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Chapter 8: Markov Chains
i anly maiicrs Wkare Yars e, 1ol Wikere Yarsue e,

8.1 Introduction

So far, we have examined several stochastic processes using
transition diagrams and First-Step Analysis.

The processes can be written as { X, X1, Xo, ...},

where X, is the SYyate ~F Fme E.

A.A Markov

On the transition diagram, X; corresponds to whicl, box 1856-1922
Wwe e n al’ S "f’

In the Gambler’s Ruin (Section 2.7), X; is the amount of money the gambler
possesses after toss t. In the model for gene spread (Section 3.7), X; is the
number of animals possessing the harmful allele A in generation t.

The processes that we have looked at via the transition diagram have a crucial

property in common: X £ A r;.u\_a{ s O/ij on Xt
It does not depend upon Xy, Xq,..., X; 1.

Processes like this are called Marleov Chans,

Example: Random Walk (see Chapter 4) SHaboh s
none of these steps matter for time t41 v ’? time t+] &Lﬁfiﬂ 4+
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Meet... e Markov fleas!l ¢
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The text-book image

of a Markov chain has 1
a flea hopping about at e 3

random on the vertices =

of the transition diagram,
according to the probabilities shown.

3
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The transition diagram above shows a system with 7 possible states: = L oxee
Stnbe £]oo\L£ v S-= gh 2,3, ¢, s £, ?I‘
AoA'x (-9"{%\!42 wnthy S‘»Mfl\-( SF&LC@_ Whady S

Questions of interest o _ él all patls = ' %12:'2.2 REL ..y "j

CLL &5 { e Starting from state 1, what is the probability of ever reaching state 77
£SA

cLA

e Starting from state 2, what is the expected time taken to reach state 47

e Starting from state 2, what is the long-run proportion of time spent in
state 37

CA~% e Starting from state 1, what is the probability of being in state 2 at time

t? Does the probability converge as ¢ — oo, and if so, to what? /(4

=

- We have been answering questions like the first two using first-step analysis
" since the start of STATS 325. In this chapter we develop a unified approach
to all these questions using the matrix of transition probabilities, called the

Yeans Fon matAx .
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8.2 Definitions

The Markov chain is the process Xo, X, Xy, oon-

AT \
vlhidy Lo e et in
Definition: The state of a Markov chain at time ¢ is the value 3'6? Xt: .

For example, if X; = 6, we say He procass s 1 Shete b at fime t.

Definition: The state space of a Markov chain, S, is the set of values that each
X; can take. For example, S = {1,2,3,4,5,6,7}.

™ all Loxes
S=%"on fa Axf\\jr‘wg
Let S have size N (possibly infinite).
—

Definition: A trajectory of a Markov chain is & FarJ—'\ cnlar st Vd’ valunes

-E]f_pr XO} x! ) X?._ )
For example, if Xo =1, X7 = 5, and Xy = 6, then the trajectory up to time
t=2is |, 5, (.

More generally, if we refer to the trajectory sy, s1, So, S3, . .., we mean that

Xo =50, X-.:Sl ) X'L‘:Sl > X

“Trajectory’ is just a word meaning PM'L,“ )

3:53J e -

Markov Property

The basic property of a Markov chain is that 0aly Hwe mMast Vecent f)o:;\‘\‘
‘' He i‘rﬁ;le_cl-oij w&ub Ll L\c»]ofm Lt

This is called the Markoy Pro ,
It means that XH—'. i(.ﬂ_‘avuLS L«‘:of\ Xb) Lt not Vkomm. Xt-u , )((:_?'J "')Xo‘
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We formulate the Markov Property in mathematical notation as follows:

P(Xt—i—l =S | @;}Xt—l :S)'<\X0: So) = ]P’(Xt+1 =S | Xi = 3t>7

forall t =1,2,3,... and for all states sg, s1,..., s, s.
Explanation:
]P)(Xt+1 =S ‘
/I\
ALS*‘(‘%LI«HW\ T
0&— ey - A&PMAS T

AXeo, g L\o\ A
wpon Ry b whatevy happene J
me £ Aoesa'y Maﬂ‘ef L%J

(aQSL.MQ We Ao J/\nu( Ml |/\o£p

—> Definition: Let {Xo, X1, Xo, ...} be a sequence of d1§crete random variables. Then
{Xo, X1, Xo, ...} is a Markov chain if W+ S&{"S’f‘&—‘ fle Marlov Pro

Bt s | X ars) = Pl e
6&>r ﬂ,(\ %:I}'ZJ mre s “’\‘{ qu \S}"V{"QS Sa JSU---JSt,S.

8.3 The Transition Matrix

We have seen many examples of transition diagrams to describe Markov
chains. The transition diagram is so-called because it shows the transitions

between different states. on‘au = | fransibon .
To + Xet
ot )

We can also summarize the probabilities H o4 i e
: Ince o Q. . Sewap L
in a matrix: Feopm s At Het 2 08 SP"‘L":H l_

)(t co\d 0-6 0 ¢ Xe=to

AN

A~

o lomng Ao;:"r cwmtbo 4
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The matrix describing the Markov chain is called the Jm\,\_c{f—}gn pmatAiX .
It is the most important tool for analysing Markov chains.

X qa .
Transition Matrix t+1 "o

A —
~

N

~— list all states

list insert ~—rows add to 1
f{ﬁ"l Xi all probabilities — rows add to 1
— states Dij

The transition matrix is usually given the symbol ? = ( P)
‘)

In the transition matrix P:
o Hew ROWS represant NOW , or From ()(k)
o Ho CoLumpS repriseat NEXT, or 70 (X, ).

o {/\l-:) (1’:]) W He ConbdiTionAL PmLml,',[:tj et NEXT :;) )
GIVEN Hhakr NOW <, te. M P;\oba\l,',['\l:j Da, jot\j From
stobe v To shke § -

[PL;, = ]F(FQOM ¢ To J\ = ﬂ)( Xb+f” Xt:l>

1. The transition matrix P must list all possible states in the state space S.

Notes:

2. P is a square matriz (N x N), because X;;1 and X; both take values in the
same state space S (of size V).

3. The rows of P should each Swmt, 1

N N N ATOWS
S pi =Y P(Xe = Xi=i) = 3 Prg_g(Xe = j) = 1.] OUT
j=1 j=1 -1 =1 ) Y Shakt
mmsmugfﬁu iXtTl—i' Swv\h i
This simply states that X; .1 must take one of the listed values.

4. The columns of P do not in general sum to 1.
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Definition: Let {Xy, X1, Xo,...} be a Markov chain with state space S, where S
has size N (possibly infinite). The transition probabilities of the Markov

chain are .
101\.} = F(Xu.:j ]Xe::’> 'Ufnr LjeS
ok for £20,0,2, -
Definition: The transition matrix of the Markov chain is P = ( p.. )
N

8.4 Example: setting up the transition matrix

We can create a transition matrix for any of the transition diagrams we have
seen in problems throughout the course. For example, check the matrix below.

q
l
Example: Tennis game at Deuce. /\ Q
P VENUS . |\ L. VENUS
e ™| AHEAD (A “WINS (W)

| DEUCE (D)]
VENUS VENUS
D A B W L
| D /o p ¢ 0 0 P Geed

2 @D ¢ 0 0 @0 Exutise ,

B p 0 0 0 g rite Aown whek s P“.\')

wl o o o (D 0 T (e Qene Seread Mod A

L\o o o o (] (Voter Process) 5n £33
8.5 Matrix Revision [) , -, . @ col
Notation rowi l-----. a.”

Let A be an N x N matrix.

We write A = (a;;), N by — - N
i.e. A comprises elements a;;.

The (7, ) element of A is written both as a;; and (A);;:
e.g. for matrix A% we might write (A42);;.
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Matrix multiplication & /\

Let A= (aij) and B = (blj) °
be N x N matrices.

N
The product matrix is A x B = AB, with elements (AB);; = Z by

k=1

Summation notation for a matrix squared

Let A be an N x N matrix. Then

(A% = D (A(A)rj = D airax;.
k=1 k=1

Pre-multiplication of a matrix by a vector

™
Let A be an N x N matrix, and let 7t be an N x 1 column vector: w =
TN
We can pre-multiply A by 7”7 to get a 1 x N row vector,
mlA= ((w"A),..., (7" A)y), with elements furk aF RHS
N & a~A :70\« nmo{ f» (2co N
TAY. — (i - —L=
A ;m”' Hes a0 M (#s
8.6 The t—step)transition probabilities Stk &F Xo = 3
~—

Llat’s e proy, Het Xjp3 = & 7
Let { Xy, X1, Xo, ...} be a Markov chain with state space S = {1,2,..., N}.

Recall that the elements of the transition matrix P are defined as:

(P)ij = Pij = ]P(Xl :j‘XO = i) - ]P)(Xn+1 =j|Xn = i) for any n.

pi; is the probability of making a transition FROM state ¢« TO state j in a
SINGLE step.

Question: what is the probability of making a transition from state i to state j
over two steps?
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1'_5_)6
We are seeking P(Xy = 7| Xy =1). Use the PcJ'Jr‘lf'-O/\ Tleorem:
ML kal r
iF(Xl:J l Xo: > = in (Xz:\)) KOL'@awk\j) E\Oﬁj‘\a/fw
(f\mM L2
N
- Z TP» (XL:J |XI:L{>[EL(X,:14> parbition ove He
k=i ”"75“@541‘3)
N / L X
- Z P (X | X 2k M} P(X =k 1%50) Sm’gi
mLo\’raL@,Uer) i
erleov pro
. 2 Merleow propuriy
= 2 PO | %=k PlX <k X, =)
lo= N A~ N~
" [”S)‘bf ":'/\'J‘\L‘r l..g,;_f‘r ng
) %u Iokd ﬂ'k - g Pil«. Fk\')

pE
- (P )u\, See Matiix Ravisdon. .
The two-step transition probabilities are therefore given by Hae matAx ? :
,/?(K'L:\.)IXOS.[>:TP()<M—?_:J (Xn+o:L> :(? )c\]
V"l“"\ for&\[k 1):, € {L’)N_g M (fpr “u 'HMQJ ",

3-step transitions: We can find P(X3 = j | Xy = i) similarly, but conditioning on
the state at time 2:

N
P(Xs=j|Xo=1) = > P(X5=j|Xy=kP(Xy=k|Xo=1)
o s time /mf,
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The three-step transition probabilities are therefore given by the matrix P3:

| P(Xs=j|Xo=1) =P(Xyy3=7| X, =1i)= (P°).. foranyn.

1]

General case: t-step transitions

The above working extends to show that the ¢-step transition probabilities are
given by the matrix P! for any t¢:

J]’P X =] -) = = = = P*
(=i [Xo=0) = POG i X0 = (PT) ),
| fr oy bgesS, ad hell
We have proved the following Theorem. Note. e ?e) lemedd (:}3 Y.

Theorem 8.6: Let { Xy, X1, Xo,...} be a Markov chain with N x N transition
matrix P. Then the t-step transition probabilities are given by the matrix P’

That is,
PX, =j|Xo=0)= (P,  NOT (gt P
It also follows that to e po bju,
P(X, =7 X,=1) = (Pt)l.j for any n. ] ’d——{-
8.7 Distribution of X; < y S = 2[,,“5 o 0\,‘\‘5\3{‘6\/\/\‘3‘
(22

Let {Xo, X1, Xa,...} be a Markov chain with state space S = {1,2,..., N}.
Now each w variable, so it has a ‘omLaL;[ltj At ) Ludon
We can write the probability distribution of X; as an N\ x| vecfor.
For example, consider/Xj.; Let t be an N x 1 vector denoting the probability
distribution of Xj: = What Lox do Wwe strt in af tin, 0 ?
m P(X5=1)
TT?' ,? ()(o: ?.)
m = - = ,? =
N '3 ( X o73)

%N W(KO:N)
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’& X,

In the flea model,corresponds to tle %{@a Cboaslg af vaadom wWhids
Vobex & Starks J({’& J;/‘OM aF Fiame 05 Sud, ot

P(HL& cliooses VU-’I/L)Q ¢ f‘o Sf’o{%)

Notation: we will write Xo ~ TET to denote that the row vector of probabilities
is given by the row vector w”. X, ~ e

X
Probability distribution of X; ¢ |

Use the Partition Rule, conditioning on XO'

PO=3) = Z P(X=) 1%t PIX

\—"v\_/ \_/\-\_/
P T

11
\__/

= Z (ij "{l(f’TA:HoAS

l\ M2

= (-ﬂ-‘f"P ) PFQMV\H_llo(,c;\‘hg,\ aré,o\ mat A x K{j

J a vedol, e Qockvn §
This shows that 17 (Xl ﬂ (T P) f_pr ~ J |
The row vector 7w’ P is therefore t .o com L,o\L ANz ty AshALubon 0?5- X

Probability distribution of X5

Using the Partition Rule as before, conditioning again on Xj:

N N
P(Xo=j) =) P(Xo=j|Xo=i)P(Xo=i) =) (P°), m=(a"P?,.

1=1 1=1
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v/

The row vector ! P? is therefore the probability distribution of Xb:

XO ~ Tl'T
Xl ~ 7TTP
X2 ~ 7'l'TP2

Xt ~ 7'I'TPt.

These results are summarized in the following Theorem.

‘Theorem 8.7: Let {Xj, X1, Xy,...} be a Markov chain with N x N transition
matrix P. If the probability distribution of Xj is given by the 1 x N row vector

7’ then the probability distribution of X; is given by the 1 x N row vector
wl P!, That is,

e t

£
Note: The distribution of X, is Xt ~ IT P o
The distribution of X1 is Xesy ~ T ?H’
Taking one step in the Markov chain corresponds to Munlt ﬂmrl 373 L’\j metix T
on H—\JL F:O\A\” .
Note: The t-step transition H{atrix is PE ( i SL)
The (¢ + 1)-step transition matrix is T e
Again, taking one step in the Markov chain corresponds to mult:

lying Ly P
on F:OM\" f]\j\j J
take 1 step...

~ ..multiply by P
—P= on the right
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8.8 Trajectory Probability

Recall that a trajectory is a sequence
of values for Xy, X1,..., X}

Because of the Markov Property,
we can find the probability of any
trajectory by multiplying together
the starting probability and all
subsequent single-step probabilities.

Example: Let What is the probability of the trajectory

1,2,3,23,

f(*11)3)1;334'): {P()(o:lj*P * EP * P3 *F *P
V2 23 L LS 3

w S,,

= 23 3
z T3 1+ 33:) + 1 * é

- ( Qirﬂz—tﬁ{’(&ﬂs}‘ﬂh n Shke
o 1. F":Am?(lfl,g_-,.)

Proof in formal notation using the Markov Property:

Let Xy ~ 1. We wish to find the probability of the trajectory sg, s1, s, . . ., 5¢.
&~ 'P(ﬂnﬁ) Where A:%Xt:%?}, B:ixk—lzs&-ﬂ'"‘

P(XOISO,Xlzsl,...,Xt:St) :P(Algsw(ﬁ) "'}Xo:saz
= ]P(Xt = S¢ | Xi1 = 841, }U@o) X IPD(th—l =St 1,---,X0 = 50)
= P(X; =51 Xs1=5:1) xP(Xy_1 =81-1,...,Xog=50) (Markov Property)
T TN T A

— pst_1,8tP(Xt—1 = St |Xt—2 = St_Q,%SO) X ]P)(Xt_Q = St-9,..., XO — 80)

= pSt—hSt X pSt—Q,St—l XL... X psOasl X IP(XO — SO)

= pstflvst X p5t72;5t71 XX p50751 X 7-‘-50'
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EX gcSe

8.9 Worked Example: distribution of X; and trajectory probabilities

Purpose-flea zooms around

the vertices of the transition

diagram opposite. Let X; be %

Purpose-flea’s state at time ¢ o \
(t=0,1,...).

0. 6 0.2

(a) Find the transition matrix, P.

0.6 0.2 0.2
Answer:P=1| 04 0 0.6
0 0.8 0.2
(b) Find (X, =3|%,=1). (P ),

N

N

0.6 0.2 0.2

P(X,=3|Xo=1) = (P2)@ —

= 06x02+02x06+0.2x0.2
= (.28.

Note: we only need one element of the matP so don’t lose exam time by
finding the whole matrix.

(¢) Suppose that Purpose-flea is equally likely to start on any vertex at time 0.
Find the probability distribution of Xj.

From this info, the distribution ok, is©! =
11 0.6 0.2 0.2
(3 3 3)
n'p = 04 0 0.6
0 0.8 0.2

We needX;, ~ w1 P.

w|>—~
w|>—~
C‘OlH

L=
wl»—‘
Wl
Wl
~—

ThusX; ~ (3,3,3) and thereforeX, is also equally likely to be 1, 2, or 3.
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(d) Suppose that Purpose-flea begins at vertex 1 at time 0. Find the probability
distribution of Xs.
The distribution ofX, is nown™ = (1,0,0). We needX, ~ w’ P2,

(1 0 0) 0.6 0.2 0.2 0.6 0.2 0.2
P = 04 0 0.6 0.4 0 0.6
0 0.8 0.2 0 08 0.2

= 04 0 0.6

0 0.8 0.2

— (044 0.28 0.28).

Thus P(X,=1)=0.44, P(X, =2) =0.28, P(X, = 3) = 0.28.

Note that it is quickest to multiply the vector by the matrisfi we don’t need to
computeP? in entirety.

(e) Suppose that Purpose-flea is equally likely to start on any vertex at time 0.
Find the probability of obtaining the trajectory (3, 2, 1, 1, 3).
]P(?), 2, 1, 1, 3) = P(Xo = 3) X P32 X P21 X P11 X P13 (SeCtion 88)
= 3 x0.8x0.4x0.6x0.2
= 0.0128.
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8.10 Class Structure $ =< ?Lgxu P ’C'j rwﬂ]

The state space of a Markov chain can be partitioned into a set of non-overlapping
Coprm an'y “\Hj classSes.

States ¢ and j are in the same communicating class if there is some way of
getting from state ¢ to state j, AND there is some way of getting from state j
to state 7. It needn’t be possible to get between ¢ and j in a single step, but it
must be possible over some number of steps to travel between them both ways.

We write L \J

Definition: Consider a Markov chain with state space S and transition matrix P,
and consider states i, 7 € S. Then state ¢« communicates with state j if:

t =) 1. there exists some ¢ such that (P');; > 0, AND (=0, 2, .- )
) ¢ 2. there exists some u such that (P*); > 0. (w=0,12, - )
(we dor't need =) |
Mathematically, it is easy to show that the communicating relation < is an

equivalence relation, which means that it partitions the sample space S into
non-overlapping equivalence classes.

Definition: States ¢ and j are in the same communicating class if L@\j , e,

T&. eall SFake s acCcess\Lle aiypm the oHer,

Every state is a member of J&K&C'f\lj one u?/v\'- valence clags.

Example: Find the communicating
classes associated with the
transition diagram shown.

Solution: i [ , 2) 3 i nok
closed  Qhive 2 1o Fo Skeke b

(4,53 closeh Lk Shuke ( does mat leed Lade o Shabe )
Qo H’ij NN BN d;fkd“@\l’ CRMn LA ok )

Clesges .

:
J
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Definition: A communicating class of states is closed if i} u not ‘oas_ﬂUL fo
LEAVE Hauk class.  ((le Hotd California ')
That is, the communicating class C' is closed if p;; = 0 whenever ¢ € C and

j¢C.

Example: In the transition diagram above: i
e Class {1,2,3}is NoT Closed: s f’OJSrLke bo ¢ cpe Fo ¢ lass % &, 5?5.

e Class {4,5}is closed ; T+ ¢ not possille Fo escape.

Definition: A state i is said to be absorbing if . <et § (3 s a closed class.

i&@

e

Definition: A Markov chain or transition matrix P is said to be irreducible if
v 6—-)\') -Fr E\B 'f,)\‘] c S. Tuat 55, e clwia iredacible %' He State
Space S s a S:‘@lt OOMMW\AJ(GL}b clags, I/ﬂ”u]*‘iw,l\y "t pears flet

We can Move {w—om ~ny Whoe o W\JULJQ) giw/\ C/ij\-. +ime .
8.11 Hitting Probabilities

We have been calculating hitting
probabilities for Markov chains
since Chapter 2, using First-Step
Analysis. The hitting probability
describes the probability that the
Markov chain will ever reach some
state or set of states.

”Tn this section we show how hitting
Y probabilities can be written in a

single vector. We also see a general
formula for calculating the hitting
probabilities. In general it is easier
to continue using our own common
sense, but occasionally the formula
becomes more necessary.

mn
€4 FP(Vans wiag | stk GPD) ™ 8 —-7@ |
RN l/\'tﬁ\‘:j Vro&.o&.'\\}\b ‘
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Vector of hitting probabilities

Example: Let set A= {1,3} as shown.

Let A be some subset of the state space S. (A need not be a communicating
class: it can be any subset required, including the subset consisting of a single

state: e.g. A ={4}.)

The hitting probability from state i to set A is the probability of ever reach-
ing the set A, starting from initial state i. We write this probability as |, A

Thus
L‘ir‘\ fﬂ)(_xké/\ Hfof' Some £ >0 IXO:£>

Ach d

:\’\j 'l.‘—'_ 0) ig R S“}_N}_

The hitting probability for set A is:

o 1 Shrbi from Shdes 4 or 3

(We are starting in set A, so we hit it immediately);

O - - SJ"»"@S L or S,

(The set {4,5} is a closed class, so we can never escape out to set A);

03 3'}—”1’\\(\\3 a‘wm State 2 .
(We could hit A at the first step (probability 0.3), but otherwise we move to
state 4 and get stuck in the closed class {4,5} (probability 0.7).)

We can summarize all the information from the example above in a Veclor 05—«

\A'.WU FroL AL R es s

I’MA— 1 :)"‘5)\" conveni bt
B I , W Orgen. 5 A
r\{l‘ﬂ - LLA _ 0-3 ('a:j[aa’ \jMJ\_)
34 1 sl (no} hsefel
hea 0 AFAIK o{"r st A

hsa 0 rulfieli eabnny),

Note: When A is a closed class, the hitting prébability h; 4 is called the obSsar ri-laq

p/oLc\Lll}b,
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In general, if there are N possible states, the vector of hitting probabilities is

hi P (Uit A] skt fram siate 1)
N P LAy - - - 2)
— A g = .

o Pwirf) oo N)

Example: finding the hitting probability vector using First-Step Analysis

Suppose {X; : t > 0} has the following transition diagram:

1/2 1/2

@ @ ® o
12 1/2

Find the vector of hitting probabilities for state 4.
Solution: | ¢\ L‘Lb = iP(L\;f' Shbe & , Stark ot Stake ) Ofaf

Clewrly, b, O { S
L
FSA epns: Lhy + 340
hy 2+ th
Solving s Ly, = ‘L*i({"‘w = Lw-’%

L\ (@]
- 17
~h T =
?—/3
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Formula for hitting probabilities /—\

In the previous example, we used our common sense to state that hyy = 0.
While this is easy for a human brain, it is harder to explain a general rule that
would describe this ‘common sense’ mathematically, or that could be used to
write computer code that will work for all problems.

Although it is usually best to continue to use common sense when solving
problems, this section provides a general formula that will always work to find
a vector of hitting probabilities h 4.

Theorem 8.11: The vector of hitting probabilities hy = (h;sa : @ € 5) is the

minimal non-negative solution to the following equations:
A
1 for i€ A,

hiA - Zpijth fOI‘ 7 §é A FSA &?hhh ong

jes

The ‘minimal non-negative solution’ means that:
1. the values {h;4} collectively satisfy the equations above; ( A ,Lcr..\_()
2. each value h;4 is > 0 (non-negative); H«\j e all e Ls\LTI'.Hu)
3. given any other non-negative solution to the equations above, say {g;4}
where g;4 > 0 for all i, then h;4 < g;4 for all i (minimal solution).

\NANANANMNNAANNAA
Example: How would this formula be used to substitute for ‘common sense’ in

the previous example? 12 1/2

The equations give: IC 9‘9 Ql

1 if i=4, /2 1/2
hi4 - Zpijhﬂ if 7é 4.
jes
Thus, ha = 1

hiy = hyy unspecified! Could be anything!
hoy = %h14+ %h34
hss = ghos+ 5has = Shoa + 3
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Becauseh, could be anything, we have to use the minimal non-negatilteeya
which ishy, = 0.
(Need to check, = 0 does not force,;, < 0 for any other: OK.)

The other equations can then be solved to give the same aawbefore. [

Proof of Theorem 8.11 (non-examinable):

Consider th ; " 1 for 7€ A, )
onsider € equations A = . *
ZjeSpijth for ¢ ¢ A.

We need to show that: F‘Sp( - ParkiFon Tom.
(i) the hitting probabilities {h;4} collectively satisfy the equations (%);
(ii) if {gia} is any other non-negative solution to (x), then the hitting proba-

bilities {h;4} satisfy h;4 < g;4 for all i (minimal solution).

Proof of (i): Clearly, h;4 = 1 if i € A (as the chain hits A immediately).

Suppose that i ¢ A. Then

hia = P(X; € A forsomet>1|Xy=1)

FSA

= ) P(X; € Afor some t > 1| Xy = j)P(X; = j | Xo = i) o

jes
(Partition Rule)

— Z hjA pij (by definitions). T
jes

Thus the hitting probabilities {h;4} must satisfy the equations (x).

Proof of (ii): Let hEQ = P(hit A at or before time t| Xy = i).

We use mathematical induction to show that hg < g;4 for all £, and therefore
hia = limy_, o hl(-iz must also be < g;4.
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1 it i€ A,
Time ¢ = O: hggl) = o
0 if ¢ A

_ _ . gia=1 ifi € A,
But because g¢;4 is non-negative and satisfies (%), ,
gia > 0 for all 7.

So gia > h\") for all i.

The inductive hypothesis is true for time ¢t = 0.

Time ¢: Suppose the inductive hypothesis holds for time ¢, i.e.

hY) < gia forall j. ‘
= |ndncRon |

Consider
R = P(hit A by time ¢ + 1] Xo = 4)

= ) P(hit A by time ¢+ 1| X; = j)P(X; = j | Xy = i)
jes
(Partition Rule)
= Z hgtf)l Dij by definitions

jes

IA

Z 9 A Dij by inductive hypothesis
jes

= gia  because {gia} satisfies (%).

Thus hgi;rl) < gia for all 7, so the inductive hypothesis is proved.

By the Continuity Theorem (Chapter 2), h;j4 = lim; hg.

So hia < g;4 as required. ]




-Hi*’(\\r\j’(‘nmg Inclndes Pos;&l,’.l't} T=0: T(f— Yo Skt in “"A, He Fime tabhn
Yoo contly seb A O (no wows need to Lo bransihoned to readn A).
Retun Hime © ¢4 Agd Q3 s Fime tohan fo RETWAN “ftv B

|UW-*Q‘), So Fime 0 1§ NQT ;f\{b»\ol.u\. "_ ‘, e 170
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8.12 Expected hitting times

In the previous section we found
the probability of hitting set A,
starting at state . Now we studyi

how long it takes to get from ¢
to A. As before, it is best to solve
problems using first-step analysis
and common sense. However, a
general formula is also available.

Sihdon You will A.{-—‘.f.;kib read, A so
E(T) is hf‘th&H:j.
Definition: Let A be a subset of the state space S. The hitting time of A is the

random variable T4, where

Ty = min {lceio){,z)_.-ni D G A?S _
Ty is the time taken before hitting set A Jor e st bime (’#E;:’;—‘ t:"—“b"”‘;—‘l
The hitting time T4 can take values O, |, 2 L, 0O ao\\?(,. ﬁ“% )
If the chain never hits set A, then ‘I:,r - 2O
T fe clain Sharks in Seb A, Hay T < 0.
Note: The hitting time is also called the reaching time. If A is a closed class, it
is also called the absocption fime, or Rae to alsorphon.

M
7 . . ..
Definition: The mean hitting time for A, starting from state i, is

Mig = H:_—(T; lXo:L)

Note: 1If there is any possibility that the chain never reaches A, starting from i,
e TJr He L\—.‘l"—]:j‘:roSﬁL:[\\:J ln'm <1 s flea E (_’; |)<o:1> = bo.

Calculating the mean hitting times oA —]';t s dcd»uHUt

(IP(T :bo) = ,-L\IA )

Theorem 8.12: The vector of expected hitting times m 4 = (m;4 : i € 5) is
e minmal NoNn-p G\jh’f';vc $9 Lm}'ion to flee fauou::j !LDLUMJF:MJ
(M FSA ‘ﬁ,"ﬂ '.

O r -Le A (S’}‘Nfl’ \}n A)_(o *_:Me f\“'LL‘/\‘:O
# Sheps)

Min = o P F ) T ek
+ . ' rod
a %ﬁ Mia for T4A

Ickep bo get ot~
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Proof (sketch):

().

Consider the equations m;4 =

0 for 7€ A,

L+ ieapiymja for i ¢ A
We need to show that: /Lo e ( FS/CD

(i) the mean hitting times {m;4} collectively satisfy the equations (x);

(ii) if {u;4} is any other non-negative solution to (%), then the mean hitting
times {m;a} satisfy m;a < u;a for all ¢ (minimal solution).

We will prove point (i) only. A proof of (ii) can be found online at:
http://www. statslab cam.ac.uk/~ 1ames/Markov/ Section 1.3.
) Wses e bice ET J?(T> E) Seen 1n Boaws Q4 (Exem2009 QF)
Proof of (i): Clearly, mis=0ifi € A (as the chain hits A immediately).

Suppose that i ¢ A. Then
m;a =— E(TA ‘ X() = Z)

— 14 STR(T | Xy = j)P(X) = | Xo = i)
jes
(conditional expectation: take 1 step to get to state j
at time 1, then find E(74) from there)

= 1+ Z MjA Pij (by definitions)
jes

= 1+ZpijmjA, because m;4 = 0 for j € A.
j¢A

Thus the mean hitting times {m;4} must satisfy the equations (x).

Example: Let {X; : t > 0} have the same transition diagram as before:

12 1/2

Starting from state 2, find the IC gte Ql

expected time to absorptlon /2 1)2
2 get-o ot aQSorL.\j Statcs,

IQ,-
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shate
Solution: S.f.Ug\Aj d\ﬁ,M( 122 e tal [E'({—}M Fo fmdq-___fi\: %l,@} )
| |

SO wWe ww\’f MZA

;SA LiAS" M’P( =0 !&Q’Cw lue SIL‘J'{” ‘A S‘Llﬁ A)
So Flae ‘]‘a[o__(/\ = 0 SFL‘D_&‘,

MZPA:O

E My A
Man
SOlu‘w\J:
Mg = L+ 4 5( | +
o
= 3
=+
4—MM = b + Moya
= 3M. = 4
M?.H = 2 So H»e b?(]oe.c{"tol ‘Hm {"o &S_CBP“rHo;\

SW’r?:j ab Stebe 22 05 2 #cfd -

\e. %3‘—2.

N eve YoPS G-V RS ;
?M v Mtﬁ 1 M‘LA t+ MEA‘L MQ’A (0(4 ﬂ—tfm{'.?‘w\?\{ ‘S‘Po\u__;>

T¢ answe g, Sy, Map = 23 Aen't Conclude myp, 7

Muwad to o —\Tb«.ﬂ' LLcaw.s( T i¢ al
s\ GDF(_ Gision , YN \mt‘gju‘/ AQQIA’»!’ !"\u,,:.8
Q—AI‘O or 2Af’ E’T SlioulA L'f- an

"m’re\f)u_



THE UNIVERSITY
OF AUCKLAND

NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 1 73

moves to one of the other two vertices at random. What is -
the expected time taken for Glee-flea to get from vertex 1

Example: Glee-flea hops around on a triangle. At each step he %
to vertex 27 =

Solution:

transition matrix, P =

= o= O
o= O N
O NI N

We wish to findms.

0 if i=2,
Now mjs =14 14 Zpijmjg if i%#2.
j#2
Thus
may = 0
mis = 1+ %mgg + %m32 = 1+ %m32‘
mgs = 1+ %m22 + %mu
= 1+ %mm
= 143 (14 3ms)
= mz = 2.

Thus mys = 1+ tmg, = 2 steps.



