Fime 1



For 2ad tum o} @ E(s | Y = 1)
TE Yoo, fe To s 4o+ T
;7 2 NEW ZEALAND 99

’S]—Cf‘ '(]C"‘GM ’L’\Ml’{noun “H:S}CFJ »{'—o

S}‘a"g O to Shete - jﬂ{' Lo\{k }rOM Fl; To
ar:J;Ac.l ALsrim alioa " i)
afnr e (f’“&f Fime .

So —r;l:i+_|__?co+-raji

be comse to jd’ = 1t | a‘_’or Hae /&‘.d’r Pre, 1 mugr a behoey
ceada O for M sk tre) ad tlaa from O vrad, 4 Lor Ha

é).f\g' +ime . \SO T * ~J T;H i LQH,\ concone A Wt

-0
e +':'/\n.ﬂ.. ’(‘&!&_M '}‘a n1Love [S)‘Lr
NN Tox ~ _1-01 +» Ha r}JL\’( &or He Lot

ire
* * )
by T e
o E(s™y-) = E(s7Te )
- E )
L

Lecamse
T NT* wﬂl‘o‘ .

Sk in B [ - AR s[H )" l
This tc n quedeatic in 405) P
Jis‘:H(ﬂjl - HE) +ls =0 —

I
U
4
N
X
o
N

| + — Lt sx + [ = c*
= H(s) = [1- 47504 _ N S

S

l/\)\/\\\C\r\ t"otﬂ--’.2 e I/Laow r‘? (TQ' = O) =0 QLCW s talees >

S)fc,f {"a 30 gy-om O J(‘o l v (ror,d’]joar FQF
So TP(TCU :0) = ‘H (O) = 0, On\kﬂ (—)(“Oo" ﬁuow HA:J‘



OUU“\.\,\) H {_D - )‘-' \i |— SL & ae;(_,)

<

&~ 9(3)

EER)

NEW ZEALAND

Chede tae (=) rooy dozs have e correct limik {é-g% H() =0
N'\-j L"Ho_ﬁf—il"l\v_s QU\\&Z

/le j@_ . i,}M ?’(5) ) ar_\lm i —'-2(1-51)"!1 (25) - 9.0
1 I

100

s>o 3 S>0  9'(s) $-20
So e heve (Wou ,_,k A (") foo(' Docs \j]ve, e COFFLL,}' L}n.".\‘)
Lm H( =0,

m MJC T[M; MKHAOJ /{\JO({—AHC’A Whent v You Ao 62\9 on H}J\r‘

Notation for quick solutions of first-step analysis for finding PGF's

As with first-step analysis for finding hitting probabilities and expected reaching
times, setting up a good notation is extremely important. Here is a good
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Aefedive Here s A CHANCE Hak we NEVER read, shte j, Shrhing

O S L.
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as the probability that the time taken is infinite: 7}; = oo:
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Thinking of ZEQIP’(T =t)as 1 —P(T = o0) Shrf;tj'

Although it seems strange, when we write Y .~ P(T' =t), We are NOT
incWding fhe valne € =60, Tnchead, S jur means leeep 92y and v
L=o &f‘b .

The sum Z;’i o continues without ever stopping: at no point can we say we have
‘finished’ all the finite values of ¢ so we will now add on ¢ = co. We simply

nﬁuU’aM’ to E=oo LJLu./\ We falee ? .
EY)

For a defective random variable T', this means that

because we are missing the positive value of P(T" = 00).

All probabilities of T" must still sum to 1, so we have
R

L = S P + P (T-00)
o RKoum & U R extben Lol o

in other words P58 of fiaike probabiliby we
valaes {"(f‘O,t,z,,,. have to ndd on to He o d.

i P(T:t) = 1 - P(T=00).
-0

PGFs for defective random variables

When T is defective, the PGF of T' is defined as the power series
HES = B(T)

- Z <E [Fh:t) H(s) = Z]P(T =t)s' for |s| < 1.

The term for P(T" = 00)s™ is missed out. The PGF is defined as the generating
function of the probabilities for finite values only.

Bu aoke ik s*® -0 }‘O" |s| < 1 MJ\.»U)

So ~S lofj S we keep sl <4 9k malees o
M%UV\(& l/JlAc,}/LJ e ‘f’\CL"\g{{ Sbo I? (T:%) of qofr_
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Because H(s) is a power series satisfying the COIldlthElE of Abel’s Theorem, w
know that: S ST P(T=¢

H(D = f s€ 1?({:@ ngH«I’L\QSMLHA\jwlﬁU\ ls)< 4
=)

e H(s) is left-continuous at s = 1, i.e. limgy H(s) # H(1).
S
This is different from the behaviour of E(sT), if T is defective:

E(sT) = H(S)B)r |s|] < 1 because the missing term is zero: i.e. because
s* =0-wiren |s| < 1.

5 e E(sT) is NOT left-continuous at s = 1. There is a sudden leap (disconti-
nuity) at s = 1 because s> =0 as s T 1, but s =1 when s = 1.

Thus H(s) does NOT represent E(s”) at s = 1. It is as if H(s) is a ‘train’ that
E(sT) rides on between —1 < s < 1. At s = 1, the train keeps going (i.e. H(s)
is continuous) but E(sT) jumps off the train.

We test whether 7' is defective by testing whether or not E(s”) ‘jumps off the
train” — that is, we test whether or not H(s) is equal to E(s?) when s = 1.

We know what E(sT) is when s = 1:

e E(s”) is always 1 when s = 1, whether T is defective or not:

E(11) =1 for ANY random variable 7.
But the function H(s) = Y =, s'P(T = t) may or may not be 1 when s = 1:

o If T is defective, H(s) is missing a term and H(1) < 1.

e If 7" is not defective, H(s) is not missing anything so H(1) = 1.

Test for defectiveness:

Let H(s) = .2, s'P(T =t) be the power series representing the PGF of T
for [s| < 1. Then T is defective if and only if H (1) < 1_.

I&— 'H(i—)< i) Hen HD(_FT:—DQ) s MNBS:AJ fJfLo&l
ﬂ)(T:Oo) = 1-4H (i)
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Using defectiveness to find the probability we never get thm“%

N

The simple test for defectiveness tells us whether there is a positive ity

that we NEVER reach our goal. Here are the steps.
———

1. We want to know the probability that we will NEVER reach state j, start-
ing from state 7.

2. Define T' to be the random variable giving the number of steps taken to
get from state ¢ to state j.

3. The event that we never reach state j, starting from state ¢, is the same
as the event that T' = oco. (If we wait an infinite length of time, we never
get there.) So

TID(IHUU’ rec da S}'ﬂl‘c\'J i S%‘-d’ ~t State l) = ]P (T:Do}
|-JI-s*
!;'j- H/i)’ 0 a.for |S)<i,
4. Find H(s) = > 2, s'"P(T = t), using a calculation like the one we did in
Section 4.9. H(s) is the PGF of T for |s| < 1. We only need to find it for

|s|] < 1. The calculation in Section 4.9 only works for |s| < 1 because the
expectations are infinite or undefined when |s| > 1.

5. The random variable T is defective if and only if H(1) < 1.

6. If H(1) < 1, then the probability that 7" takes the value oo is the missing

pect P (7= - 1- H(1) e o i

calcnlabRons

Overall:

Expectation and variance of a defective random variable

If T is defective, there is a positive chance that T' = oo. This means that
E(T) =00 ok V& (T)=ts) oand E(T7)=0e

E(ﬂté EP(T=0 + oo P(T=2) for oy prov

S0 i P(Teo)>0 huy ET=so.
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E(T) and Var(7T) can not be found using the PGF when T is defective: you
will get the wrong answer.

When you are asked to find E(T") in a context where 7" might be defective:

—=> e First check whether T is defective: s H (1)< 1 (D(,,J,“j—‘.ﬂ) or H(D)=L
"~ (no we
o If T is defective, then [E (T) = 0 . net Aeech )

e If T is not defective (H (1) = 1), then E(T) = H /(_'Q 28 ngunal .

——

4.11 Random Walk: the probability we never reach our goal

In the random walk in Section 4.9, we defined the first reaching time 7p; as the
number of steps taken to get from state 0 to state 1.

In Section 4.9 we found the PGF of Tj; to be:
e

PE G T = HD = O ey

S

VWA_

a) What is the probability that we never reach state 1, starting from state 07

Questions:

b) What is expected number of steps to reach state 1, starting from state 07

Sobtionss ) Plocus cons stk L | 5t gramsia o= 1 H ()
NN
=1 - g 1 }
(P(_Muu’ Cenda skake 1

] e
-f?',\) = 0O
o —

Se T e NOT defedbive, ond we DEFINITELY wWill Cend Shk
1 wehnally, wan i tales o vy (019 fime .

— Cor\_fao@mca: we Will 0(-‘»0'?'\'/1:]‘&[ read, {Vuzw_l:_d_____!-

in et tase | [M;ﬁxtgwx@!
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This result is striking. Even though we will definitely reach state 1, the
expected time to do so is infinite! In general, we can prove the following results

for random walks, starting from state 0: >
Property Reach state 17 P(Ty = o0) E(Tp1) E P .
p>q —Guaranteed e 0 finite / ) ST
q
_Sp=q= % Guaranteed 0 00 <=

< Not guaranteed >0 T> 00
P q oL 8 v /LLJ—L“ 1£Hv(. e

Note: (Non-examinable) If T is defective in the random walk, E(s?) is not
continuous at s = 1. In Section 4.9 we had to solve a quadratic equation to find
H(s) = E(sT). The negative root solution for H(s) generally represents E(s”)
for s < 1. At s = 1, the solution for E(s?) suddenly flips from the — root to
the + root of the quadratic. This explains how E(sT) can be discontinuous as
s T 1, even though the negative root for H(s) is continuous as s 7 1 and all the
working of Section 4.9 still applies for s = 1. The reason is that we suddenly
switch from the — root to the + root at s = 1.

When |s| > 1, the conditional expectations are not finite so the working of
Section 4.9 no longer applies.




