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Chapter 5: Mathematical Induction

So far in this course, we have seen some techniques for dealing with stochastic

processes: first-step analysis for hitting probabilities (Chapter 2), and first-step
analysis for expected reaching times (Chapter 3). We now look at another tool
that is often useful for exploring properties of stochastic processes: proof by
mathematical induction.

5.1 Proving things in mathematics

There are many different ways of constructing a formal proof in mathematics.

Some examples are:

• Proof by counterexample: a proposition is proved to be not generally true

because a particular example is found for which it is not true.

• Proof by contradiction: this can be used either to prove a proposition is
true or to prove that it is false. To prove that the proposition is true (say),

we start by assuming that it is false. We then explore the consequences of
this assumption until we reach a contradiction, e.g. 0 = 1. Therefore something

must have gone wrong, and the only thing we weren’t sure about was our initial
assumption that the proposition is false — so our initial assumption must be

wrong and the proposition is proved true.

A famous proof of this sort is the proof that there are infinitely many prime

numbers. We start by assuming that there are finitely many primes, so they
can be listed as p1, p2, . . . , pn, where pn is the largest prime number. But then

the number p1× p2× . . .× pn+1 must also be prime, because it is not divisible
by any of the smaller primes. Furthermore this number is definitely bigger than
pn. So we have contradicted the idea that there was a ‘biggest’ prime called pn,

and therefore there are infinitely many primes.

• Proof by mathematical induction: in mathematical induction, we start
with a formula that we suspect is true. For example, I might suspect from
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observation that
∑

n

k=1
k = n(n + 1)/2. I might have tested this formula for

many different values of n, but of course I can never test it for all values of n.

Therefore I need to prove that the formula is always true.

The idea of mathematical induction is to say: suppose the formula is true for
all n up to the value n = 10 (say). Can I prove that, if it is true for n = 10,

then it will also be true for n = 11? And if it is true for n = 11, then it will
also be true for n = 12? And so on.

In practice, we usually start lower than n = 10. We usually take the very easiest
case, n = 1, and prove that the formula is true for n = 1: LHS =

∑

1

k=1
k =

1 = 1× 2/2 = RHS. Then we prove that, if the formula is ever true for n = x,
then it will always be true for n = x + 1. Because it is true for n = 1, it must

be true for n = 2; and because it is true for n = 2, it must be true for n = 3;
and so on, for all possible n. Thus the formula is proved.

Mathematical induction is therefore a bit like a first-step analysis for proving
things: prove that wherever we are now, thenext step will always be OK. Then
if we were OK at the very beginning, we will be OK for ever.

The method of mathematical induction for proving results is very important in

the study of Stochastic Processes. This is because a stochastic process builds
up one step at a time, and mathematical induction works on the same principle.

Example: We have already seen examples of inductive-type reasoning in this
course. For example, in Chapter 2 for the Gambler’s Ruin problem, using

the method of repeated substitution to solve for px = P(Ruin | start with $x),
we discovered that:

• p2 = 2p1 − 1

• p3 = 3p1 − 2

• p4 = 4p1 − 3

We deduced that px = xp1 − (x− 1) in general.

To prove this properly, we should have used the method of mathematical
induction.
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5.2 Mathematical Induction by example

This example explains the style and steps needed for a proof by induction.

Question: Prove by induction that

n
∑

k=1

k =
n(n+ 1)

2
for any integer n. (⋆)

Approach: follow the steps below.

(i) First verify that the formula is true for a base case: usually the smallest appro-
priate value of n (e.g. n = 0 or n = 1). Here, the smallest possible value of n is

n = 1, because we can’t have
∑

0

k=1
.

First verify (⋆) is true whenn = 1.

LHS =
1

∑

k=1

k = 1.

RHS=
1× 2

2
= 1 = LHS.

So(⋆) is proved forn = 1.

(ii) Next suppose that formula (⋆) is true for all values of n up to and including

some value x. (We have already established that this is the case for x = 1).

Using the hypothesis that (⋆) is true for all values of n up to and including x,

prove that it is therefore true for the value n = x+ 1.

Now suppose that(⋆) is true forn = 1, 2, . . . , x for somex.

Thus we can assume that
x

∑

k=1

k =
x(x+ 1)

2
. (a)

((a) for ‘allowed’ info)

We need to show that if(⋆) holds forn = x, then it must also hold forn = x+ 1.
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Require to prove that

x+1
∑

k=1

k =
(x+ 1)(x+ 2)

2
(⋆⋆)

(Obtained by puttingn = x+ 1 in (⋆)).

LHS of (⋆⋆) =
x+1
∑

k=1

k =
x

∑

k=1

k + (x+ 1) by expanding the sum

=
x(x+ 1)

2
+ (x+ 1) using allowed info (a)

= (x+ 1)
(x

2
+ 1

)

rearranging

=
(x+ 1)(x+ 2)

2

= RHS of(⋆⋆).

This shows that:
n

∑

k=1

k =
n(n+ 1)

2
whenn = x+ 1.

So, assuming(⋆) is true forn = x, it is also true forn = x+ 1.

(iii) Refer back to the base case: if it is true for n = 1, then it is true for n = 1+1 = 2
by (ii). If it is true for n = 2, it is true for n = 2 + 1 = 3 by (ii). We could go

on forever. This proves that the formula (⋆) is true for all n.

We proved(⋆) true forn = 1, thus(⋆) is true for all integersn ≥ 1. �
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General procedure for proof by induction

The procedure above is quite standard. The inductive proof can be summarized

like this:

Question: prove that f(n) = g(n) for all integers n ≥ 1. (⋆)

Base case:n = 1. Prove thatf(1) = g(1) using

LHS = f(1)

=
...

= g(1) = RHS.

General case:suppose(⋆) is true forn = x:

so f(x) = g(x). (a) (allowed info)

Prove that(⋆) is therefore true forn = x+ 1:

RTP f(x+ 1) = g(x+ 1). (⋆⋆)

LHS(⋆⋆) = f(x+ 1)

=

{

some expression breaking downf(x+ 1)

into f(x) and an extra term inx+ 1

}

=
{

substitutef(x) = g(x) in the line above
}

by allowed (a)

= {do some working}

= g(x+ 1)

= RHS(⋆⋆).

Conclude:(⋆) is proved forn = 1, so it is proved forn = 2, n = 3,
n = 4, . . .

(⋆) is therefore proved for all integersn ≥ 1. �
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5.3 Some harder examples of mathematical induction

Induction problems in stochastic processes are often trickier than usual. Here
are some possibilities:

• Backwards induction: start with base case n = N and go backwards,

instead of starting at base case n = 1 and going forwards.

• Two-step induction, where the proof for n = x + 1 relies not only on the

formula being true for n = x, but also on it being true for n = x− 1.

The first example below is hard probably because it is too easy. The second
example is an example of a two-step induction.

Example 1: Suppose that p0 = 1 and px = αpx+1 for all x = 1, 2, . . .. Prove by

mathematical induction that pn = 1/αn for n = 0, 1, 2, . . ..

Wish to prove

pn =
1

αn
for n = 0, 1, 2, . . . (⋆)

Information given:

px+1 =
1

α
px (G1)

p0 = 1 (G2)

Base case:n = 0.

LHS = p0 = 1 by information given(G2).

RHS=
1

α0
=

1

1
= 1 = LHS.

Therefore(⋆) is true for the base casen = 0.

General case: suppose that(⋆) is true forn = x, so we can assume

px =
1

αx
. (a)

Wish to prove that(⋆) is also true forn = x+ 1: i.e.

RTP px+1 =
1

αx+1
. (⋆⋆)
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LHS of (⋆⋆) = px+1 =
1

α
× px by given(G1)

=
1

α
×

1

αx
by allowed (a)

=
1

αx+1

= RHS of(⋆⋆).

So if formula(⋆) is true forn = x, it is true forn = x + 1. We have shown it is
true forn = 0, so it is true for alln = 0, 1, 2, . . .. �

Example 2: Gambler’s Ruin. In the Gambler’s Ruin problem in Section 2.7,
we have the following situation:

• px = P(Ruin | start with $x);

• We know from first-step analysis that px+1 = 2px − px−1 (G1)

• We know from common sense that p0 = 1 (G2)

• By direct substitution into (G1), we obtain:

p2 = 2p1 − 1

p3 = 3p1 − 2

• We develop a suspicion that for all x = 1, 2, 3, . . . ,

px = xp1 − (x− 1) (⋆)

• We wish to prove (⋆) by mathematical induction.

For this example, our given information, in(G1), expressespx+1 in terms of both
px andpx−1, so we need two base cases. Usex = 1 andx = 2.
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Wish to provepx = xp1 − (x− 1) (⋆).
Base casex = 1:

LHS = p1.

RHS= 1× p1 − 0 = p1 = LHS.

∴ formula(⋆) is true for base casex = 1.

Base casex = 2:

LHS = p2 = 2p1 − 1 by information given(G1)

RHS= 2× p1 − 1 = LHS.

∴ formula(⋆) is true for base casex = 2.

General case: suppose that(⋆) is true for allx up tox = k.
So we are allowed:

(x = k) pk = kp1 − (k − 1) (a1)

(x = k − 1) pk−1 = (k − 1)p1 − (k − 2) (a2)

Wish to prove that(⋆) is also true forx = k + 1, i.e.

RTP pk+1 = (k + 1)p1 − k. (⋆⋆)

LHS of (⋆⋆) = pk+1

= 2pk − pk−1 by given information(G1)

= 2
{

kp1 − (k − 1)
}

−
{

(k − 1)p1 − (k − 2)
}

by allowed(a1) and(a2)

= p1

{

2k − (k − 1)
}

−
{

2(k − 1)− (k − 2)
}

= (k + 1)p1 − k

= RHS of(⋆⋆)

So if formula(⋆) is true forx = k− 1 andx = k, it is true forx = k+1. We have
shown it is true forx = 1 andx = 2, so it is true for allx = 1, 2, 3, . . .. �


