1.(a) The probabilities are marked on the diagram.

(b) Let p be the probability that a customer eventually buys a piano.

Let r be the probability that a customer eventually buys a piano, starting from entry to the box marked $\boldsymbol{\star}$ on the diagram above.
Then

$$
\begin{equation*}
p=0.1+0.9 \times 0.2 \times r \tag{1}
\end{equation*}
$$

Now

$$
\begin{aligned}
r & =0.5+(0.5)^{2} r \\
\Rightarrow \quad r\left(1-(0.5)^{2}\right) & =0.5 \\
\Rightarrow \quad r & =\frac{0.5}{1-0.25}=\frac{2}{3}
\end{aligned}
$$

Thus, from (1),

$$
\mathbb{P}(\text { buys })=p=0.1+0.9 \times 0.2 \times r=0.22
$$

(c) Let N be the number of times that a customer visits the shop, including the first time. Let M be the number of times that a customer visits the shop, starting from entry to the box marked \star on the diagram above.
Then

$$
\begin{equation*}
\mathbb{E}(N)=1+0.9 \times 0.2 \times \mathbb{E}(M) \tag{2}
\end{equation*}
$$

Now

$$
\begin{aligned}
\mathbb{E}(M) & =1+(0.5)^{2} \mathbb{E}(M) \\
\Rightarrow \mathbb{E}(M)\left(1-(0.5)^{2}\right) & =1 \\
\Rightarrow \mathbb{E}(M) & =\frac{1}{1-0.25}=\frac{4}{3} .
\end{aligned}
$$

Thus, from (2),

$$
\mathbb{E}(\text { number of visits })=\mathbb{E}(N)=1+0.9 \times 0.2 \times \mathbb{E}(M)=1.24
$$

2.(a) Let T be the number of steps to reach either state 1 or 3 . We can write:

$$
T=\left\{\begin{array}{cl}
1 & \text { with probability } 0.9 \\
1+T_{1} & \text { with probability } 0.1, \text { where } T_{1} \sim T
\end{array}\right.
$$

Thus if $H(s)=\mathbb{E}\left(s^{T}\right)$, then

$$
\begin{aligned}
H(s) & =0.9 \mathbb{E}\left(s^{1}\right)+0.1 \mathbb{E}\left(s^{1+T_{1}}\right) \\
& =0.9 s+0.1 s \mathbb{E}\left(s^{T_{1}}\right) \\
& =0.9 s+0.1 s H(s) \quad \text { because } T_{1} \sim T, \text { so } \mathbb{E}\left(s^{T_{1}}\right)=\mathbb{E}\left(s^{T}\right)=H(s)
\end{aligned}
$$

Thus

$$
\begin{aligned}
H(s)(1-0.1 s) & =0.9 s \\
\Rightarrow H(s) & =\frac{0.9 s}{1-0.1 s}
\end{aligned}
$$

The radius of convergence is 10 , because $(1-0.1 s)=0$ when $s=10$.
(b) Let T be the number of steps to reach either state 1 or 4 , starting from state 2 .

Let W be the number of steps to reach either state 1 or 4 , starting from state 3 .
Let $H(s)=\mathbb{E}\left(s^{T}\right)$, and let $G(s)=\mathbb{E}\left(s^{W}\right)$.
Then:

$$
T=\left\{\begin{array}{cl}
1 & \text { with probability } 0.4 \\
1+W & \text { with probability } 0.6
\end{array}\right.
$$

This statement for T gives:

$$
\begin{equation*}
H(s)=\mathbb{E}\left(s^{T}\right)=0.4 \mathbb{E}\left(s^{1}\right)+0.6 \mathbb{E}\left(s^{1+W}\right)=0.4 s+0.6 s G(s) \tag{1}
\end{equation*}
$$

Similarly,

$$
W=\left\{\begin{array}{cl}
1 & \text { with probability } 0.6 \\
1+T & \text { with probability } 0.4
\end{array}\right.
$$

This statement for W gives:

$$
\begin{equation*}
G(s)=\mathbb{E}\left(s^{W}\right)=0.6 \mathbb{E}\left(s^{1}\right)+0.4 \mathbb{E}\left(s^{1+T}\right)=0.6 s+0.4 s H(s) \tag{2}
\end{equation*}
$$

Thus (1) gives:

$$
\begin{aligned}
H(s) & =0.4 s+0.6 s G(s) \\
& =0.4 s+0.6 s(0.6 s+0.4 s H(s)) \quad \text { from }(2) \\
\Rightarrow \quad H(s)(1-0.6 s \times 0.4 s) & =0.4 s+0.6 s \times 0.6 s \\
\Rightarrow H(s) & =\frac{0.4 s+0.36 s^{2}}{1-0.24 s^{2}}
\end{aligned}
$$

3.(a) The probability function is:

y	0	10
$\mathbb{P}(Y=y)$	0.8	0.2

(b)

$$
G(s)=0.8+0.2 s^{10}
$$

(c)

$$
\begin{aligned}
G_{2}(s) & =G(G(s)) \\
& =0.8+0.2(G(s))^{10} \\
& =0.8+0.2\left(0.8+0.2 s^{10}\right)^{10}
\end{aligned}
$$

(d)

$$
\mathbb{P}\left(Z_{2}=0\right)=G_{2}(0)=0.8+0.2(0.8)^{10}=0.821
$$

(e) We need $\mathbb{E}\left(Z_{2}\right)=G_{2}^{\prime}(1)$. Now

$$
G_{2}^{\prime}(s)=0.2 \times 10\left(0.8+0.2 s^{10}\right)^{9} \times 2 s^{9}
$$

so

$$
G_{2}^{\prime}(1)=0.2 \times 10(0.8+0.2)^{9} \times 2=4
$$

Thus

$$
\mathbb{E}\left(Z_{2}\right)=G_{2}^{\prime}(1)=4
$$

