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Chapter 6: Branching Processes:

The Theory of Reproduction

Although the early development of Probability Theory was motivated by prob-
lems in gambling, probabilists soon realised that, if they were to continue as a
breed, they must also study

Reproduction is a complicated business, but considerable in-
sights into population growth can be gained from simplified
models. The Branching Process is a simple but elegant
model of population growth. It is also called the Galton-
Watson Process, because some of the early theoretical re-
sults about the process derive from a correspondence between
Sir Francis Galton and the Reverend Henry William Watson
in 1873. Francis Galton was a cousin of Charles Darwin. In
later life, h?e_d-ev—__éT—o_—Eﬁ some less elegant ideas about repro-
duction — namely_g&ics, or selective breeding of humans.
Luckily he is better remembered for branching processes.




EER)
-

NEW ZEALAND

117

6.1 Branching Processes

Consider some sort of population consisting of reproducing individuals.

Examples: living things (animals, plants, bacteria, royal families);
diseases; computer viruses;
rumours, gossip, lies (one lie always leads to another!)

Start conditions: start af time n=0 withh & S;let ‘m,l}uio{.ﬁ\,

Each individual: Lives #r 1 ik oa,. Firme ;ﬁ]% Fime n-= _‘{__/1 i+ ‘orwlucu
N dﬁe‘/v\\\j ca, OJ’J’Srr%:j) A ]Mmu’l'-ml‘a\lj Aves.

How many oﬁspmng9 Could Ly O, i Z L Thag s e il Size,
v. vy s tandg éor* numl.,uv Youn J 6(_0,- o SIAJlL fe/w\'.[\j_
Each offspring: [y, JDF 1 At Pa— t+ime . FH Ame n=2 W ‘pfoAu\(,Q_s
W own }-&m q, G’%Srf‘\j) MA :MMQ’{I4+b 04&’5

and so on...

Assumptions
1. lel Ad v duals ‘f&rfoalb\ue, ]r\e(.g?;,\alml-\\j 06, eacl, ol
/Z- T‘n{ é&/\/\{j S‘]?;;(zj "6’ d{fﬁ'ﬂm“' }Ao{‘nu\.dmo\h al ¢ FIAAQFMM‘)
’lake/\\r?m\\\j st uwle A Cv.§ Al Wil e saaae o‘LTJ\'r]L whon
Y (m«erJ 0’6' Yowljﬁ,

Family size distribution, Y

2 B Aol -

] 2_ 3 4' - T - -

P(Y= y) Pf,
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Definition: A branching process is defined as follows.
e Single individual at time n = 0.
P ‘ e Every individual lives exactly one unit of time, then produces Y offspring,
| and dies.
e The number of offspring, Y, takes values 0, 1, 2, ..., and the probability
of producing k offspring is (Y=l ) = A
e All individuals reproduce independently. Individuals 1,2, ..., n have family

sizes Y1,Y,...Y,, where Y, ~ Y, ~ ... ~ Y, ~Y .

#___,7 o [et Zn be the V\INMLU" Od’ I/\Al\/]p\hﬁ,l_[ born A‘l” 'f’iMe, N, ﬁo N= 0)1)2
Tatvprek Z, o5 tHe e F gearakion n = irdivg alive o

Hae (.

e Then the branching process is { Z Z 2
k o 1) 1;23;"'-‘25:€Zn1n6”\|3_
B

Definition: The state of the branching process at time n is
L,)(_w\/\rnk' goes in e Loxes on fle prangition ok;qum)
Stbe =2, | whre each 2, can Flee valug O,1,2,2, - -
Neote 2z,=1 o\lww_s (start Wit 1 1ndiv o fime 0),

Note: When we want to say that two random variables X and Y have the same
distribution, we write: Y ~ Y

For example: \(L N \l,/ 'Ji“r all /Gﬂa\M\\j $i2¢es Y,;,

Note: The definition of the branching process is easily generalized to start with
more than one individual at time n = 0.

QMU“\'"DA fo P~ Sz

0 Zo=|

Branching Process

1 £)°3
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6.2 Questions about the Branching Process

When we have a situation that can be modelled by a branching process, there
are several questions we might want to answer.

If the branching process is just beginning, what will happen in the future?

1. What can we find out about the distribution of Z, (the population siZe at
generation n)?

e can we find the mean and variance of Z,,?
—— yes, using the probability generating function of familyesiy’;

e can we find the whole distribution of Z,,7
— for special cases of the family size distributivnwe can find the PGF of

Zy explicitly; V¢ oomebic i He MlJ rnon—tivial cose .

e can we find the probability that the population has become extinct by
_~ generation n, P (Zn =0)?
Specs e — for special cases where’we can find the PGE,pfas above).\(~ C opmetric
?AU_"’J\'\‘”‘ &fﬂf’ LKH/\(/H@,\ .

2. What can we find out about eventual extinction?

e can we find the probability of eventual extinction, TF ( @M 2/\ =0)7?

— yes, always: using the PGFYf <_ ,|... colue HA?:'M

i aX 1o o Q Haa ~Sking alouk
e can we find general conditions for eventual extinction? o specific N
— yes: we can find conditions that guarantee that extinctidhoacur with
probability 1.

e if eventual extinction is definite, can we find the distribution of the time to

extinction?
— for special cases where we can find the PGE,pfas above).

Example: Modelling cancerous growths. Will a colony of cancerous cells become
extinct before it is sufficiently large to overgrow the surrounding tissue?
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If the branching process is already in progress, what happened in the past?

1. How long has the process been running?

e how many generations do we have to go back to get to the sioghmon
ancestor?

2. What has been the distribution of family size over the generations?

3. What is the total number of individuals (over all generations) up to the present
day?

Example: 1t is believed that all humans are descended from a single female an-
cestor, who lived in Africa. How long ago?

iS]’"\Mﬁ‘[‘cA N~ 200,000 WJ,
What has been the mean family size over that period?

Estimate 11002 female offspring po fomale adult,

6.3 Analysing the Branching Process

Key Observation: Lvyy Individual ia {VU\’D j,m untion ke a NLw,

\malf,euw\xzﬂ' Bruol«‘\:j process, as f} He Whole process wee S%V’Fv:j
0\)\' Hr‘!. \aL ‘If\ﬂ“\U

C\joC.x\.

Lrwk:\/j (~rocess
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Most of the interesting properties of the branching process centre on the distri-
bution of Z,, (the population size at time n). Using the Key Observation from

overleaf, we can find an expression for the probability generating function of
L.

Consider the following.
° TL\L Pﬂfb wlabhion Size W\' time N-1 5 3}uu L:j Z’H )

) (Pwt:x’fb
° LrALLK I’l,\q_ lnal,\VnAV\‘\LS M’( Hmt N—| ag I,z 3 B Z

)z T n—=g -

~ (pareal)
o Eadn ndividun el ) 2,-”)24_, S‘}“J—j:( h New LfMd"b 'D/‘DCQ-SL

Lt Y, Y, . Y be Hee racdom Ny s
[ ] T - ' }w
(parents) T Eae édM\J gar

Yadiv) dwals ]’ 2, -, Z/\-I ‘

(childr
o ’H:\L V\WV\LU" d6' :A’Ln/:ﬂ(mrl_)f w‘\‘ 'H:ML V\) Z'-/\, 'LS {V\_‘L[ "‘o Hﬂ&

Por W ety o foe pwreb 12, 2
Tlok 35, &

—_—

1., .l %"" 'ﬂpqwb Zh = Z \I/L
N/ N Helilbra s
\__/\/\___,2

Z, Thws Z,, is = f‘ﬁvw(on«.j Stopped Sm .

o Slun "8/ Yl } \!/1) S (‘MAO/"\\.J \S‘i‘ofafu(k
‘o\j oo Mltﬂowr\ ‘#‘,OGJ‘CAE{ (ﬁ\/-)) Zn.
Note: 1. Eo\c\,\ YL ~ Y (ﬁU\ (Ad g \I\C\.ug_ He sere

Foly e Aistailidion)

[ an—; e ?/v{(f,,w{b\,{-,
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TLM A_L T(j, T = X‘ + . +Xf\1 wheae N is fv\-«nslom) o & N
~ U Pt ead. o
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n-| Z
> G - G (619) S

Probability Generating Function of Z,

Note:

Let Gy (s) = E(s") be the probability generating function of Y.

(Recall that _Y is the nuwmlbe cf]l— Y"“‘Qﬂ o ot ?,\p{}v}Aw\{) 2. K
h&w»\.b Size )

Now Z,, is a randomly stopped sum: it is the sum of Y7, Y5, ..., stopped by the

random variable Z,,_;. So we can use Theorem 4.6 (Chapter 4) to express the
PGF of Z,, directly in terms of the PGFs of Y and Z,,_;.

By Theorem 4.6, if Z, =Y, + Yo+ ...+ Y, ., and Z,_; is itself random, then
the PGF of Z, is given by:

QZ (3 = Qz ( QY (Q) ®K

Nn-|

= = e an-q ()= ]E(SZM)) QZIS):[F(SZA)

For ease of notation, we can write:

G, (5 =G, (9, Gz (D=G., (D) ehe.

Note that 2, ~Y  (fey are Lot Helildrer g a Siagle pareat)

so we can also write:

—
LC]Y (=G, (s) =: G(s) Lor Simplicty .

Thus,
‘f‘mm @) | erﬂr\r/[a:,\ P!‘o(.t..&_f
L@n (S) = qn_; ( C; (s) > QLct«rg\.gq
i Form
Coteal Resuly }or Brmotnlo f’racrs.s«gr. A

1. Qn ()= IE (52") ) flu PGF T popn S12¢ ob Gewrebion n,2Z,
2 G (= FE(), ~ 0 v s s e e g

J =

366 = E(s7) < E(s7), He PaF o fooly size, Y.
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We are trying to find the PGF of Z,,, the population size at time n.

So far, we have: __ G(s) = Gy (G(s)) (%)

’_____?—-—..——-—'"

But by the same argument,

i ()2 6,o(609) © py T e 3

Lelow.

Substituting\i\n (%)

6 (D= G (G
- Ga,y (7)) bl 0= G(9)
Gy (G(0)) "‘5qu© aLove
- Qn_i(@ (g(s))) replacing = G(s) .

'/\/\/M/'V\_/—m

By the same reasoning, we will obtain:

6.0« Gy ((6(6(66)) )

\;'.‘V:Q_, & My
and so on, until we ﬁnally get:
Ga () = Q (-G
vy (668 50-9)
Vl,(t N—] Firey
- 5, (alalsCoso)
N—) Fimed
S 6.0 - c;(q (6(6(— 66
T\ W

Mmes
We have therefore proved the followmg Theorem.
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Theorem 6.3: Let G(s) = E(s") = > 72 p,s’ be the PGF of the family size

distribution, Y. Let Zy = 1 (start from a single individual at time 0), and let
Z,, be the population size at time n (n =0,1,2,...). Let G,,(s) be the PGF of

the random variable Z,,. Then L/
ﬂs)zg(c;@(...ci(s)...))). 0
n times
—

Note: G,(s) = G(G(G(G(s)))) is called the thLoM Hoate cra¢ G .

6.4

N 7

n times

We have therefore found an expression for the PGF of the population size at
generation n, although there is no guarantee that it is possible to write it down
or manipulate it very easily for large n. For example, if Y has a Poisson(\)
distribution, then G(s) = e**~1, and already by generation n = 3 we have the
following fearsome expression for Gs(s):

(e)\<e>‘(s_1)—1>_1>
Gs(s) =e : (Or something like that!)

However, in some circumstances we can find quite reasonable closed-form ex-
pressions for G, (s), notably when Y has a Geometric distribution. In addition,
for any distribution of ¥ we can use the expression G, (s) = Gn_1<G(s)> to

derive properties such as the mean and variance of Z,,, and the probability of
eventual extinction (P(Z, = 0) for some n).

What does the distribution of Z,, look like?

Before deriving the mean and the variance of Z,, it is helpful to get some
intuitive idea of how the branching process behaves. For example, it seems rea-
sonable to calculate the mean, E(Z,), to find out what we expect the population
size to be in n generations time, but why are we interested in Var(Z,)?

The answer is that Z,, usually has a “boom-or-bust” distribution: either the
population will take off (boom), and the population size grows quickly, or the
population will fail altogether (bust). In fact, if the population fails, it is likely
to do so very quickly, within the first few generations. This explains why we are
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interested in Var(Z,). A huge variance will alert us to the fact that the process
does not cluster closely around its mean values. In fact, the mean might be

almost useless as a measure of what to expect from the process.
-3 v A v _ 1T 0F o
Simulation 1: Y ~ Geometric{(p/:—()\.}J) (~ Geo (f’ 0 3)) EY- P 03 723

The following table shows the results from 10 simulations of a branching process,
where the family size distribution is Y ~ Geometric(p = 0.3).

Simulation (Z;) Z1 Z2 Z3 Z4 Z5 ZG Z7 Zg Zg ZlO

1| 1¢(o 0o 0o 0 0 0 0 0 0

2 1 10 0 0 0 0 0 0 0

3 I 4 19 42 81 181 433 964 2276 5383( 12428

4 1 3 3 5 3 15 29 8 207 435 952

5/1¢>0 0 0 0 0 0 0 0 0

6 1 1 0 0 0 0 0 0 0 0

7 1 2 8 26 68 162 360 845 2039 4746/ 10941

8 11 0 0 0 0 0 0 0 0 0

9 11 0 0 0 0 0 0 0 0 0

10 i 1 4 13 18 39 104 294 690 1566 (3534 C000 70wy

| . . . . o

Often, the population is extinct by generation 10. However, when it is not
extinct, it can take enormous values (12428, 10941, ...).

The same simulation was repeated 5000 fimes to find the empirical distribu-
tion of the population size at generation 10 (Z;g). The figures below show

the distribution of family size, Y, and the distribution of Z;y from the 5000

simulations.
Family Size, Y Zo popn Size & G o
P(¥-0) (rGea(0X) P(Z,-2)
S| 9
S
S S
<
- :
S
S |
e i . |
e © ' SHrze 2
5

©

10 15 20 25 30\3 O)Y 20000 60000
Z1o

family size
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In this example, the family size is rather variable, but the variability in Z is
enormous (note the range on the histogram from 0 to 60,000). Some statistics
are:

Proportion of samples extinct by generation 10: 0.436

Summary of Zn:

Min 1st Qu Median Mean 3rd Qu Max
0 0 1003 4617 6656 82486
Mean of Zn: 4617.2

Variance of Zn: 53937785.7 — huge variance = fe P b almesh
e af A

5 Swm MM:) .
So the empirical variance is Var(Zg) = 5 -39 % [0 - This perhaps contains
more useful information than the mean value of 4617. The distribution of Z,
has 43.6% of zeros, but (when it is non-zero) takes values up to 2, &6 Is it
really useful to summarize such a distribution by the single mean value 46177 No.

For interest, out of the 5000 simulations, there were only 35 (0.7%) that had a
value for Zy( greater than 0 but less than 100. This emphasizes the “boom-or-
bust” nature of the distribution of Z,,.

Simulation 2: Y ~ Geometric(p = 0.5) EY < -2—4 = %..g @

We repeat the simulation above with a different value for p in the Geometric
family size distribution: this time, p = 0.5. The family size distribution is
therefore Y Geomebnc (0 $).

Simulation | Zg 7, Zo Zs Zy Zs Zs Zr Zs Ze o
111 0 0 0 0O 0O O 0O 0O 0 0
21 0 0 0 O O O O O 0 0
3/ 1.0 0 0 0 0 0 O O 0 O
41 0 0 0 O O O O O O O
501 1 0 0 0O O O O O 0 O
6| 1 7 9 17 15 20 19 8 7 13 35 —<
711 2 5 2 5 8 8 3 3 0 0
8/ 1 2 0 0 0 0O 0 O 0O 0 0
9|1 0 0 0O O O O O 0O 0 0
|1 0o 0 0 0 O O O O 0 0
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This time, almost all the populations become extinct. We will see later that
this value of p (just) guarantees eventual extinction with probability 1.

The family size distribution, ¥ ~ Geometric(p = 0.5), and the results for
Z1 from 5000 simulations, are shown below. Family sizes are often zero, but
families of size 2 and 3 are not uncommon. It seems that this is not enough
to save the process from extinction. This time, the maximum population size
observed for Z;y from 5000 simulations was only 56, and the mean and variance
of Z19 are much smaller than before.

Family Size, Y Zo

\\/N on(P:O'S'>
FYy-1

0.6
0.15

0.4
0.10

0.2
0.05

0 5 10 15 0O 10 20 30 40 50 60

0.0
0.0

family size Z10

Proportion of samples extinct by generation 10:( 0.9108

Summary of Zn:
Min 1st Qu Median Mean 3rd Qu 2

0 0 0 0.965 0 @
SV NN

Mean of Zn: 0.965
Variance of Zn: 19.497
o

What happens for larger values of p?

It was mentioned above that Y ~ Geometric(p = 0.5) just guarantees eventual
extinction with probability 1. For p > 0.5, extinction is also guaranteed, and
tends to happen quickly. For example, when p = 0.55, over 97% of simulated
populations are already extinct by generation 10.
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6.5 Mean and variance of Z,

The previous section has given us a good idea of the significance and interpre-
tation of E(Z,,) and Var(Z,). We now proceed to calculate them. Both E(Z,)

and Var(Z,) can be expressed in terms of Hwu mMean ard veriam e oﬂ; He
\/

TF&M"\Q S e H;l—ébm\%oﬂ) -
Thus, [ef EY =pm and Ver(Y) =0
(Men € Verince 4 Hclildren for a Single perent)
Theorem 6.5: Let {7, Z1, Z5,...} be a branching process with Z; = 1 (start with
a single individual). Let Y denote the family size distribution, and suppose that
E(Y) = p. Then P

E(z,) =/M” - E(yy

Proof:

|

\V

ro~d om \3 6%“1'{)1& Sl&g:_;

£, 2

So L:D 3&5&:\0"\ 3(4' (PGZ) )
E(z) = E(Y)« E(2,)

m E(z,.)

S—
A K E (24-«,) L\j San~e N:jwq-i
= M E(Z,4

I

Ui

M

()

- p U E(Z0 )
- M E(2) note H2): EY<

= E(Z,\): /Mn , (n
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Examples: Consider the simulations of Section 6.4.

1. Family size Y ~ Geometric(p = 0.3).50/4\ - EY- TZ{ 0%

< =L - 2.33.

Expected population size by generation n = 10 is:
lo )
E(Z)=p = (233) = 4786

The theoretical value, 4784, compares well with the sample mean from 5000
simulations, 4617 (page 126).

2. Family size Y ~ Geometric(p = 0.5). S -cy-%4_ 05 _
M [E5 = 1.

LE(ZH,\:/AIO =1 -1

Compares well with the sample mean of 0.965 (page 127).

Variance of Z,,

Theorem 6.5: Let {7, Z1, Z5,...} be a branching process with Z; = 1 (start with
a single individual). Let Y denote the family size distribution, and suppose that
E(Y) = p and Var(Y) = o Then

o‘n if u=1,

1—
azu”_l(l ,u) ifu#t1 (>1lor <1).
— p

Proof:

Write V,, = Var(Z,,). The proof works by finding a recursive formula for V.
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Using the Law of Total Variance for randomly stopped sums from Section 3.4
(page 62),

Zn—l
Zy = ) Y
1=1
= Var(Z,) = {E(Y)}* x Var(Z,_,) + Var(¥;) x E(Z,_)
= V, = p*Voo1+0*E(Z,-1)

= Vi = pVaa+o’uht,

n—1

using E(Z,,_1) = p"~ " as above.

Also,
Vi = Var(Z;) = Var(Y) = o

Find V,, by repeated substitution:
i = o Vi = Ver (2) = Vo (YY) =0 "

Vo = p*Vi+o*n = pfo’ + po? = po*(l+p)

Vs = Vot o?y’ = plo? (1+p+p°)

Vi = pVa+ o'y’ = pPo? (14 p+p? + 17

-%A;Lt St a’& a Qeomebrit SeM .
Completing the pattern,

vV, = ,u”_102(1+,u+,u2+...+,u”_1) «

n—1
_ Iun—l(jQ Z :UJT 1
r=0
N
= " o? < a ) : Valid for pu # 1.

1—,u N~

(sum of first n terms of Geometric series)
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When p=1:
V, = 1" (1°+ 1"+ ... +1"") = o°n.
n t;;nes
Hence the result:
a’n if u=1,
Var(Z,) = "
(Zn) N (1 1 ) "
ool if u# 1. ]
L—p

Examples: Again consider the simulations of Section 6.4.

0.
1. Family size Y ~ Geometric(p = 0.3). So p=E(Y) = 7_ = 2.33.
p

=J

=
wo

= Ver (Y)= ;41; 0% 545
£ (o,_’«’,j"

> V(o) =7 pm’ (','”A“): 532 lo
v

Compares well with the sample variance from 5000 simulations, 5.39 x 107
(page 126).

>

2. Family size Y ~ Geometric(p = 0.5). So u=E(Y) = 1_ % = 1.
p ' _-"'-‘.-'-._

Y —
= 0'-1:[/”(\(3:———15 ObL =2

P (0:5)

L

M)& éﬂ(nr\u\b\ ébr VGJ" (2{0) When /./\:' —) \/C\I'_'(—Zjlo):oﬂ " = Z*lo
Compares well with the sample variance of 19.5 (page 127). =Z20.

—
_..-'-'-'-._'—-__



