Answer ALL THREE QUESTIONS. Marks are shown for each question. A FORMULA SHEET is overleaf.

1. Every day as I cycle to work, I have to cross a main road from a side street. The traffic on the main road is controlled by traffic lights. There are three phases of the traffic lights, where each phase allows a different stream of traffic to pass. Every phase lasts exactly 20 seconds. When the phase changes, I might be able to cross quickly; otherwise, I have to wait 20 seconds before the next phase. The details are as follows:
2. Phase 1: cross immediately with probability 0.8 ; otherwise wait 20 seconds and go to Phase 2.
3. Phase 2: cross immediately with probability 0.4 ; otherwise wait 20 seconds and go to Phase 3.
4. Phase 3: cross immediately with probability 0.1 ; otherwise wait 20 seconds and go to Phase 1.

(Note: the traffic diagram above is provided for interest, but all the information you need for the question is provided in points 1,2 , and 3 above.)
Define

$$
\begin{aligned}
& T_{1}=\text { time in seconds from the start of Phase } 1 \text { until I can cross; } \\
& T_{2}=\text { time in seconds from the start of Phase } 2 \text { until I can cross; } \\
& T_{3}=\text { time in seconds from the start of Phase } 3 \text { until I can cross. }
\end{aligned}
$$

(a) Show that $\mathbb{E}\left(T_{1}\right)=4+0.2 \mathbb{E}\left(T_{2}\right)$, and derive similar expressions for $\mathbb{E}\left(T_{2}\right)$ and $\mathbb{E}\left(T_{3}\right)$.
(b) By solving the expressions from part (a), show that $\mathbb{E}\left(T_{1}\right)=9.6$ seconds, and find $\mathbb{E}\left(T_{2}\right)$ and $\mathbb{E}\left(T_{3}\right)$.
(c) When I first arrive at the intersection, the traffic lights are equally likely to be at any point in their cycle. I therefore have to wait time $W \sim \operatorname{Uniform}(0,20)$ seconds before the next phase starts, and then it is equally likely to be Phase 1 , Phase 2, or Phase 3.
Let T be the total time I have to wait, from the moment I arrive at the intersection, to the moment I can cross the road. Find $\mathbb{E}(T)$.
2. Bart is trying to catch a runaway balloon.

He runs after it for $R \sim \operatorname{Exponential(0.1)~seconds,~then~he~can~try~to~grab~it.~}$ With probability 0.2 , he is successful. With probability 0.8 , he falls over and has to start again from the beginning.
Let T be the total time that Bart takes to catch the balloon. Find $\mathbb{E}(T)$.

3. The Loch Ness Monster is a famous type of dinosaur that lives in Scotland.

The breeding cycle of the Loch Ness Monster is as follows. Every monster has either 3 offspring (probability 0.7), or no offspring at all (probability 0.3). All monsters act independently of each other. (There are no males and females.)
Nessie is a Loch Ness Monster. Let $\left\{Z_{0}=1, Z_{1}, Z_{2}, \ldots\right\}$ be a branching process describing direct descendants of Nessie: so Z_{1} is the number of Nessie's children, Z_{2} is the number of her grandchildren, and so on.
(a) Let Y denote the family size distribution of the branching process. Write down the probability function of Y in the following format:

y	0	1	\ldots
$\mathbb{P}(Y=y)$			

(b) Find the probability generating function of $Y, G(s)=\mathbb{E}\left(s^{Y}\right)$.
(c) Let $G_{2}(s)$ be the probability generating function of Z_{2}, the number of Nessie's grandchildren. Find $G_{2}(s)$. (You do not need to simplify the expression.)
(d) Using the PGF $G_{2}(s)$, find $\mathbb{P}\left(Z_{2}=0\right)$.
(e) Using the PGF $G_{2}(s)$, find $\mathbb{E}\left(Z_{2}\right)$.

FORMULAE

$\underline{\text { Uniform Distribution: }} \quad X \sim \operatorname{Uniform}(a, b) . \quad$ Mean: $\mathbb{E}(X)=\frac{a+b}{2}$.
$\underline{\text { Exponential Distribution: }} \quad X \sim \operatorname{Exponential}(\lambda) . \quad$ Mean: $\mathbb{E}(X)=\frac{1}{\lambda}$.
$\underline{\text { Probability Generating Function: } \quad G_{X}(s)=\mathbb{E}\left(s^{X}\right) ~ . ~ . ~}$

$$
\mathbb{P}(X=0)=G_{X}(0) . \quad \text { Mean: } \mathbb{E}(X)=G_{X}^{\prime}(1)
$$

