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Chapter 8: Markov Chains

il oy mastors wWikere Yark awie, 1Al winaro Youye beem. ..

8.1 Introduction

So far, we have examined several stochastic processes using
transition diagrams and First-Step Analysis.

The processes can be written as { Xy, X1, Xo, ...},

where X, is the state at time.

A.A Markov

On the transition diagram, X; corresponds to 1856-1922
which box we are in at step

In the Gambler’s Ruin (Section 2.7), X; is the amount of money the gambler
possesses after toss t. In the model for gene spread (Section 3.7), X; is the
number of animals possessing the harmful allele A in generation ¢.

The processes that we have looked at via the transition diagram have a crucial

roperty in common:
property X1 depends only oiX;.

It does not depend upon Xy, Xq,..., X; 1.

Processes like this are called Markov Chains.

Example: Random Walk (see Chapter 4)

none of these steps matter for time t4‘|1 v 7D time t+]

PO

# x
Fe ¥ s

In a Markov chain, the
future depends only
upon the present:

NOT upon the past.
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Meet... e Markov fleas!

29
!I Glee- ‘Purpose-

flea  Forget-flea flea @[[ flea

The text-book image
of a Markov chain has 1
a flea hopping about at = | 3
random on the vertices =

of the transition diagram,
according to the probabilities shown.

The transition diagram above shows a system with 7 possible states:
State spacé = {1,2,3,4,5,6,7}.

Questions of interest

e Starting from state 1, what is the probability of ever reaching state 77

e Starting from state 2, what is the expected time taken to reach state 47

e Starting from state 2, what is the long-run proportion of time spent in
state 37

e Starting from state 1, what is the probability of being in state 2 at time
t? Does the probability converge as t — oo, and if so, to what?

We have been answering questions like the first two using first-step analysis
since the start of STATS 325. In this chapter we develop a unified approach
to all these questions using the matrix of transition probabilities, called the
transition matrix.
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8.2 Definitions

The Markov chain is the process Xg, X1, Xo, .. ..

Definition: The state of a Markov chain at time ¢ is the value ofX;.

For example, if X; = 6, we say the process Is in stateat timet.

Definition: The state space of a Markov chain, S, is the set of values that each
X; can take. For example, S = {1,2,3,4,5,6,7}.

Let S have size N (possibly infinite).

Definition: A trajectory of a Markov chain is a particular set of values for
X0, X1, Xo, . . ..

For example, if Xy =1, X; = 5, and Xy = 6, then the trajectory up to time
t=2is1,5,6.

More generally, if we refer to the trajectory sg, s1, o, S3, ..., we mean that
Xo = S0, X1 = 81, Xo = 59, X3 =53, ...

‘Trajectory’ is just a word meaning ‘path’.

Markov Property

The basic property of a Markov chain is that only the most recent point in the
trajectory dfects what happens next.

This is called the Markov Property.
It means that X, depends upoi;, but it does not depend upofy_, ..., X1, Xo.
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We formulate the Markov Property in mathematical notation as follows:

P(Xi1=5|Xe =56, X1 =501,..., X0 =50) = P(Xy11 =5|X; =5,

forall t =1,2,3,... and for all states sg, s1,..., s, s.
Explanation:

P(XtJrl =S ‘ X =8¢, Xi1 =51, s =
/]\ A 7

distribution 0 e
of X1 depends 0
onX, but whatever happened before titne

doesn’t matter.

Definition: Let {Xo, X1, Xo, ...} be a sequence of discrete random variables. Then
{Xo, X1, Xo,...} is a Markov chain if it satisfies the Markov property:

]P(Xtﬂ :S‘Xt:Sta"wXO:SO) = ]P(Xtﬂ :S|Xt:St)7

forallt =1,2,3,... and for all states,, s, ..., s, s.

8.3 The Transition Matrix

We have seen many examples of transition diagrams to describe Markov
chains. The transition diagram is so-called because it shows the transitions
between different states.

0.8

= 0.6 —

Hot Cold

We can also summarize the probabilities X, { Hot < 0.2 0.8 )
in a matrix: Cold 06 04
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The matrix describing the Markov chain is called the transition matrix.
It is the most important tool for analysing Markov chains.

Xt

7\

Transition Matrix

7 N

~— list all states

list insert ~——rows add to 1
X all probabilities  rows add fo 1
states Dij

The transition matrix is usually given the symbol P = (p;;).

In the transition matrix P:

e the ROWS represent NOWbr FROM (X;);
e the COLUMNS represent NEXT, or TOX{,1);

e entry (i, j) Is the CONDITIONAL probability that NEXT= j, given that
NOW = i: the probability of going FROM stateTO state;.

pij =P( X1 =71 Xy =1).

Notes: 1. The transition matrix P must list all possible states in the state space S.

2. P is a square matriz (N x N), because X;,1 and X; both take values in the
same state space S (of size V).

3. The rows of P should each sumto 1:

N

N N
sz'j = Z]P(Xtﬂ =Jj|Xi=1i) = Z]P){Xt:i}(XtJrl =Jj)=1
j=1

J=1 J=1

This simply states that X; .1 must take one of the listed values.

4. The columns of P do not in general sum to 1.
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Definition: Let {Xg, X1, Xo,...} be a Markov chain with state space S, where S
has size N (possibly infinite). The transition probabilities of the Markov
chain are

pij=P(Xp1=j| Xy =4) fori,jes, t=0,1,2,...

Definition: The transition matrix of the Markov chain is P = (p;;).

8.4 Example: setting up the transition matrix

We can create a transition matrix for any of the transition diagrams we have
seen in problems throughout the course. For example, check the matrix below.

q
Example: Tennis game at Deuce.
p VENUS P VENUS
722 ™| AHEAD (A) = WINS (W)

| DEUCE (D)]
VENUS VENUS
R BEHIND (B) g ™ LOSES (L)
D A B W L
D /0 p q¢ 0 0 P
Al ¢ o 0o p 0
Bl p o o 0o g
W 0 0 0 1 0
L 0 0 0 0 1
8.5 Matrix Revision @ col |
Notation rowi [-----. a'”
Let A be an N x N matrix.
We write A = (a;;), N by — N

i.e. A comprises elements a;;.

The (7, ) element of A is written both as a;; and (A);;:
e.g. for matrix A% we might write (A42);;.
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Matrix multiplication /\

Let A = (aij) and B = (blj) °

be N x N matrices.
N

The product matrix is A x B = AB, with elements (AB);; = Z airby;.
k=1

Summation notation for a matrix squared

Let A be an N x N matrix. Then

(A% = D (A)i(A)rj = ) airax;.
k=1 k=1

Pre-multiplication of a matrix by a vector

™
Let A be an N x N matrix, and let 7t be an N x 1 column vector: w =

N
We can pre-multiply A by 7”7 to get a 1 x N row vector,
wlA= ((w"A),..., (7" A)y), with elements

N
(WTA)j = Z UNE
1=1

8.6 The t-step transition probabilities

Let { Xy, X1, Xo, ...} be a Markov chain with state space S = {1,2,..., N}.
Recall that the elements of the transition matrix P are defined as:

(P)ij = Pij = ]P(Xl :j‘XO = i) - ]P)(Xn+1 =j|Xn = i) for any n.

pi; is the probability of making a transition FROM state ¢ TO state j in a
SINGLE step.

Question: what is the probability of making a transition from state i to state j
over two steps?  l.e. what isSP(X, = j| Xo=1)?
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We are seeking P(X, = j| Xy =4). Use the Partition Theorem:

P(Xo=j|Xo=1) = P;(Xy=j) (notationofCh 2)

N

= ) Pi(Xy=j| X, =k)Pi(X; =k) (Partition Thm)
k=1
N

= ) P(Xo=j|Xi =k Xo=i)P(X; =k|Xo=1i)
k=1

N
— ZP(X2 =j| X1 =kP(X; =k| Xy =1)
k=1
(Markov Property)

N
= Z pripi  (by definitions)
k=1

N
= ) pup;  (rearranging)
k=1

= (PY);. (see Matrix Revision)

The two-step transition probabilities are therefore given by the matrixP?:

P(Xo=j|Xo=1) =P(Xys2=7| X, =1) = (P?), foranyn.

ij

3-step transitions: We can find P(X3 = j | Xy = i) similarly, but conditioning on
the state at time 2:

N
P(Xs=j|Xo=14) = Y P(Xy=j|Xy=kP(Xy=k|Xo=1)
k=1

N
- Zp’fﬂ' (PQ)ik
k=1

= (P%);;.
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The three-step transition probabilities are therefore given by the matrix P3:

P(X;=7|Xo=1) =P(Xpi3=4| X, =14) = (P?)..

ij for any n.

General case: t-step transitions

The above working extends to show that the ¢-step transition probabilities are
given by the matrix P! for any ¢:

P(X,=j|Xo=1) =P(Xpu=j|Xn=1)= (P, foranyn.

ij

We have proved the following Theorem.

Theorem 8.6: Let { Xy, X1, Xo,...} be a Markov chain with N x N transition
matrix P. Then the ¢-step transition probabilities are given by the matrix P’
That is,

P(X;=j|Xo=1) = (Pt)ij.

It also follows that
P(Xp =7 | Xn =1) = (P") ; for any n. O

)

8.7 Distribution of X;

Let { Xy, X1, Xo, ...} be a Markov chain with state space S = {1,2,..., N}.
Now each X; is a random variable, so it has a probability distribution.
We can write the probability distribution of X; as an N x 1 vector.

For example, consider X,. Let 7t be an N x 1 vector denoting the probability
distribution of Xj:

sl P(XO = 1)
79 P(XO = 2)

TN P(XO = N)
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In the flea model, this corresponds to the flea choosing at random which vertex
it starts d@f from at time 0, such that

P(flea chooses vertexto start = ;.

Notation: we will write Xy ~ 77 to denote that the row vector of probabilities

is given by the row vector 7.

Probability distribution of X

Use the Partition Rule, conditioning on Xj:

N

P(Xy =) = > P(Xi=j|Xo=i)P(Xo =1)

N
= Y pym by definitions

1=1

N
= Zﬂipij
i=1
~ («'P)

(pre-multiplication by a vector from Section 8.5).

e

This shows that P(X; = j) = (ﬂ'TP)j for all j.
The row vector 7! P is therefore the probability distribution of; :

X()NTFT

X1 ~ ﬂ'TP.

Probability distribution of X,

Using the Partition Rule as before, conditioning again on Xj:

N

P(Xy = j) = Z]P(X2 —j| Xo=1)P(Xo=1) = Z (P?),;m = (x"P?)..
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The row vector ! P? is therefore the probability distribution of Xo:

X() ~ 7TT
X1 ~ Tl'TP
X2 ~ 7TTP2

Xt ~ 7TTPt.

These results are summarized in the following Theorem.

Theorem 8.7: Let {Xj, X7, X,...} be a Markov chain with N x N transition
matrix P. If the probability distribution of Xj is given by the 1 x N row vector

7’ then the probability distribution of X; is given by the 1 x N row vector
7wl P!, That is,
Xo~nl = X,~n'P

Note: The distribution of X is X; ~ w! Pt
The distribution of X, ; is Xy 11 ~ 7! P
Taking one step in the Markov chain corresponds to multiplying by P on the
right.

Note: The t-step transition matrix is P* (Theorem 8.6)
The (¢ + 1)-step transition matrix is P!,
Again, taking one step in the Markov chain corresponds to multiplying by P on
the right.

take 1 step...

..multiply by P
on the right
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8.8 Trajectory Probability

Recall that a trajectory is a sequence
of values for Xy, Xq,..., X,

Because of the Markov Property,
we can find the probability of any
trajectory by multiplying together
the starting probability and all
subsequent single-step probabilities.

Example: Let X ~ (%, 0, i, 0,0,0,0). What is the probability of the trajectory
1,2,3 2, 3,47

P(1,2,3,2,3,4) = P(Xo=1) X pia X pag X P32 X P23 X P34
1

Proof in formal notation using the Markov Property:

Let Xy ~ 1. We wish to find the probability of the trajectory sg, s1, S, . . ., 5¢.
P(Xy = so, X1 = s1,..., X = 8¢
= P(Xy =51 Xp1=5t1,...,Xo=150) X P(X3_1 = 5¢-1,..., X0 =50)
= P(X; =51 Xp1=511) x P(Xyo1 =81-1,...,Xo=80) (Markov Property)
= Psy.sP(Xio1 =501 | Xeo = 8129, ..., Xo = 50) X P(X4—2 = s4-9,..., X0 = 50)

= pstflvst X p5t72;5t71 XX p50751 X ]P)(XO = SO)

= pstflvst X p5t72;5t71 XX p50751 X 7-‘-50'
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8.9 Worked Example: distribution of X; and trajectory probabilities

Purpose-flea zooms around

the vertices of the transition 0.9 2
diagram opposite. Let X; be — % ' 0.6
Purpose-flea’s state at time ¢ . 0.4 &
(t=0,1,...).
1 | 3
(0

0.6 0.2

(a) Find the transition matrix, P.

0.6 0.2 0.2
Answer:P=1| 04 0 0.6
0 0.8 0.2

0.6 0.2 0.2 - - 0.2

P(X,=3|Xg=1)= (P, = S .- 06
0.2

= 06x02+02x06+0.2x0.2
= (.28.

Note: we only need one element of the matP so don’t lose exam time by
finding the whole matrix.

(c) Suppose that Purpose-flea is equally likely to start on any vertex at time 0.
Find the probability distribution of Xj.

From this info, the distribution oK, isw" = (3,3,3). We needX; ~ =’ P.

11 0.6 0.2 0.2

(3 3 3)
P = 04 0 0.6
0 08 0.2

L=
I
—
Wl
Wl
Wl
~—

ThusX; ~ (3, 3,3) and thereforeX, is also equally likely to be 1, 2, or 3.
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(d) Suppose that Purpose-flea begins at vertex 1 at time 0. Find the probability
distribution of Xs.
The distribution ofX, is nown™ = (1,0,0). We needX, ~ w’ P2,

(1 0 0) 0.6 0.2 0.2 0.6 0.2 0.2
P = 04 0 0.6 0.4 0 0.6
0 0.8 0.2 0 08 0.2

= 04 0 0.6

0 0.8 0.2

— (044 0.28 0.28).

Thus P(X,=1)=0.44, P(X, =2) =0.28, P(X, = 3) = 0.28.

Note that it is quickest to multiply the vector by the matrisfi we don’t need to
computeP? in entirety.

(e) Suppose that Purpose-flea is equally likely to start on any vertex at time 0.
Find the probability of obtaining the trajectory (3, 2, 1, 1, 3).
]P(?), 2, 1, 1, 3) = P(Xo = 3) X P32 X P21 X P11 X P13 (SeCtion 88)
= 3 x0.8x0.4x0.6x0.2
= 0.0128.
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8.10 Class Structure

The state space of a Markov chain can be partitioned into a set of non-overlapping
communicating classes.

States ¢« and j are in the same communicating class if there is some way of
getting from state ¢ to state j, AND there is some way of getting from state j
to state ¢. It needn’t be possible to get between ¢ and j in a single step, but it
must be possible over some number of steps to travel between them both ways.

We write 7 < J.

Definition: Consider a Markov chain with state space S and transition matrix P,
and consider states ¢, j € S. Then state ¢ communicates with state 3 if:

1. there exists some ¢ such that (P');; > 0, AND
2. there exists some u such that (P*);; > 0.

Mathematically, it is easy to show that the communicating relation <> is an
equivalence relation, which means that it partitions the sample space S into
non-overlapping equivalence classes.

Definition: States i and j are in the same communicating class if i <> j: i.e. if
each state is accessible from the other.

Every state is a member of exactly one communicating class.

Example: Find the communicating /@\

classes associated with the

transition diagram shown. (/‘ \ T @ @
Solution: @
{1,2,3}, {4,5}.

State 2 leads to state 4, but state 4 does not lead back t@2stswethey are in
different communicating classes.
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Definition: A communicating class of states is closed if it is not possible to leave
that class.

That is, the communicating class C' is closed if p;; = 0 whenever ¢« € C and
jé¢C.
Example: In the transition diagram above:
e Class {1,2,3} is notclosed: it is possible to escape to cl§s$s>}.

e Class {4,5} is closed: it is not possible to escape.

Definition: A state i is said to be absorbing; if the sef{i} is a closed class.

9

Definition: A Markov chain or transition matrix P is said to be irreducible if
i «» j foralli,j € S. Thatis, the chain is irreducible if the state sp&ce a
single communicating class.

8.11 Hitting Probabilities

We have been calculating hitting
probabilities for Markov chains
since Chapter 2, using First-Step
Analysis. The hitting probability
describes the probability that the
Markov chain will ever reach some
state or set of states.

In this section we show how hitting
probabilities can be written in a
single vector. We also see a general
formula for calculating the hitting
probabilities. In general it is easier

to continue using our own common
sense, but occasionally the formula
becomes more necessary.
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Vector of hitting probabilities

Let A be some subset of the state space S. (A need not be a communicating
class: it can be any subset required, including the subset consisting of a single
state: e.g. A ={4}.)

The hitting probability from state i to set A is the probability of ever reach-
ing the set A, starting from initial state . We write this probability as h;4.
Thus

hia =P(X; € A for somet > 0| Xy = 1i).

Example: Let set A= {1,3} as shown. .
. ey . ,',I s AN . 1
The hitting probability for set A is: k@\T @H@

e 1 starting from states 1 or 3 @ "éet A
(We are starting in set A, so we hit it immediately); -

e O starting from states 4 or 5
(The set {4,5} is a closed class, so we can never escape out to set A);

e 0.3 starting from state 2
(We could hit A at the first step (probability 0.3), but otherwise we move to
state 4 and get stuck in the closed class {4,5} (probability 0.7).)

We can summarize all the information from the example above in a vector of

hitting probabilities: hia 1
haa 0.3

ha=| hsa [=] 1

haa 0

his 4 0

Note: When A is a closed class, the hitting probability h;4 is called the absorption
probability.
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In general, if there are N possible states, the vector of hitting probabilities is

hia P(hit A starting from state)1

h hoa P(hit A starting from state 2
A — . — .

ha P(hit A starting from statéV)

Example: finding the hitting probability vector using First-Step Analysis

Suppose {X; : t > 0} has the following transition diagram:

1/2 1/2

SONONONOS
1/2 1/2

Find the vector of hitting probabilities for state 4.

Solution:

Leth;y = P(hit state 4, starting from state Clearly,

hiy = 0
hy = 1

Using first-step analysis, we also have:
hos = 3has+1 %0
hay = % + %h24
Solving,
has =343 (3hss) = hau=32  Soalso,hy = thy = 1.
So the vector of hitting probabillities is

h’A: (07 %7 %7 1)
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Formula for hitting probabilities

In the previous example, we used our common sense to state that hyy = 0.
While this is easy for a human brain, it is harder to explain a general rule that
would describe this ‘common sense’ mathematically, or that could be used to
write computer code that will work for all problems.

Although it is usually best to continue to use common sense when solving
problems, this section provides a general formula that will always work to find
a vector of hitting probabilities h 4.

Theorem 8.11: The vector of hitting probabilities hy = (h;sa : @ € 5) is the
minimal non-negative solution to the following equations:

1 for 1€ A,
hin =4 N pyhja for Q¢ A.

jes

The ‘minimal non-negative solution” means that:

1. the values {h;4} collectively satisfy the equations above;

2. each value h;4 is > 0 (non-negative);

3. given any other non-negative solution to the equations above, say {g;4}
where g;4 > 0 for all 4, then h;4 < g;4 for all i (minimal solution).

Example: How would this formula be used to substitute for ‘common sense’ in

the previous example? 12 1/2
The equations give: 1C(1) 9‘9 (41
1 if i=4, 12 1/2
jes
Thus, h = 1

hiy = hyy unspecified! Could be anything!
hoy = %h14+ %h34
hss = ghos+ 5has = Shoa + 3
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Becauseéh, could be anything, we have to use the minimal non-negatiiteeya
which ishy, = 0.
(Need to check, = 0 does not forceé,;, < 0 for any other: OK.)

The other equations can then be solved to give the same aawbefore. [

Proof of Theorem 8.11 (non-examinable):

Consider the equations h;jy = { ! for @ €4, (%)
ZjESpijth for 1 ¢ A.
We need to show that:
(i) the hitting probabilities {h;4} collectively satisfy the equations (%);

(ii) if {gia} is any other non-negative solution to (x), then the hitting proba-
bilities {h;4} satisfy h;4 < g;4 for all ¢ (minimal solution).

Proof of (i): Clearly, h;4 = 1 if i € A (as the chain hits A immediately).

Suppose that i ¢ A. Then
hia = P(X; € A for somet > 1|X,=1)

= Z]P’(Xt € Aforsomet>1|X; =7)P(X; =7]|Xy)=1)
jes
(Partition Rule)
= Z hjapij (by definitions).
jes

Thus the hitting probabilities {h;4} must satisfy the equations (x).

Proof of (ii): Let hg = P(hit A at or before time t| Xy = ).

We use mathematical induction to show that hg < g;4 for all t, and therefore
hia = limy_, hl(-iz must also be < g;4.
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1 it e A,
Time ¢ = O: hggl) = o
0 if ¢ A

_ _ . gia=1 if i € A,
But because g¢;4 is non-negative and satisfies (%), ,
gia > 0 for all 7.

So gia > h\") for all i.

The inductive hypothesis is true for time ¢t = 0.

Time ¢: Suppose the inductive hypothesis holds for time ¢, i.e.

Consid h;?l < gja forall j.
onsider

R = P(hit A by time ¢ + 1] Xo = 4)

= ) P(hit A by time ¢+ 1| X; = j)P(X; = j | Xy = i)
jes
(Partition Rule)
= Z hgtf)l Dij by definitions

jes

IA

Z 9 A Dij by inductive hypothesis
jes

= gia  because {gia} satisfies (%).

Thus hgi;rl) < gia for all 7, so the inductive hypothesis is proved.

By the Continuity Theorem (Chapter 2), h;j4 = lim; hg.

So hia < g;4 as required. ]
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8.12 Expected hitting times

In the previous section we found
the probability of hitting set A,
starting at state ¢. Now we study
how long it takes to get from ¢
to A. As before, it is best to solve
problems using first-step analysis

and common sense. However, a
general formula is also available.

Definition: Let A be a subset of the state space S. The hitting time of A is the
random variable T4, where

Ty=min{t >0: X, € A}.
T4 is the time taken before hitting set A for the first time.

The hitting time T4 can take values 0,1, 2, ..., andcc.
If the chain never hits set A, then Ty = oc.

Note: The hitting time is also called the reaching time. If A is a closed class, it
is also called the absorption time.

Definition: The mean hitting time for A, starting from state 1, is

m;A — E(TAlXO = Z)

Note: 1If there is any possibility that the chain never reaches A, starting from ¢,
.e. if the hitting probabilityh;y < 1, then E(T | Xy = i) = oo.

Calculating the mean hitting times

Theorem 8.12: The vector of expected hitting times my = (m;4 : i € 5) is the
minimal non-negative solution to the following equations:

0 for ie A,

miA = - Zp,-jmjA for ¢ A.
JEA
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Proof (sketch):

(%)

Consider the equations m;4 =

0 for 1€ A,
{ L+ > ieapiymja for i ¢ A
We need to show that:
(i) the mean hitting times {m;4} collectively satisfy the equations (x);
(ii) if {u;4} is any other non-negative solution to (%), then the mean hitting

times {m;a} satisfy m;a < u;a for all ¢ (minimal solution).

We will prove point (i) only. A proof of (ii) can be found online at:
http://www.statslab.cam.ac.uk/~james/Markov/ , Section 1.3.

Proof of (i): Clearly, m;s = 0if i € A (as the chain hits A immediately).
Suppose that i ¢ A. Then

m;a =— E(TA ‘ X() = Z)

— 14 STR(T | X0 = j)P(X) = | Xo = i)
jes
(conditional expectation: take 1 step to get to state j
at time 1, then find E(7) from there)

= 1+ Z M A Dij (by definitions)
jes

= 1+ZpijmjA, because m;4 = 0 for j € A.
j¢A

Thus the mean hitting times {m;4} must satisfy the equations (x).

Example: Let {X; : t > 0} have the same transition diagram as before:

/2 1)2

1
Starting from state 2, find the 1C te Ql

expected time to absorption. /2 1)2
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Solution:

Starting from staté = 2, we wish to find the expected time to reach the set
A ={1,4} (the set of absorbing states).

Thus we are looking foin; 4 = ms 4.

0 if ie{l,4},
JjgA
/2 1/2
hus, @ @ ® o
mia = 0 (becausa € A) 2 12

mya = 0 (becausd € A)

1 1
mea = 1+ 35myia+ 5msa
_ 1
= mea = l+35m3a
— 141 1
mga = L1+ 3maoa + 5M4a
= 1+1im
— 511024

= 143 (14 $msa)

3 3

= ngA = )

= m3q = 2.
Thus,

mMoyg = 1+§m314:2

The expected time to absorption is theref@(&,) = 2 steps.
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moves to one of the other two vertices at random. What is -
the expected time taken for Glee-flea to get from vertex 1

Example: Glee-flea hops around on a triangle. At each step he %
to vertex 27 =

Solution:

transition matrix, P =

= o= O
o= O N
O NI N

We wish to findms.

0 if i=2,
Now mjs =14 14 Zpijmjg if i%#2.
j#2
Thus
may = 0
mis = 1+ %mgg + %m32 = 1+ %m32‘
mgs = 1+ %m22 + %mu
= 1+ %mm
= 143 (14 3ms)
= mz = 2.

Thus mys = 1+ tmg, = 2 steps.



