
116

Chapter 6: Branching Processes:

The Theory of Reproduction

Aphids

DNA

Viruses

Royalty

Although the early development of Probability Theory was motivated by prob-

lems in gambling, probabilists soon realised that, if they were to continue as a
breed, they must also study reproduction.

Reproduction is a complicated business, but considerable in-
sights into population growth can be gained from simplified
models. The Branching Process is a simple but elegant

model of population growth. It is also called the Galton-
Watson Process, because some of the early theoretical re-

sults about the process derive from a correspondence between
Sir Francis Galton and the Reverend Henry William Watson

in 1873. Francis Galton was a cousin of Charles Darwin. In
later life, he developed some less elegant ideas about repro-
duction — namely eugenics, or selective breeding of humans.

Luckily he is better remembered for branching processes.
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6.1 Branching Processes

Consider some sort of population consisting of reproducing individuals.

Examples: living things (animals, plants, bacteria, royal families);

diseases; computer viruses;
rumours, gossip, lies (one lie always leads to another!)

Start conditions: start at timen = 0, with a single individual.

Each individual: lives for 1 unit of time. At timen = 1, it produces a family of
offspring, and immediately dies.

How many offspring? Could be 0, 1, 2, . . . . This is the family size, Y . (“Y”
stands for “number of Young”).

Each offspring: lives for 1 unit of time. At timen = 2, it produces its own family
of offspring, and immediately dies.

and so on. . .

Assumptions

1. All individuals reproduce independently of each other.

2. The family sizes of different individuals are independent, identically dis-
tributed random variables. Denote the family size byY (number of Young).

Family size distribution, Y P(Y = k) = pk.

y

P(Y=y)

1 20 . . .3 4

p0 p1 p2 p3 p4 . . .
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Definition: A branching process is defined as follows.

• Single individual at time n = 0.

• Every individual lives exactly one unit of time, then produces Y offspring,

and dies.

• The number of offspring, Y , takes values 0, 1, 2, . . . , and the probability
of producing k offspring is P(Y = k) = pk.

• All individuals reproduce independently. Individuals 1, 2, . . . , n have family

sizes Y1, Y2, . . . Yn, where eachYi has the same distribution asY .

• Let Zn be the number of individuals born at timen, for n = 0, 1, 2, . . ..
Interpret ‘Zn’ as the ‘siZe’ of generationn.

• Then the branching process is {Z0, Z1, Z2, Z3, . . .} = {Zn : n ∈ N}.

Definition: The state of the branching process at time n is zn, where eachzn can
take values0, 1, 2, 3, . . . . Note thatz0 = 1 always.
zn represents the size of the population at timen.

Note: When we want to say that two random variables X and Y have the same

distribution, we write: X ∼ Y .
For example: Yi ∼ Y , whereYi is the family size of any individuali.

Note: The definition of the branching process is easily generalized to start with

more than one individual at time n = 0.

Branching Process
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6.2 Questions about the Branching Process

When we have a situation that can be modelled by a branching process, there
are several questions we might want to answer.

If the branching process is just beginning, what will happen in the future?

1. What can we find out about the distribution of Zn (the population siZe at
generation n)?

• can we find the mean and variance of Zn?
— yes, using the probability generating function of family size,Y ;

• can we find the whole distribution of Zn?

— for special cases of the family size distributionY , we can find the PGF of
Zn explicitly;

• can we find the probability that the population has become extinct by

generation n, P(Zn = 0) ?
— for special cases where we can find the PGF ofZn (as above).

2. What can we find out about eventual extinction?

• can we find the probability of eventual extinction, P

(

lim
n→∞

Zn = 0
)

?

— yes, always: using the PGF ofY .

• can we find general conditions for eventual extinction?

— yes: we can find conditions that guarantee that extinction will occur with
probability 1.

• if eventual extinction is definite, can we find the distribution of the time to
extinction?
— for special cases where we can find the PGF ofZn (as above).

Example: Modelling cancerous growths. Will a colony of cancerous cells become
extinct before it is sufficiently large to overgrow the surrounding tissue?
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If the branching process is already in progress, what happened in the past?

1. How long has the process been running?

• how many generations do we have to go back to get to the single common
ancestor?

2. What has been the distribution of family size over the generations?

3. What is the total number of individuals (over all generations) up to the present
day?

Example: It is believed that all humans are descended from a single female an-
cestor, who lived in Africa. How long ago?

— estimated at approximately 200,000 years.
What has been the mean family size over that period?

— probably very close to 1 female offspring per
female adult: e.g. estimate= 1.002.

6.3 Analysing the Branching Process

Key Observation: every individual in every generation starts a new, independent
branching process, as if the whole process were starting at the beginning again.



121

Zn as a randomly stopped sum

Most of the interesting properties of the branching process centre on the distri-

bution of Zn (the population size at time n). Using the Key Observation from
overleaf, we can find an expression for the probability generating function of
Zn.

Consider the following.

• The population size at timen− 1 is given byZn−1.

• Label the individuals at timen− 1 as1, 2, 3, . . . , Zn−1.

• Each individual1, 2, . . . , Zn−1 starts a new branching process. LetY1, Y2, . . . , YZn−1

be the random family sizes of the individuals1, 2, . . . , Zn−1.

• The number of individuals at timen, Zn, is equal to the total number of
offspring of the individuals1, 2, . . . , Zn−1. That is,

Zn =

Zn−1∑

i=1

Yi .

ThusZn is a randomly stopped sum:a sum ofY1, Y2, . . ., randomly stopped
by the random variableZn−1.

Note: 1. EachYi ∼ Y : that is, each individuali = 1, . . . , Zn−1 has the same
family size distribution.

2. Y1, Y2, . . . , YZn−1
are independent.
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Probability Generating Function of Zn

Let GY (s) = E(sY ) be the probability generating function of Y .

(Recall that Y is the number of Young of an individual: the family size.)

Now Zn is a randomly stopped sum: it is the sum of Y1, Y2, . . ., stopped by the

random variable Zn−1. So we can use Theorem 4.6 (Chapter 4) to express the
PGF of Zn directly in terms of the PGFs of Y and Zn−1.

By Theorem 4.6, if Zn = Y1 + Y2 + . . .+ YZn−1
, and Zn−1 is itself random, then

the PGF of Zn is given by:

GZn
(s) = GZn−1

(

GY (s)
)

, (♣)

whereGZn−1
is the PGF of the random variableZn−1.

For ease of notation, we can write:

GZn
(s) = Gn(s), GZn−1

(s) = Gn−1(s), and so on.

Note that Z1 = Y (the number of individuals born at timen = 1),
so we can also write:

GY (s) = G1(s) = G(s) (for simplicity).

Thus, from (♣),

Gn(s) = Gn−1

(

G(s)
)

(Branching Process Recursion Formula.)

Note:

1. Gn(s) = E
(
sZn

)
, the PGF of the population size at timen, Zn.

2. Gn−1(s) = E
(
sZn−1

)
, the PGF of the population size at timen− 1, Zn−1.

3. G(s) = E
(
sY

)
= E

(
sZ1

)
, the PGF of the family size,Y .
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We are trying to find the PGF of Zn, the population size at time n.

So far, we have: Gn(s) = Gn−1

(

G(s)
)

. (⋆)

But by the same argument,

Gn−1(r) = Gn−2

(

G(r)
)

.

(user instead ofs to avoid confusion in the next line.)

Substituting in (⋆),

Gn(s) = Gn−1

(

G(s)
)

= Gn−1(r) wherer = G(s)

= Gn−2

(

G(r)
)

= Gn−2

(

G
(

G(s)
))

replacingr = G(s).

By the same reasoning, we will obtain:

Gn(s) = Gn− 3
︸ ︷︷ ︸

n− 3

(

G
(

G
(

G
︸ ︷︷ ︸

3 times

(s)
)))

,

and so on, until we finally get:

Gn(s) = Gn−(n−1)

(

G
(

G
(

G
(

. . .G
︸ ︷︷ ︸

n− 1 times

(s) . . .
))))

= G1

︸︷︷︸

=G

(

G
(

G
(

G
(

. . . G
︸ ︷︷ ︸

n− 1 times

(s) . . .
))))

= G
(

G
(

G
(

. . .G
︸ ︷︷ ︸

n times

(s) . . .
)))

.

We have therefore proved the following Theorem.



124

Theorem 6.3: Let G(s) = E(sY ) =
∑∞

y=0 pys
y be the PGF of the family size

distribution, Y . Let Z0 = 1 (start from a single individual at time 0), and let
Zn be the population size at time n (n = 0, 1, 2, . . .). Let Gn(s) be the PGF of

the random variable Zn. Then

Gn(s) = G
(

G
(

G
(

. . .G
︸ ︷︷ ︸

n times

(s) . . .
)))

. �

Note: Gn(s) = G
(

G
(

G
(

. . .G
︸ ︷︷ ︸

n times

(s) . . .
)))

is called the n-fold iterate ofG.

We have therefore found an expression for the PGF of the population size at

generation n, although there is no guarantee that it is possible to write it down
or manipulate it very easily for large n. For example, if Y has a Poisson(λ)

distribution, then G(s) = eλ(s−1), and already by generation n = 3 we have the
following fearsome expression for G3(s):

G3(s) = e
λ

(

e
λ(eλ(s−1)

−1)−1

)

. (Or something like that!)

However, in some circumstances we can find quite reasonable closed-form ex-
pressions for Gn(s), notably when Y has a Geometric distribution. In addition,

for any distribution of Y we can use the expression Gn(s) = Gn−1

(

G(s)
)

to

derive properties such as the mean and variance of Zn, and the probability of
eventual extinction (P(Zn = 0) for some n).

6.4 What does the distribution of Zn look like?

Before deriving the mean and the variance of Zn, it is helpful to get some
intuitive idea of how the branching process behaves. For example, it seems rea-

sonable to calculate the mean, E(Zn), to find out what we expect the population
size to be in n generations time, but why are we interested in Var(Zn)?

The answer is that Zn usually has a “boom-or-bust” distribution: either the

population will take off (boom), and the population size grows quickly, or the
population will fail altogether (bust). In fact, if the population fails, it is likely
to do so very quickly, within the first few generations. This explains why we are
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interested in Var(Zn). A huge variance will alert us to the fact that the process
does not cluster closely around its mean values. In fact, the mean might be

almost useless as a measure of what to expect from the process.

Simulation 1: Y ∼ Geometric(p = 0.3)

The following table shows the results from 10 simulations of a branching process,
where the family size distribution is Y ∼ Geometric(p = 0.3).

Simulation Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

1 1 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0
3 1 4 19 42 81 181 433 964 2276 5383 12428
4 1 3 3 5 3 15 29 86 207 435 952
5 1 0 0 0 0 0 0 0 0 0 0
6 1 1 0 0 0 0 0 0 0 0 0
7 1 2 8 26 68 162 360 845 2039 4746 10941
8 1 1 0 0 0 0 0 0 0 0 0
9 1 1 0 0 0 0 0 0 0 0 0
10 1 1 4 13 18 39 104 294 690 1566 3534

Often, the population is extinct by generation 10. However, when it is not

extinct, it can take enormous values (12428, 10941, . . . ).

The same simulation was repeated 5000 times to find the empirical distribu-
tion of the population size at generation 10 (Z10). The figures below show

the distribution of family size, Y , and the distribution of Z10 from the 5000
simulations.
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In this example, the family size is rather variable, but the variability in Z10 is
enormous (note the range on the histogram from 0 to 60,000). Some statistics

are:

Proportion of samples extinct by generation 10: 0.436

Summary of Zn:

Min 1st Qu Median Mean 3rd Qu Max

0 0 1003 4617 6656 82486

Mean of Zn: 4617.2

Variance of Zn: 53937785.7

So the empirical variance is Var(Z10) = 5.39× 107 . This perhaps contains
more useful information than the mean value of 4617. The distribution of Zn

has 43.6% of zeros, but (when it is non-zero) takes values up to 82,486. Is it

really useful to summarize such a distribution by the single mean value 4617?

For interest, out of the 5000 simulations, there were only 35 (0.7%) that had a
value for Z10 greater than 0 but less than 100. This emphasizes the “boom-or-

bust” nature of the distribution of Zn.

Simulation 2: Y ∼ Geometric(p = 0.5)

We repeat the simulation above with a different value for p in the Geometric

family size distribution: this time, p = 0.5. The family size distribution is
therefore Y ∼ Geometric(p = 0.5).

Simulation Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0 0 0
5 1 1 0 0 0 0 0 0 0 0 0
6 1 7 9 17 15 20 19 8 7 13 35
7 1 2 5 2 5 8 8 3 3 0 0
8 1 2 0 0 0 0 0 0 0 0 0
9 1 0 0 0 0 0 0 0 0 0 0
10 1 0 0 0 0 0 0 0 0 0 0
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This time, almost all the populations become extinct. We will see later that
this value of p (just) guarantees eventual extinction with probability 1.

The family size distribution, Y ∼ Geometric(p = 0.5), and the results for

Z10 from 5000 simulations, are shown below. Family sizes are often zero, but
families of size 2 and 3 are not uncommon. It seems that this is not enough

to save the process from extinction. This time, the maximum population size
observed for Z10 from 5000 simulations was only 56, and the mean and variance
of Z10 are much smaller than before.

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0 10 20 30 40 50 60

0.
0

0.
05

0.
10

0.
15

Family Size, Y

family size Z10

Z10

Proportion of samples extinct by generation 10: 0.9108

Summary of Zn:

Min 1st Qu Median Mean 3rd Qu Max

0 0 0 0.965 0 56

Mean of Zn: 0.965

Variance of Zn: 19.497

What happens for larger values of p?

It was mentioned above that Y ∼ Geometric(p = 0.5) just guarantees eventual

extinction with probability 1. For p > 0.5, extinction is also guaranteed, and
tends to happen quickly. For example, when p = 0.55, over 97% of simulated

populations are already extinct by generation 10.
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6.5 Mean and variance of Zn

The previous section has given us a good idea of the significance and interpre-
tation of E(Zn) and Var(Zn). We now proceed to calculate them. Both E(Zn)

and Var(Zn) can be expressed in terms of the mean and variance of the family
size distribution,Y .

Thus, letE(Y ) = µ and let Var(Y ) = σ2. These are the mean and variance of the
number of offspring of a singleindividual.

Theorem 6.5: Let {Z0, Z1, Z2, . . .} be a branching process with Z0 = 1 (start with
a single individual). Let Y denote the family size distribution, and suppose that

E(Y ) = µ. Then
E(Zn) = µn.

Proof:

By page 121,Zn = Y1 + Y2 + . . .+ YZn−1
is a randomly stopped sum:

Zn =

Zn−1∑

i=1

Yi

Thus, from Section 3.4 (page 62),

E(Zn) = E(Yi)× E(Zn−1)

= µ× E(Zn−1)

= µ {µE(Zn−2)}

= µ2
E(Zn−2)

=
...

= µn−1
E(Z1)

= µn−1 × µ

= µn. �
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Examples: Consider the simulations of Section 6.4.

1. Family size Y ∼ Geometric(p = 0.3). Soµ = E(Y ) =
q

p
=

0.7

0.3
= 2.33.

Expected population size by generation n = 10 is:

E(Z10) = µ10 = (2.33)10 = 4784.

The theoretical value, 4784, compares well with the sample mean from 5000
simulations, 4617 (page 126).

2. Family size Y ∼ Geometric(p = 0.5). Soµ = E(Y ) =
q

p
=

0.5

0.5
= 1, and

E(Z10) = µ10 = (1)10 = 1.

Compares well with the sample mean of 0.965 (page 127).

Variance of Zn

Theorem 6.5: Let {Z0, Z1, Z2, . . .} be a branching process with Z0 = 1 (start with
a single individual). Let Y denote the family size distribution, and suppose that

E(Y ) = µ and Var(Y ) = σ2. Then

Var(Zn) =







σ2 n if µ = 1,

σ2µn−1

(
1− µn

1− µ

)

if µ 6= 1 (> 1 or < 1).

Proof:

Write Vn = Var(Zn). The proof works by finding a recursive formula for Vn.
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Using the Law of Total Variance for randomly stopped sums from Section 3.4
(page 62),

Zn =

Zn−1∑

i=1

Yi

⇒ Var(Zn) = {E(Yi)}
2 ×Var(Zn−1) + Var(Yi)× E(Zn−1)

⇒ Vn = µ2 Vn−1 + σ2
E(Zn−1)

⇒ Vn = µ2 Vn−1 + σ2 µn−1 ,

using E(Zn−1) = µn−1 as above.

Also,

V1 = Var(Z1) = Var(Y ) = σ2.

Find Vn by repeated substitution:

V1 = σ2

V2 = µ2V1 + σ2µ = µ2σ2 + µσ2 = µσ2(1 + µ)

V3 = µ2V2 + σ2µ2 = µ2σ2
(
1 + µ+ µ2

)

V4 = µ2V3 + σ2µ3 = µ3σ2
(
1 + µ+ µ2 + µ3

)

... etc.

Completing the pattern,

Vn = µn−1σ2
(
1 + µ+ µ2 + . . .+ µn−1

)

= µn−1σ2
n−1∑

r=0

µr

= µn−1σ2

(
1− µn

1− µ

)

. Valid for µ 6= 1.

(sum of first n terms of Geometric series)
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When µ = 1 :

Vn = 1n−1σ2
(
10 + 11 + . . .+ 1n−1

)

︸ ︷︷ ︸

n times

= σ2n.

Hence the result:

Var(Zn) =







σ2 n if µ = 1,

σ2µn−1

(
1− µn

1− µ

)

if µ 6= 1. �

Examples: Again consider the simulations of Section 6.4.

1. Family size Y ∼ Geometric(p = 0.3). So µ = E(Y ) =
q

p
=

0.7

0.3
= 2.33.

σ2 = Var(Y ) =
q

p2
=

0.7

(0.3)2
= 7.78.

Var(Z10) = σ2µ9

(
1− µ10

1− µ

)

= 5.72× 107.

Compares well with the sample variance from 5000 simulations, 5.39 × 107

(page 126).

2. Family size Y ∼ Geometric(p = 0.5). So µ = E(Y ) =
q

p
=

0.5

0.5
= 1.

σ2 = Var(Y ) =
q

p2
=

0.5

(0.5)2
= 2. Using the formula for Var(Zn) whenµ = 1, we

have:
Var(Z10) = σ2n = 2× 10 = 20.

Compares well with the sample variance of 19.5 (page 127).


