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Chapter 9: Equilibrium

In Chapter 8, we saw that if { Xy, X1, Xo,...} is
a Markov chain with transition matrix P, then
X,~7nl = X, 4~=lP

1A~ A

This raises the question: is there any distribution 7r such that

IfﬂTP:ﬁT,theni{: thf]jr = Xu. ~ 7‘ P =

In other words, if # P = &', and X; ~ w”, then

Xt’ ~ Xﬁﬂ ~ ><{:+2.

Thus, once a Markov chain has reached a distribution 77 such that 77 P = =7,

'li' L\Jtnlk S}a;j i’L.zr‘e..

If ' P = w7, we say that the distribution v’ is an th,‘l«. Lrium Avshal wbon.

’\/X&_‘,z ~ - -

Equilibrium means a level position: there is no more change in the distri-
bution of X; as we wander through the Markov chain.

Note: Equilibrium does not mean that the value of X;.; equals the value of X;.
It means that the distribution of X;,; is the same as the distribution of X;:
£ 9 - IP (X = = ﬁ)(X =) = M ”V}Cl-dfo‘mi’“ lere 1o af
9 t+ ) t ) ) Fire 00 Wt He

Mf’\ ‘P (X,Hl = Z) = iP ()(tzz) = T, <te. pfoLfﬂL"l'b X£+ =) Wik,
ne m&.e alowk Hee values

s K
In this chapter, we will first see how to calculate the equilibrium dlstrlbutfon I3

We will then see the remarkable result that many Markov chains automatically
find their own way to an equilibrium distribution as the chain wanders through
time. This happens for many Markov chains, but not all. We will see the
conditions required for the chain to find its way to an equilibrium distribution.

T

NR: 1§ we adeed for (X 21| X, = x) Hos wodd shll Le T Ha

I |

Mf)LL ShE s Ron fmoL.oLk, Lb&om F(X{ﬂ-) iy 0{7(%@0\}_
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9.1 Equilibrium distribution in pictures

Consider the following 4-state Markov chain:

0.0 0.9 0.1 0.0
0.8 0.1 0.0 0.1
0.0 0.5 0.3 0.2
0.1 0.0 0.0 0.9

P =

Suppose we start at time 0 with

X ~ (% , i , i , i): so the chain is equally

likely to start from any of the four states. Here
are pictures of the distributions of Xy, Xy,..., X4:

< T?M{] 3 ine b

0.4

Tirme O

0.3
0.3

0.2

T
2
-
Q
0.2

0.1
0.1

0.0
0.0

The distribution starts off level, but quickly changes: for example the chain is
least likely to be found in state 3. The distribution of X; changes between each
t=0,1,2,3,4. Now look at the distribution of X; 500 steps into the future:
P(Xs02 =) P(Xso3=2) P(X504 =)

= < <
o

A
: : 1wy

- . . AT
3 3 M |
S |

1 2 3 4 1 2 3 4 1 2 3 4

0.1
0.1

0.0
0.0

The distribution has_reac a steady state: it does mot change between
t = 500,501, ...,504. dain bas readhed eq il LAum & ks own

ﬁCCorﬂk t
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= Steks )G CowsSe Coloured &auo(ﬁ) —
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9.2 Calculating equilibrium distributions

Definition: Let { Xy, X1, ...} be a Markov chain with transition matrix P and state
space S, where |S| = N (possibly infinite). Let w7 be a row vector denoting
a probability distribution on S: so each element 7; denotes the probability
of being in state ¢, and Zf\il m; = 1, where m; > 0 for all: = 1,..., N. The
probability distribution 7w’ is an equilibrium distribution for the Markov chain
if ’__'l/—r P = E‘rﬂ _

That is, 7! is an equilibrium distribution if

(’ﬂ' ?) l'h“.'[);d = ”_j fﬂr ~ \]_ |)--—)N
L’\_/$%/

G‘L"""‘:'_'}J Frne SPLC}“l fo %M:l"L’;WT.
By the argument given on page 174, we have the following Theorem:

Theorem 9.2: Let { X, X,...} be a Markov chain with transition matrix P. Sup-
pose that 7w’ is an equilibrium distribution for the chain. If X; ~ «? for any ¢,

th L]
en X r\/TjT Fr" o\u \r,__.ljzjg)”"

xc

Once a chain has hit an equilibrium distribution, it stays e for evu

Note: There are several other names for an equilibrium distribution. If w7 is an
equilibrium distribution, it is also called:

e invariant: i+ doecn't CL\MJQ, : ZIT P - ET
e stationary: Hu clain S]‘of,sl\ I,\U‘Q"

Stationarity: the Chain Station

a BUS station is wherea BUS stops

a train station is where a train stops

a WOI'kStatiOH is where . . . ? ? ?
“--__'_'————-_

a stationary distribution is where a Markov chain stops
S At Aby bhall s




THE UNIVERSITY
OF AUCKLAND

NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 1 77

9.3 Finding an equilibrium distribution

T

Vector ' is an equilibrium distribution for P if:

TP =m"

3. M %0 for all 1.

Conditions 2 and 3 ensure that T is « Jmu'mt PmLaL‘,l;b Autslubon.

Condition 1 means that 7 is a row eigenvector of P.

Solving wf P = &” by itself will just specify 7 up to & Scalar mulbipte
We need to include Condition 2 to scale 7t to a genuine probability distribution,
and then check with Condition 3 that the scaled distribution is valid.

Example: Find an equilibrium distribution for the Markov chain below.

05
0.0 0.9 0.1 0.0 : ,/\ Qo.z
3

0.8 0.1 0.0 0.1
0.0 0.5 0.3 0.2
0.1 0.0 0.0 0.9

Solution: [t ET: (T, T, T Trp}.
Need Yo selve () TP . 17 0l ()T o es

+ o
3t -

.') lzfﬁl}/f\ re

"TT F T T, T T
] —_
; - (ll y 3 “lp)



MV\H‘.\P\\\j\L:\j ouk: TT o

R 0 T -
AT+ T4 ST, = T ©
AT+ 3T =T, (3)

E-p[/wo\j':lof\ b will give ws no extr ?AOCG Lecanse jT P=T
0/\5 sf,eo} &-}u ™ lAf 'l‘o N SCﬂl&!’ M lHrL{
So hij/\c'rc 2q N @ Lu\' inShead wSe Yl ol Co/l"{;HOA:

T, AT, Ty T, = ] @*

90 (V( Simv\“‘w\eoub B

of i xem Q asks t Q1,0 Het T (,-__‘)“

Wng LHSD) 5 - = RHs @
LHS® = - = RHs@
Lfc .,
> clode
get- T - (02%, 0320, 004, O~38>_ Lﬁio{
tremsure
L\N\' L\DL,JL\JO"*\A
we hknow l’l.ud(
ﬂ/\-L Cl/khr;'\
W “ 0""‘}“""“#\?:«'
A HN 9

This is the distribution the chain converged to in Section 9.1. </



9.4 Long-term behaviour o 05

In Section 9.1, we saw an example where the Markov
chain wandered of its own accord into its equilibrium

distribution: 0. . 02
P(XE)QO == JT) P(Xg,m = CC) P(X502 = LE) ]P(X503 = x)
< Fmes0o.  Fmesol s . 0.9
— _| 030 ) i} i i
l OOL_\\f\_j 0'1;’: o o S S
?Ic"""'\ g g 3 3 3
Flang
@0

o o o o
o o o

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

This will always happen for this Markov chain. In fact, the distribution it
converges to (found above) does not depend upon the starting conditions:

ﬁl’ ANY Vabne "6' Xo , or oQ_r{*f',L Whon ﬂd’ X.o) we Wil &LL\JP(YS have
Xe ~ (02¢, 030, 004, 03¢ ) as £ > oo,

What is happening here is that each row oa— R transiBon padAx ?l:

C.Of\VU\'jLJ o Hee Lﬁ[/m'\UL,FmM ASEALWR oA (0'2'6)0'20) O-OL,}O'-_L,S) as

E>oo. > - :
(P77), = P(Ksoo™ 3\ Ko=) 23
0.0 0.9 0.1 0.0 0.28 0.30] 0.04| 0.38 \ -
p_|08010001 ) . f028030004{038 |- .
| 0.0 05 03 0.2 0.28 0.30|0.04/0.38 |- ‘
0.1 0.0 0.0 0.9 0.28 0.3010.04/ 0.38 /-

(If you have a calculator that can handle matrices, try finding P! for ¢t = 20
and ¢ = 30: you will find the matrix is already converging as above.)

This convergence of P! means that aﬁgr lea b, no Matte WHICH Stake we
Stk in, we always have prol eliliby
e about O'1% of being in State L after t steps;
e about 020 of being in State Z after ¢ steps;
e about O 04 of being in State 2 after ¢ steps;
e about ©°3%¢ of being in State 4 after ¢ steps.
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Start at @ Start at@
3 31 P(X¢ = >(o -
IT F(XE:Z,_|){°:7_> (f ‘1——‘ @)
H 15 Conshant for lea {*)
- ﬁl\]b Lecom | + > |
2 m’ sce [y &GV«i» e
> ﬂg Bl b i gor “shbing
= |l \ N S
| 2 ”‘m. State 4 1 | State 4
bt | /Vﬁ ’ State 2 State 2
2 Nm State 1 ) l/; State 1
<} ‘ ] o g
S | ﬁm ) State 3 g | f State 3
0 20 40 tlmeﬁ)ot 80{» i’(\.4-11004t L_T 40 tlmeﬁ)ot 80 100
Small £ b |4 afcy llG\Ho/\ Srall £ ke SaooH.

The left graph shows the probability of getting from state 2 to state k in t
steps, as t changes: (P')yy, for k =1,2,3, 4.

The right graph shows the probability of getting from state 4 to state k in ¢
steps, as t changes: (P')yy, for k =1,2,3, 4.

he 2nitial behaviour differs greatly for the different start states.
The long-term behaviour (large t) is the same for both start states.

However, this does not always happen. Consider the two-state chain below:
] _
C® (o)
] DO

£
As t gets large, P dees net Lonvuge !
C o0 4 even So| s ooté{ od:(

2ven
P500=(10) P501:(01) P502:(10) P503=(01)...
— 01 10 01 10

For this MarWJ /J

We neve dioij?.‘\'\\ H'\.Q. ]AH‘?&\ vau’]r Skete.
Thwe is o COAVL:jU\CQ ove Fime % f?l:’
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General formula for P!

We have seen that we are interested in whether P! converges to ® aL] Xed mabax
witlh, all rows -@-7/0\‘\\ oS % - o .

If it does, then the Markov chain will reach aa %u;l‘.gr;m Aish i buRon Haat
Ao ﬁo\’ OLL'?CAGL on 5:‘11‘" C-O/\tf['lhﬁaﬁj,

The equilibrium distribution is then given by My oW ffar He onv o.r\jzi P

a oY It can be shown that a general formula is available for P! for any ¢, based on

on the eigenvalues of P. Producing this formula is beyond the scope of this course,

4 ltg"\}’"’5 but if you are given the formula, you should be able to recognise whether P! is
going to converge to a fixed matrix with all rows the same.

Example 1:
0.8
0.2 0.8
i 0.6
~ ' . onl e on
We can show that the general solution for P! is: \/ N t_ 0. ‘f’)

7

Dt i 2 4 - /3 F

I R (3 (,,) (3/} gL/})'

T Marleov clanin Wil H,\U.{,d_gr& onvuye ‘o He Q@M'*l}le/{w
Aistabwtion T7 (}i )%) as £ 00, FEJMMQSS of Wetlar

Wwe stak in o 1 or stake 2.

Ezercise: Verify that w7 = (%, %) is the same as the result you obtain from solving
the equilibrium equations: 77 P = ! and m; + m = 1.
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Example 2: Purposeflea knows exactly what he is doing, so his probabilities are
all 1:

A O=——c (1 3)

We can show that the general solution for P! is:

10D D))

ﬂs {“-ﬁDOJ Hon (‘l\E Adoes NOT Conue{je fo O.
So ?G = <if) ? ) 7& ‘[’ It e,

bt (- (O *) i b oedd, Loroall 1

I 0

_I,\ Fis QW‘f’L&) ’Pl— N o (,on\la{jes to a matbix Wit Lot
0wy ],,LMHLA as {: J&!’:S lﬁw\(je

L

Te dain awe éj,;jum“ RS B al sthO cond\Bons oy

E> oo .

y buid res Lre exic)s .-

Exercise: Verity that this Markov chain does have an equilibrium distribution,

! = (%, %) However, the chain does not converge to this distribution as

t—00. .. Luh Hou Aon't a(’;N( ik

These examples show that some Markov chains forget their starting conditions
in the long term, and ensure that X; will have the same distribution as ¢t — oo
regardless of where we started at X,. However, for other Markov chains, the
initial conditions are never forgotten. In the next sections we look for general
criteria that will ensure the chain converges.
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1’0 LU'—U"JWQ’—" L. pkk' ﬂu PQSS] LI.(_ i’_lw) ) {fjb{':f {Gge .

Target Result: \ T

e If a Markov chain is #rreducible and aperiodic, and if an equilibrium
distribution 7w’ exists, then the chain converges to this distribution as
t — oo, regardless of the initial starting states.

To make sense of this, we need to revise the concept of irreductbility, and
. -
introduce the idea of aperiodicity.

- —

9.5 Irreducibility

Recall from Chapter 8:
Definition: A Markov chain or transition matrix P is said to be irreducible if

~Lé'§;) g.or' O\u_ “L)\-) € S, 89 H,\_L Cl/@:-f\ \LS ‘\Ir‘ﬁzé{u\('tl.l_t ‘]J—— H,\g S}?\\’a JFRC&,S)
s o~ S:r:jl.ﬂ, COMM(AAE,Ck"b clasg., LCJ\/\ 34' &"DM "V\\_lj‘*)lnuﬂ }‘o M\_'jUL\Je ]

An irreducible Markov chain consists of a single class.

Trreduc\e Net irreduncille

Irreducibility of a Markov chain is important for convergence to equilibrium as
t — 00, because e (wonl He Conv g ce fo Le indepund ant dd' Stert
shake.

This can happen if the chain is irreducible. When the chain is not irreducible,
different start states might cause the chain to get stuck in different closed
classes. In the example above, a start state of X, = 1 means that the chain is
restricted to states 1 and 2 as t — oo, whereas a start state of Xy = 4 means
that the chain is restricted to states 4 and 5 as t — oco. A single convergence
that ‘forgets’ the initial state is therefore not possible.
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9.6 Periodicity

Consider the Markov chain with transition matrix P = ( (1) (1) ) )

Suppose that Xy = 1.

This sort of behaviour is called periodicity: tle Markov chain can Mb return
o & S}'ﬂ\’c "\\’ PGJ‘F\chJ' Jf‘if"‘(\S, l;

Clearly, periodicity of the chain will interfere with convergence to an equilibrium
distribution as ¢ — oo. For example,
1 for even values of t,
PX;=1|Xo=1) =
0 for odd values of ¢.

Therefore, the probability can not converge to any single value as ¢t — oo.

/
L. CON 31\' WUJWLU'Q) LW NoT m'( ,(w.ij 'f'i(\q_g X {'vjbo-

Period of state 2

To formalize the notion of periodicity, we define the period of a state 1.

Intuitively, H., Pp_hook ve Ae/(g_‘m{{{ so Huwt Mo +—1ML oleen Yo reburn
From stare U Lade fo Shde 1 again s ﬁ[w::j.! o bel‘?]f\a o M period .

In the example above, the chain can return to state 1 after 72 Ske s, d.i”}-c?_()
G ‘Q_L‘fj) % Sktf_SJ-.,

The period of state 1 is therefore Z_

In general, the chain can return from state ¢ back to state ¢ again in ¢ steps if
(?£ Y, >0 .This prompts the following definition.

Definition: The period d(7) of a state i is
¢
A (V) = jca{ i E=1,23 . ... (_? );; >O\i :

TR ‘oyﬁoA (D) s He jfm"{il(' Copmon Aiviser <9dr He times
b W vebon S FOSS'\ELQ.
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Definition: The state ¢ is said to be periodic if (1) > |.
4. - we wld o«lj gt Lacle oy 2 Sheps.
For a periodic state i, (P'),; = 0 if ¢ is not a multiple of d().
leke
o
ol Al
Definition: The state i is said to be aperiodic if J{(t) = 1. true.
If state ¢ is aperiodic, it means that efwna to State T is not Liaiked

Te. as 500 we will Le alle fe jﬂ.l’
to Stte it ab ANY Pre-

For convergence to equilibrium as ¢ — oo, we will be interested only in

Ap uiod ic Shakes.

or\b i"o (e\ju\\q}—\\_j ‘{'gﬁ) e,oL}-"U F mes.
The following examples show how to calculate the period for both aperiodic

and periodic states.

Examples: Find the periods of the given states in the following Markov chains,
and state whether or not the chain is irreducible.

1. The simple random walk.

Clin s rredu AUl
d(O):\jfﬂ{ %2) 4') 6) ‘j -2
= PU?OA‘,C Sshake

Doss NOT CoNVERGE to equililiim
( can't éorjﬂ\' ks skt SH:H),



186

e

Clwin i drrednc U\ .
/ ’
< d(1):jcak§:>_,3),,,_3;j_
C[/\h\m _t"_j_"ll_ COflur{j(, ]LQ ecz/.hll'lLf]wJ

> by Treorem.

. TrreduciLe .
%%_% d1)=9ed 12,66, -5 =2 (poi-d)

Does. nok Cony o (L: 1 A
. JQ | o
@<_® Aine to cn—cﬁ od ic S+Z?‘e /\Sr )

d(l):\jc‘k 2_2,(1}{,)__- j: 2 (PU‘]OJIL)
Clawin 15 NOT irredunable .

- / Conveuges to T" = (0,0,))
G‘@ D <D€me§ rilre o fle
Cond FNons,
U~

L\lj \JA.SFQ C"EO/‘\ .

Irrf_DLlA t"\LLL .

= d(D=14 (a[:u-}oa{{c)

Cmvuaucz.. RS jhﬂfﬁ-"!"-"k
Ly Tleorm . ®
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9.7 Convergence to Equilibrium

We now draw together the threads of the previous sections with the following
results.

/ . 3 Ve sem Coeﬂ«mw\fcuﬁo ¢ lasg
Fact: If i > j, then ¢ and j have the same period. (Proof omitted.)

U oand

This leads immediately to the following result:

ALL ¢tabee ¢ & ) are 1a H,q Serne  Commma, Ak
4 / I
/ ¢ less

If a Markov chain is #rreducible and has one aperiodic state,

then all states are aperiodic.

— \ R | | lL
e i e k=) e ot
( Wherefore talk about an irreducible, aperiodic chain,/ > uﬁiw’.oel'xc-
= = — S
So if iredm i ble chean, Han one clasg 9ne ﬁff/ft?/la‘c State

ONE Loop means You've got an npn 03
Theorem 9.7: 1.6t { X0, X1, -

2 ALL Stakes are apuiodic
an irreducible i arkov Chailn
with transition matrix P. Suppose that there exists an equilibrium distribution

7w”. Then, from any starting state i, and for any end state j,

TP(Xp')lXo:l) —> T, as £ 500,

In particular,

£
(P )“\) —-57!_\} nS £ 500, gor ALL toand \)

So ?E CO/\\/UJU o o Mﬂ"“ﬁx wit, all Vouus ;MHC‘J)
sk Lj/vm\ te "TLT) as £ oo .

fFor on irreducible, AP—U‘;oo{Ic Markov thain,

Wi A 6%/\'.\1 or }Aﬁnika Skke sra\c,e,)

He axistew of an 2guilibricm AdishiLubon ET
onswres Hat the Mato v chain Wil Convarde b T

! as E-Soco.
Trreducbe & opurodic 2nlres ek, a3 FSoo, We can voacl, fa(LL,aa—-
eSS, b ALL o Hu Bmes.
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Note: If the state space is infinite, it is not guaranteed that an equilibrium distri-
bution 7w’ exists. See Example 3 below.

j'—Cf' H'\L Shate ‘gfm(—t NS ae':»‘\r\“e) an &?Mﬁ-(.t(vﬁw‘*\ A“-‘l"‘ DOE_S ‘@th}'

T

Note: 1If the chain converges To an equilibrium distribution w* as ¢ — oo, then

the (ong-rmn proportion o Fine speat in any Shbe k& givebo T
1&’ MM o LX O N.ow\’\ La,«\\gfrwx pmf)ori—lo,-\ ,ﬁr— Fipme SP‘fAk ;r\ o 5]-&}(‘&, 1\1‘2
wilk P""l”"l”b say " Eall, W\é‘r’\@ \'jo-.,.f answel . Jlus Pasaas 1500 a‘?-;cr)r need

Ny < >,
Fo Juhfy vk M ln Doel ConverRie bo T T Gegore you Sy Hhat
9.8 Examples 'T[—h- = lo/:j_rl,\;\ Fl) ( }/\ &M( k)) /

A typical exam question gives you a Markov chain on a finite state space and
asks if it converges to an equilibrium distribution as ¢ — oco. An equilibrium
distribution will always exist for a finite state space. You need to check whether
the chain is irreducible and aperiodic. If so, it will converge to equilibrium.
If the chain is irreducible but periodic, it cannot converge to an equilibrium
distribution that is independent of start state. If the chain is reducible, it may

or may not converge. —__ WS Comnon Seng 45 waw)ol( l Lelow,

The first two examples are the same as the ones given in Section 9.4.

Example 1: State whether the Markov chain below converges to an equilibrium
distribution as t — oo.

0.8
0.2 0.8
=05 o1)

—

D j:FFLA.Mc‘IL,\_L ’) Y{j-

) Apurodic ¢ (can sea loops & ~lready knoo
) fe J [t S TV R PR au\gﬁw

a—t Aﬁw—‘lw{;‘c)
3) F'fmi‘t JMQ S(QC\CL = e_&Lwlaan ASHA OK;S}Z
So Hus clawin DoES Convare fo 2qulibiim as €500

G‘-ﬁom §01'Cf-,, Hie cloun f-Df\WU:jM te ET: (%; (—%3 a3 jf%“‘-‘>
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Example 2: State whether the Markov chain below converges to an equilibrium
distribution as t — oo.

A O — P-(90)

) Trredualle ! Vg

l) e)b\"T NOT C\EUquic; P{r:oo{: L gar* 9\“ \S‘}-za,{*e_s_
So HARJ Clhaain can NJOT C.Or\vu\jc, +o e.ﬁu'.l}\,r]l/w\ as {"—)bo
becamse the sttt Syabe will mve be é"@"ﬂ"fh

It is important to check for aperiodicity, because the existence of an equilibrium
distribution does NOT ensure convergence to this distribution if the matrix is
not aperiodic.

lﬂg:\/\llj(ﬁ J')F‘JF'C Spate © for ,\*AI"ULS]’ 0/\\(_3
Example 3: Random walk with retaining barrier at 0. n 20l .
P)/fl/ no @&LU\“ UL Awm s ke (PV\SL\ to Mo F?OL\\')

p D D p p

q
reed, o\fv?wl'.c = convugn(y . P sy >
Find whether the chain converges to equilibrium as ¢ — oo, and if so, find the
equilibrium distribution.

The chain is irreducible and aperiodic, saaif equilibrium distribution exists,
then the chain will converge to this distributiontas> ~c.

However, the chain has an infinite state space, so we canaocarmfee that an
equilibrium distribution exists.

Try to solve the equilibrium equations:



' P =zl andy 2 m =1.

O R
o O3
o O
= o O

From ), we haverr, = g,

SO m = ]—)77'0
q
1
=My = 5(7r1—p7ro)=

k
We suspect that, = <§) o

The hypothesis is true far=

Tk+1

k
The inductive hypothesis holds, sp = <§)

EER)
-

NEW ZEALAND
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qmo +qm1 = T (%)
pTo +qm2 = T
P+ QT3 = 7T2}7
prp_1+qmp, = m for k=12 ...

. Prove by induction. .

k
0,1,2. Suppose that;, = (g) m. Then

1
— (7, — pmi—1)
q

o forall k > 0.

L~ |
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00 00 k
- D
We now need m=1, Le. m (—) =
'\/\/\_/-\_/“—/W
The sum is a Geometric series, and converges on&io{ 1. Thus whemn < q,
q

1
7'('()(1 p)l = 70:1—]—9.

If p > q, there is no equilibrium distribution. GM mebAc £ doga't Gavere

Solution:
If p < q, the chain converges to an equilibrium distributen wheren, =

(1—{3) (g)kforkzo,L.... &

If p > ¢, the chain does not converge to an equilibrium distribuéish— oc.

we have
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Example 4: Sketch of Exam Question 2006. _ . Sense fells You
Consider a Markov chain with transition diagram: = (5

He  ons oo,

(a) Identify all communicating classes. 4
For each class, state whether or not T
it is closed. , Z

Uy, @2y, §3 ot closed C 2 ool 13D
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(b) State whether the Markov chain is
irreducible, and whether or not all states are
. . A"
aperiodic.
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(¢) The equilibrium distribution is = (0,0,0,1). Does the Markov chain
converge to this distribution as t — 00, regardless of its start state?

‘({s, [Lg*A\t cLaw\\«j conver\ﬂ«t to I-r = (o, o,o0, IB)
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Note: Equilibrium results also exist for chains that are not aperiodis. Also, states
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can be classified as transient (return to the state is not certain), null recurrent
(return to the state is certain, but the expected return time is infinite), and
positive recurrent (return to the state is certain, and the expected return
time is finite). For each type of state, the long-term behaviour is known:
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P(X; =k|Xo=k) = (P"),, = 0ast— oco. (om0

e If the state k is transient or null-recurrent,

e If the state is positive recurrent, then

P(X;=Fk|Xo=k) = (Pt)kk — 7 as t — oo, where 7, > 0.

The expected return time for the state is 1 /7.

A detailed treatment is available at
http://www.statslab.cam.ac.uk/” james/Markov/.
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Special Process: the Two-Armed Bandit Z'O(Lf’ ‘ D (’A‘B

ae Seo Ewams 2010, 201
A well-k blem i bability is called the t da T TA Sone
well-known problem 1n probability 1s called the two-arme 9&, ‘e 50 lukions.

bandit problem. The name is a reference to a type of gambling
machine called the two-armed bandit. The two arms of the
two-armed bandit offer different rewards, and the gambler

has to decide which arm to play without knowing which

is the better arm.

A similar problem arises when doctors are experimenting with
two different treatments, without knowing which one is better. — One-armed bandit
Call the treatments A and B. One of them is likely to be better, but we don’t
know which one. A series of patients will each be given one of the treatments.
We aim to find a strategy that ensures that as many as possible of the patients
are given the better treatment — though we don’t know which one this is.

Suppose that, for any patient, treatment A has P(success) = «, and treatment
B has P(success) = (3, and all patients are independent. Assume that 0 < o < 1

and 0 < 0 < 1.
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First let’s look at a simple strategy the doctors might use:

e The random strategy for allocating patients to treatments A and B is
to choose from the two treatments at random, each with probability 0.5,
for each patient.

e Let pr be the overall probability of success for each patient with the
random strategy. Show that pg = L (o + f3).

The two-armed bandit strategy is more clever. For the first patient, we
choose treatment A or B at random (probability 0.5 each). If patient n is given
treatment A and it is successful, then we use treatment A again for patient n—+1,
forallm =1,2,3,.... If A is a failure for patient n, we switch to treatment B
for patient n + 1. A similar rule is applied if patient n is given treatment B: if
it is successful, we keep B for patient n+ 1; if it fails, we switch to A for patient
n+ 1.

Define the two-armed bandit process to be a Markov chain with state space
{(A,S), (A, F),(B,S), (B, F)}, where (A,S) means that patient n is given
treatment A and it is successful, and so on.

Transition diagram:

Exercise: Draw on the missing arrows and find their probabilities in terms of
a and f.

(A,S) (B,F)

(A,F) (B,S)

Transition matrix:
AS AF BS BF

AS
AF
BS
BF
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Probability of success under the two-armed bandit strategy

Define pr to be the long-run probability of success using the two-armed bandit
strategy.

Exercise: Find the equilibrium distribution 7r for the two-armed bandit pro-
cess. Hence show that the long-run probability of success for each patient under
this strategy is:

_a+f—2ap
pPr = 2—a—g

Which strategy is better?

Exercise: Prove that pr — pr > 0 always, regardless of the values of o and f.

This proves that the two-armed bandit strategy is always better than, or equal
to, the random strategy. It shows that we have been able to construct a strategy
that gives all patients an increased chance of success, even though we don’t know
which treatment is better!

P(success) for different 3 when a=0.7
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The graph shows the probability of success under the two different strategies,
for « = 0.7 and for 0 < 8 < 1. Notice how pp > pg for all possible values of 5.




