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Chapter 5: Mathematical Induction

So far in this course, we have seen some techniques for dealing with stochastic
processes: first-step analysis for hitting probabilities (Chapter 2), and first-step
analysis for expected reaching times (Chapter 3). We now look at another tool
that is often useful for exploring properties of stochastic processes: prog d—
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5.1 Proving things in mathematics

There are many different ways of constructing a formal proof in mathematics.
Some examples are:

e Proof by counterexample: a proposition is proved to be not generally true
because a particular ezample is found for which it is not true.

e Proof by contradiction: this can be used either to prove a proposition is

) true or to prove that it is false. To prove that the proposition is true (say),

07"/ we start by assuming that it is false. We then explore the consequences of

this assumption until we reach a contradiction, e.g. 0 = 1. Therefore something

must have gone wrong, and the only thing we weren’t sure about was our initial

assumption that the proposition is false — so our initial assumption must be
wrong and the proposition is proved true.

A famous proof of this sort is the proof that there are infinitely many prime
numbers. We start by assuming that there are finitely many primes, so they
can be listed as pi, pa, ..., pn, Where p,, is the largest prime number. But then
the number p; X po X ... X p, + 1 must also be prime, because it is not divisible
by any of the smaller primes. Furthermore this number is definitely bigger than
Pn- S0 we have contradicted the idea that there was a ‘biggest’ prime called p,,
and therefore there are infinitely many primes.

e Proof by mathematical induction: in mathematical induction, we start
with a formula that we suspect is true. For example, I might suspect from
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observation that Y,k = n(n + 1)/2. T might have tested this formula for
many different values of n, but of course I can never test it for all values of n.
Therefore I need to prove that the formula is always true.

The idea of mathematical induction is to say: suppose the formula is true for
all n up to the value n = 10 (say). Can I prove that, if it is true for n = 10,
then it will also be true for n = 117 And if it is true for n = 11, then it will
also be true for n = 127 And so on.

In practice, we usually start lower than n = 10. We usually take the very easiest
case, n = 1, and prove that the formula is true for n = 1: LHS = Z,lle k =
1 =1 x2/2 =RHS. Then we prove that, if the formula is ever true for n = x,
then it will always be true for n = x + 1. Because it is true for n = 1, it must
be true for n = 2; and because it is true for n = 2, it must be true for n = 3;
and so on, for all possible n. Thus the formula is proved.

Mathematical induction is therefore a bit like a dﬂ%rs’fls)fq_f Nﬁ\(_l?‘d\( for Pmui\«_j
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The method of mathematical induction for proving results is very important in
the study of Stochastic Processes. This is because a stochastic process builds
up one step at a time, and mathematical induction works on the same principle.
= FSAL P, = P sh+ P = 3+lp = P =20

Example: We have already seen examples of inductive-type reasoning in this
course. For example, in Chapter 2 for the Gambler’s Ruin problem, using
the method of repeated substitution to solve for p, = P(Ruin | start with $x),
we discovered that: \, T}i\) DS aS eV a iy

e

P o= P(edato | sherf ot X
aﬂor ony .

We deduced that Px = x-ﬂ - ('1*1) ‘A @4/\;2,%'.

To prove this properly, we should have used the method of mathematical

(@ p2=2p; —1
® p3=3p1 — 2
® py=4p1 —3

induction.
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5.2 Mathematical Induction by example

This example explains the style and steps needed for a proof by induction.

oy

&
Question: Prove by induction that Z k= w

for any integer n= 12,3, ...
k=1

Approach: follow the steps below.

¥
(i) First verify that the foQula is true for a base case: usually the smallest appro-

priate value of n (e.g. n = 0 or n = 1). Here, the smallest possible value of n is
n = 1, because we can’t have 2221.
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RH S 12 - 1 = LHS@

So @ 1S vaul 'Gf-ar n=1.

(ii) Next suppose that formula (%) is true for all values of n up to and including
some value x. (We have already established that this is the case for r = 1).

Using the hypothesis that (x) is true for all values of n up to and including =z,
prove that it is therefore true for the value n = x + 1.
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(iii) Refer back to the base case: if it 15true for n = 1, then it is true forn = 1+1 = 2
by (ii). If it is true for n = 2, it is true for n = 2+ 1 = 3 by (ii). We could go
on forever. This proves that the formula (x) is true for all n.

[,Je, [o/\ovu( ) fre for n=1,
@ s Ffauaa[ éor [l n=1,2, 3, [
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General procedure for proof by induction

The procedure above is quite standard. The inductive proof can be summarized
like this:

Question: prove that f ( = g(n) for all mteger (%)
Basecase@ Pro ) = g(1) using

= f(l)

= ¢(1) = RHS
General case: suppose (x) istrueforn = x:

S0 f(x) = g(x). (a) (allowed info)

Prove that (x) istherefore trueforn = = + 1: |
RTP flz+1)=g(xz+1). L\)a\/\’( to prove:
@)
LHS>x) = f(x+1)

| some expression breaking down f(x + 1)
N into f(x) and an extraterminx + 1

_—
= { substitute f(x) = g(x) in the line above } by allowed (a)

= {do some working}

= g(z+1)
= RHS(x).

Conclude: (x) is proved forn = 1, so it is proved forn = 2, n = 3,
n=4,...

(x) istherefore proved for al integersn > 1. O
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5.3 Some harder examples of mathematical induction

Induction problems in stochastic processes are often trickier than usual. Here
are some possibilities:

e Backwards induction: start with base case n = N and go backwards,
instead of starting at base case n = 1 and going forwards.

e Two-step induction, where the proof for n = x + 1 relies not only

on the
formula being true for n = x, but also on it being true for n = x — 1/]

The first example below is hard probably because it is too easy. The second
example is an example of a two-step induction. Py, =
[

—
1 o
Example 1: Suppose that pg = 1 and p, = ap,; for all x = 1,2,

mathematical induction that p, = 1/a" for n =0, 1,2,
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Example 2: Gambler’s Ruin. In the Gambler’s Ruin problem in Section 2.7, ?

we have the following situation: ,
° G[ © ) ;/i Q‘_)'f L_JN
z

e p, = P(Ruin|start with $x);

. &
e We know from first-step analysis thaf P41 = 2ps — ps—1 (G1) 4—

e We know from common sense that py = 1 (Gs) G—

e By direct substitution into (G1), we obtain:

p2 = 2p1—1
p3 = 3p1 — 2

e We develop a suspicion that for all x =1,2,3,...,
pe=api—(x—1) (%)

e We wish to prove (x) by mathematical induction.
For this example, ¢ J;UM '}r\,giormﬁjﬁ on, A @) {,x]ofgs_.;{_g p
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