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Chapter 7:
Extinction in Branching Processes

Revision: a branching process consists of reproducing individuals.

• All individuals are independent.

• Start with a single individual at time 0: Z0 = 1.

• Each individual lives a single unit of time, then has Y offspring and dies.

• Let Zn be the siZe of generation n: the number of individuals born at

time n.

• The branching process is {Z0 = 1, Z1, Z2, . . .}.

Branching Process Recursion Formula

This is the fundamental formula for branching processes. Let Gn(s) = E(sZn)
be the PGF of Zn, the population size at time n. Let G(s) = G1(s), the PGF
of the family size distribution Y , or equivalently, of Z1. Then:

Gn(s) = Gn−1

(

G(s)
)

= G
(

G
(

G
(

. . .G
︸ ︷︷ ︸

n times

(s) . . .
)))

= G
(

Gn−1(s)
)

.
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7.1 Extinction Probability

One of the most interesting applications of branching processes is calculating
the probability of eventual extinction. For example, what is the probability

that a colony of cancerous cells becomes extinct before it overgrows the sur-
rounding tissue? What is the probability that an infectious disease dies out
before reaching an epidemic? What is the probability that a family line (e.g.

for royal families) becomes extinct?

It is possible to find several results about the probability of eventual extinction.

Extinction by generation n

The population is extinct by generation n if Zn = 0
(no individuals at timen).

If Zn = 0, then the population is extinct
for ever:Zt = 0 for all t ≥ n.

Definition: Define event En to be the event

En = {Zn = 0} (event that the population is extinct by generationn).

Note: E0 ⊆ E1 ⊆ E2 ⊆ E3 ⊆ E4 ⊆ . . .

This is because event Ei forces Ej to be true for all j ≥ i, so Ei is a ‘part’ or
subset of Ej for j ≥ i.

Ultimate extinction

At the start of the branching process, we are interested in the probability of ulti-
mate extinction: the probability that the population will be extinct by generation
n, for anyvalue ofn.

We can express this probability in different ways:

P(ultimate extinction) = P

(
∞⋃

n=0

En

)



i.e. extinct by generation 0 or
extinct by generation 1 or

extinct by generation 2 or. . .





Or: P(ultimate extinction) = P

(

lim
n→∞

En

)

. (i.e.P(extinct by generation∞)).
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Note: By the Continuity Theorem (Chapter 2), and because E0 ⊆ E1 ⊆ E2 ⊆ . . .,
we have:

P(ultimate extinction) = P

(

lim
n→∞

En

)

= lim
n→∞

P(En).

Thus the probability of eventual extinction is the limit as n → ∞ of the prob-

ability of extinction by generation n.

We will use the Greek letter Gamma (γ) for the probability of extinction: think
of Gamma for ‘all Gone’ !

γn = P(En) = P(extinct by generationn).

γ = P(ultimate extinction).

By the Note above, we have established that we are looking for:

P(ultimate extinction) = γ = lim
n→∞

γn. γ
Extinction is Forever

Theorem 7.1: Let γ be the probability of ultimate extinction. Then

γ is the smallest non-negative solution of the equation
G(s) = s, whereG(s) is the PGF of the family size distribution,Y .

To find the probability of ultimate extinction, we therefore:

• find the PGF of family size,Y : G(s) = E(sY );

• find values ofs that satisfyG(s) = s;

• find the smallestof these values that is≥ 0. This is the required valueγ.

G(γ) = γ, and γ is the smallest value ≥ 0 for which this holds.
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Note: Recall that, for any (non-defective) random variable Y with PGF G(s),

G(1) = E(1Y ) =
∑

y

1yP(Y = y) =
∑

y

P(Y = y) = 1.

So G(1) = 1 always, and therefore there always exists a solution forG(s) = s
in [0, 1].

The required value γ is the smallest such solution ≥ 0.

Before proving Theorem 7.1 we prove the following Lemma.

Lemma: Let γn = P(Zn = 0). Then γn = G(γn−1).

Proof: If Gn(s) is the PGF ofZn, thenP(Zn = 0) = Gn(0). (Chapter 4.)

Soγn = Gn(0). Similarly,γn−1 = Gn−1(0).

Now Gn(0) = G
(

G
(

G
(

. . .G
︸ ︷︷ ︸

n times

(0) . . .
)))

= G
(

Gn−1(0)
)

.

So γn = G
(

Gn−1(0)
)

= G
(

γn−1

)

. �

Proof of Theorem 7.1: We need to prove:

(i) G(γ) = γ;

(ii) γ is the smallest non-negative value for which G(γ) = γ.

That is, if s ≥ 0 and G(s) = s, then γ ≤ s.

Proof of (i):

From overleaf, γ = lim
n→∞

γn = lim
n→∞

G
(

γn−1

)

(by Lemma)

= G
(

lim
n→∞

γn−1

)

(G is continuous)

= G(γ).

SoG(γ) = γ, as required.
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Proof of (ii):

First note that G(s) is an increasing function on [0, 1]:

G(s) = E(sY ) =
∞∑

y=0

syP(Y = y)

⇒ G′(s) =
∞∑

y=0

ysy−1
P(Y = y)

⇒ G′(s) ≥ 0 for 0 ≤ s ≤ 1, so G is increasing on [0, 1].

G(s) is increasing on [0, 1] means that:

s1 ≤ s2 ⇒ G(s1) ≤ G(s2) for any s1, s2 ∈ [0, 1]. ♣

The branching process begins with Z0 = 1, so

P(extinct by generation 0) = γ0 = 0.

At any later generation, γn = G(γn−1) by Lemma.

Now suppose that s ≥ 0 and G(s) = s. Then we have:

0 ≤ s ⇒ γ0 ≤ s (because γ0 = 0)

⇒ G(γ0) ≤ G(s) (by ♣)

i.e. γ1 ≤ s

⇒ G(γ1) ≤ G(s) (by ♣)

i.e. γ2 ≤ s

...

Thus γn ≤ s for all n.

So if s ≥ 0 and G(s) = s, then γ = lim
n→∞

γn ≤ s. �
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Example 1: Let {Z0 = 1, Z1, Z2, . . .} be a branching process with family size
distribution Y ∼ Binomial(2, 1

4
). Find the probability that the process will

eventually die out.

Solution:

Let G(s) = E(sY ). The probability of ultimate extinction isγ, whereγ is the
smallest solution≥ 0 to the equationG(s) = s.

ForY ∼ Binomial(n, p), the PGF isG(s) = (ps+ q)n (Chapter 4).

So if Y ∼ Binomial(2, 1
4
) thenG(s) = (1

4
s+ 3

4
)2.

s

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

t

t=G(s)

t=s
We need to solveG(s) = s:

G(s) = (14s+
3
4)

2 = s

1
16s

2 + 6
16s+

9
16 = s

1
16s

2 − 10
16s+

9
16 = 0

Trick: we know thatG(1) = 1, sos = 1 has got to be a solution. Use this for a
quick factorization.

(s− 1)
(

1
16s−

9
16

)
= 0.

Thus
s = 1

or
1
16s =

9
16 ⇒ s = 9.

The smallest solution≥ 0 is s = 1.

Thus the probability of ultimate extinction isγ = 1.

Extinction is definitewhen the family size

distribution isY ∼ Binomial(2, 14).
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Example 2: Let {Z0 = 1, Z1, Z2, . . .} be a branching process with family size
distribution Y ∼ Geometric(1

4
). Find the probability that the process will

eventually die out.

Solution:

Let G(s) = E(sY ). ThenP(ultimate extinction) = γ, whereγ is the smallest
solution≥ 0 to the equationG(s) = s.

ForY ∼ Geometric(p), the PGF isG(s) = p
1−qs (Chapter 4).

So if Y ∼ Geometric(14) thenG(s) =
1/4

1− (3/4)s
=

1

4− 3s
.

s

0.0 0.4 0.8 1.2

0.
0

0.
5

1.
0

1.
5

t

t=G(s)

t=s

We need to solveG(s) = s:

G(s) = 1
4−3s = s

4s− 3s2 = 1

3s2 − 4s+ 1 = 0

Trick: know thats = 1 is a solution.

(s− 1) (3s− 1) = 0.

Thus
s = 1

or
3s = 1 ⇒ s = 1

3
.

The smallest solution≥ 0 is s = 1
3
.

Thus the probability of ultimate extinction isγ = 1
3.

Extinction is possible but not definite when the
family size distribution isY ∼ Geometric(14).
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7.2 Conditions for ultimate extinction

It turns out that the probability of extinction depends crucially on the value of
µ, the mean of the family size distributionY .
Some values of µ guarantee that the branching process will die out with prob-
ability 1. Other values guarantee that the probability of extinction will be
strictly less than 1. We will see below that the threshold value is µ = 1.

If the mean number of offspring per individual µ is more than 1 (so on average,

individuals replace themselves plus a bit extra), then the branching process is
not guaranteed to die out — although it might do. However, if the mean number

of offspring per individual µ is 1 or less, the process is guaranteed to become
extinct (unless Y = 1 with probability 1). The result is not too surprising

for µ > 1 or µ < 1, but it is a little surprising that extinction is generally
guaranteed if µ = 1.

Theorem 7.2: Let {Z0 = 1, Z1, Z2, . . .} be a branching process with family size

distribution Y . Let µ = E(Y ) be the mean family size distribution, and let γ
be the probability of ultimate extinction. Then

(i) If µ > 1, thenγ < 1: extinction is notguaranteed ifµ > 1.

(ii) If µ < 1, thenγ = 1: extinction isguaranteed ifµ < 1.

(iii) If µ = 1, thenγ = 1 unlessthe family size is always constant atY = 1.

Lemma: Let G(s) be the PGF of family size Y . Then G(s) and G′(s) are strictly
increasing for 0 < s < 1, as long as Y can take values ≥ 2.

Proof: G(s) = E(sY ) =
∞∑

y=0

syP(Y = y).

So G′(s) =

∞∑

y=1

ysy−1
P(Y = y) > 0 for 0 < s < 1,

because all terms are ≥ 0 and at least 1 term is > 0 (if P(Y ≥ 2) > 0).

Similarly, G′′(s) =
∞∑

y=2

y(y − 1)sy−2
P(Y = y) > 0 for 0 < s < 1.

So G(s) and G′(s) are strictly increasing for 0 < s < 1. �
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Note: When G′′(s) > 0 for 0 < s < 1, the function G is said to be convex on that
interval.

Concave: G’’(s) < 0Convex: G’’(s) > 0

s s

G(s) G(s)

G′′(s) > 0 means that the gradientof G is constantly increasing for0 < s < 1.

Proof of Theorem 7.2: This is usually done graphically.

The graph of G(s) satisfies the following conditions:

1. G(s) is increasing and strictly convex (as long asY can be≥ 2).

2. G(0) = P(Y = 0) ≥ 0.

3. G(1) = 1.

4. G′(1) = µ, so the slope ofG(s) at s = 1 gives the valueµ.

5. The extinction probabilityγ is the smallest value≥ 0 for whichG(s) = s.

1

1

s

P(Y=0)

t
t=G(s)

t=s

µ = 

γ

gradient at 1

(extinction
probability)

(gradient=1)

0
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Case (i): µ > 1

1

1

s

P(Y=0)

t

t=s

µ > 1

(gradient=1)

0

Whenµ > 1, the curveG(s) is
forced beneath the linet = s at s = 1.
The curveG(s) has to cross the
line t = s again to meet thet-axis
atP(Y = 0).
Thus there must be a solutionγ < 1
to the equationG(s) = s.

Case (ii): µ < 1

t=s (gradient=1)

1

1

s

t

0

P(Y=0)

µ < 1

When µ < 1, the curve G(s) is
forced above the line t = s for s < 1.

There is no possibility for the curve
G(s) to cross the line t = s again

before meeting the t-axis.
Thus there can be no solution < 1
to the equation G(s) = s, so γ = 1.

The exception is where Y can take only

values 0 and 1, so G(s) is not strictly
convex (see Lemma). However, in that case

G(s) = p0 + p1s is a straight line, giving
the same result γ = 1.

Case (iii): µ = 1

t=s (gradient=1)

1

1

s

t

0

P(Y=0)

µ = 1

When µ = 1, the situation is the same

as for µ < 1.

The exception is where Y takes only the
value 1. Then G(s) = s for all 0 ≤ s ≤ 1,

so the smallest solution ≥ 0 is γ = 0.

Thus extinction is guaranteed for µ = 1,

unless Y = 1 with probability 1.
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Example 1: Let {Z0 = 1, Z1, Z2, . . .} be a branching process with family size
distribution Y ∼ Binomial(2, 1

4
), as in Section 7.1. Find the probability of

eventual extinction.

Solution:

ConsiderY ∼ Binomial(2, 14.) The mean ofY is µ = 2 × 1
4 = 1

2 < 1. Thus, by
Theorem 7.2,

γ = P(ultimate extinction) = 1.

(The longer calculation in Section 7.1 was not necessary.)

Example 2: Let {Z0 = 1, Z1, Z2, . . .} be a branching process with family size
distribution Y ∼ Geometric(14), as in Section 7.1. Find the probability of

eventual extinction.

Solution:

ConsiderY ∼ Geometric(14.) The mean ofY is µ = 1−1/4
1/4 = 3 > 1. Thus, by

Theorem 7.2,
γ = P(ultimate extinction) < 1.

To find the value ofγ, we still need to go through the calculation presented in
Section 7.1. (Answer:γ = 1

3.)

Note: The mean µ of the offspring distribution Y is known as the criticality pa-
rameter.

• If µ < 1, extinction is definite (γ = 1). The process is called subcritical.

Note that E(Zn) = µn → 0 as n → ∞.

• If µ = 1, extinction is definite unless Y ≡ 1. The process is called critical.

Note that E(Zn) = µn = 1 ∀n, even though extinction is definite.

• If µ > 1, extinction is not definite (γ < 1). The process is called supercritical.
Note that E(Zn) = µn → ∞ as n → ∞.
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But how long have you got. . . ?

7.3 Time to Extinction

Suppose the population is doomed to extinction— or maybe it isn’t. Either way,
it is useful to know how long it will take for the population to become extinct.

This is the distribution of T , the number of generations before extinction. For
example, how long do we expect a disease epidemic like SARS to continue?
How long have we got to organize ourselves to save the kakapo or the tuatara

before they become extinct before our very eyes?

1. Extinction by time n.
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The branching process is extinct by time n if Zn = 0.

Thus the probability that the process has become extinct by time n is:

P(Zn = 0) = Gn(0) = γn.

Note: Recall that Gn(s) = E(sZn) = G
(

G
(

G
(

. . . G
︸ ︷︷ ︸

n times

(s) . . .
)))

.

There is no guarantee that the PGF Gn(s) or the value Gn(0) can be calculated

easily. However, we can build up Gn(0) in steps:

e.g.G2(0) = G(G(0)); thenG3(0) = G(G2(0)), or evenG4(0) = G2(G2(0)).
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2. Extinction at time n
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Let T be the exact time of extinction. That is, T = n if generation n is the
first generation with no individuals:

T = n ⇐⇒ Zn = 0 AND Zn−1 > 0.

Now by the Partition Rule,

P(Zn = 0 ∩ Zn−1 > 0) + P(Zn = 0 ∩ Zn−1 = 0) = P(Zn = 0). (⋆)

But the event {Zn = 0 ∩ Zn−1 = 0} is the event that the process is extinct by

generation n − 1 AND it is extinct by generation n. However, we know it will
always be extinct by generation n if it is extinct by generation n − 1, so the
Zn = 0 part is redundant. So

P(Zn = 0 ∩ Zn−1 = 0) = P(Zn−1 = 0) = Gn−1(0).

Similarly,

P(Zn = 0) = Gn(0).

So (⋆) gives:

P(T = n) = P(Zn = 0 ∩ Zn−1 > 0) = Gn(0)−Gn−1(0) = γn − γn−1.

This gives the distribution of T , the exact time at which extinction occurs.

Example: Binary splitting. Suppose that the family size distribution is

Y =

{
0 with probability q = 1− p,
1 with probability p.

Find the distribution of the time to extinction.
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Solution:
Consider

G(s) = E(sY ) = qs0 + ps1 = q + ps.

G2(s) = G
(

G(s)
)

= q + p(q + ps) = q(1 + p) + p2s.

G3(s) = G
(

G2(s)
)

= q + p(q + pq + p2s) = q(1 + p + p2) + p3s.

...

Gn(s) = q(1 + p + p2 + . . .+ pn−1) + pns.

Thus time to extinction, T , satisfies

P(T = n) = Gn(0)−Gn−1(0)

= q(1 + p+ p2 + . . .+ pn−1)− q(1 + p+ p2 + . . .+ pn−2)

= qpn−1 for n = 1, 2, . . .

Thus

T − 1 ∼ Geometric(q).

It follows that E(T − 1) = p
q , so

E(T ) = 1 +
p

q
=

1− p+ p

q
=

1

q
.

Note: The expected time to extinction, E(T ), is:

• finite if µ < 1;

• infinite if µ = 1 (despite extinction being definite), ifσ2 is finite;

• infinite if µ > 1 (because with positive probability, extinction never
happens).

(Results not proved here.)
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7.4 Case Study: Geometric Branching Processes

Recall that Gn(s) = E(sZn) = G
(

G
(

G
(

. . .G
︸ ︷︷ ︸

n times

(s) . . .
)))

.

In general, it is not possible to find a closed-form expression for Gn(s). We
achieved a closed-form Gn(s) in the Binary Splitting example (page 144), but
binary splitting only allows family size Y to be 0 or 1, which is a very restrictive

model.

The only non-trivial family size distribution that allows us to find a closed-form
expression for Gn(s) is the Geometric distribution.

When family size Y ∼ Geometric(p), we can do the following:

• Derive a closed-form expression for Gn(s), the PGF of Zn.

• Find the probability distribution of the exact time of extinction, T :

not just the probability that extinction will occur at some unspecified time
(γ).

• Find the full probability distribution of Zn: probabilities P(Zn = 0),

P(Zn = 1), P(Zn = 2), . . . .

With Y ∼ Geometric(p), we can therefore calculate just about every quantity
we might be interested in for the branching process.

1. Closed form expression for Gn(s)

Theorem 7.4: Let {Z0 = 1, Z1, Z2, . . .} be a branching process with family size
distribution Y ∼ Geometric(p). The PGF of Zn is given by:

Gn(s) = E
(
sZn

)
=







n− (n− 1)s

n+ 1− ns
if p = q = 0.5,

(µn − 1)− µ(µn−1 − 1)s

(µn+1 − 1)− µ(µn − 1)s
if p 6= q, where µ = q

p .



147

Proof (sketch):

The proof for both p = q and p 6= q proceed by mathematical induction. We
will give a sketch of the proof when p = q = 0.5. The proof for p 6= q works in
the same way but is trickier.

Consider p = q = 1
2
. Then

G(s) =
p

1− qs
=

1
2

1− s
2

=
1

2− s
.

Using the Branching Process Recursion Formula (Chapter 6),

G2(s) = G
(

G(s)
)

=
1

2−G(s)
=

1

2− 1
2−s

=
2− s

2(2− s)− 1
=

2− s

3− 2s
.

The inductive hypothesis is that Gn(s) =
n− (n− 1)s

n+ 1− ns
, and it holds for n = 1

and n = 2. Suppose it holds for n. Then

Gn+1(s) = Gn

(

G(s)
)

=
n− (n− 1)G(s)

n+ 1− nG(s)
=

n− (n− 1)
(

1
2−s

)

n+ 1− n
(

1
2−s

)

=
(2− s)n− (n− 1)

(2− s)(n+ 1)− n

=
n+ 1− ns

n+ 2− (n+ 1)s
.

Therefore, if the hypothesis holds for n, it also holds for n + 1. Thus the
hypothesis is proved for all n. �

2. Exact time of extinction, T

Let Y ∼ Geometric(p), and let T be the exact generation of extinction.

From Section 7.3,

P(T = n) = P(Zn = 0)− P(Zn−1 = 0) = Gn(0)−Gn−1(0) .

By using the closed-form expressions overleaf forGn(0) andGn−1(0), we can find
P(T = n) for any n.
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3. Whole distribution of Zn

From Chapter 4, P(Zn = r) =
1

r!
G(r)

n (0).

Now our closed-form expression for Gn(s) has the same format regardless of
whether µ = 1 (p = 0.5), or µ 6= 1 (p 6= 0.5):

Gn(s) =
A− Bs

C −Ds
.

(For example, when µ = 1, we have A = D = n, B = n− 1, C = n+ 1.) Thus:

P(Zn = 0) = Gn(0) =
A

C

G′
n(s) =

(C −Ds)(−B) + (A−Bs)D

(C −Ds)2
=

AD −BC

(C −Ds)2

⇒ P(Zn = 1) =
1

1!
G′

n(0) =
AD − BC

C2

G′′
n(s) =

(−2)(−D)(AD−BC)

(C −Ds)3
=

2D(AD −BC)

(C −Ds)3

⇒ P(Zn = 2) =
1

2!
G′′

n(0) =

(
AD − BC

CD

)(
D

C

)2

...

⇒ P(Zn = r) =
1

r!
G(r)

n (0) =

(
AD − BC

CD

)(
D

C

)r

for r = 1, 2, . . .

(Exercise)

This is very simple and powerful: we can substitute the values of A,B, C, and

D to find P(Zn = r) or P(Zn ≤ r) for any r and n.

Note: A Java applet that simulates branching processes can be found at:
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/

probability_book/bookapplets/chapter10/Branch/Branch.html


