1. Note first that if we leave state V and go to state C, we have re-entered state C and the time requirement at this point is 0 . Similarly, the time requirement from leaving state S and going to state C is 0 .
The expressions are therefore:

$$
\begin{aligned}
& E_{C}=5+\frac{1}{2} E_{V}+\frac{1}{2} E_{S} \\
& E_{V}=5+\frac{1}{2} \times 0+\frac{1}{2} E_{S} \\
& E_{S}=5+\frac{1}{2} \times 0+\frac{1}{2} E_{V}
\end{aligned}
$$

(Each state requires an initial time of 5 days, followed by a choice which takes it to each of the other two states with probability $\frac{1}{2}$ each.)
Overall, the three equations are:

$$
\begin{align*}
& E_{C}=5+\frac{1}{2} E_{V}+\frac{1}{2} E_{S} \tag{1}\\
& E_{V}=5+\frac{1}{2} E_{S} \tag{2}\\
& E_{S}=5+\frac{1}{2} E_{V} \tag{3}
\end{align*}
$$

Solving:

$$
\begin{array}{rlrl}
(3) \text { in (2): } & & E_{V} & =5+\frac{1}{2}\left(5+\frac{1}{2} E_{V}\right) \\
\Rightarrow & \frac{3}{4} E_{V} & =5+\frac{5}{2} \\
\Rightarrow & E_{V} & =\frac{4 \times 5+2 \times 5}{3} \\
E_{V} & =10 \text { days. }
\end{array}
$$

By symmetry (or substitution in (3)),

$$
E_{S}=10 \text { days. }
$$

Substituting in (1):

$$
\begin{equation*}
E_{C}=5+\frac{1}{2} \times 10+\frac{1}{2} \times 10=15 \text { days. } \tag{6}
\end{equation*}
$$

2.(a) Let W be the time in days from entering state N to returning to state C.

$$
W=\left\{\begin{array}{ll}
5 & \text { with probability } \frac{1}{2} \\
(\text { returns straight to } C), \\
5+W_{1} & \text { with probability } \frac{1}{2}
\end{array}(\text { stays in } N),\right.
$$

where $W_{1} \sim W$.
Thus

$$
\begin{align*}
H(s)=\mathbb{E}\left(s^{W}\right) & =\frac{1}{2} \mathbb{E}\left(s^{5}\right)+\frac{1}{2} \mathbb{E}\left(s^{5+W_{1}}\right) \\
& =\frac{s^{5}}{2}+\frac{s^{5}}{2} H(s) \quad \text { because } W_{1} \sim W \text { so } \mathbb{E}\left(s^{W_{1}}\right)=H(s) \\
\Rightarrow \quad H(s)\left(1-\frac{s^{5}}{2}\right) & =\frac{s^{5}}{2} \\
\Rightarrow H(s) & =\frac{s^{5}}{2-s^{5}}, \quad \text { as stated. } \tag{4}
\end{align*}
$$

(b) $T=5+W$ with probability 1 .

Thus

$$
\begin{align*}
G(s)=\mathbb{E}\left(s^{T}\right) & =\mathbb{E}\left(s^{5+W}\right) \\
& =s^{5} \mathbb{E}\left(s^{W}\right) \\
& =s^{5} H(s) \quad \text { by definition of } H(s) \\
& =\frac{s^{10}}{2-s^{5}}, \tag{2}
\end{align*}
$$

using the answer to (a).
(c) $G^{\prime}(1)=\mathbb{E}(T)$, the expected number of days from entering state C to next entering state C. This is E_{C} from Question 1.
3.(a) The arrows and probabilities are marked on the diagram.

Also marked on the diagram are times T, U, V, W, representing the total time taken to reach B, starting from the marked box.

(b) Starting from the states closest to B and using the notation on the diagram above:

$$
\begin{aligned}
\mathbb{E}(W) & =5 \text { days. } \\
\mathbb{E}(V) & =5+\mathbb{E}(W)=10 \text { days. } \\
\mathbb{E}(U) & =5+\frac{1}{2} \mathbb{E}(V)+\frac{1}{2} \mathbb{E}(W)=5+\frac{10}{2}+\frac{5}{2}=12.5 \text { days. } \\
\mathbb{E}(T) & =5+\mathbb{E}(U)=5+12.5=17.5 \text { days. }
\end{aligned}
$$

The required answer is therefore:

$$
\begin{equation*}
\mathbb{E}(T)=17.5 \text { days. } \tag{3}
\end{equation*}
$$

4.(a) The probability function is:

y	0	5
$\mathbb{P}(Y=y)$	0.8	0.2

(b)

$$
\begin{equation*}
G(s)=0.8+0.2 s^{5} \tag{1}
\end{equation*}
$$

(c)

$$
\begin{align*}
G_{2}(s) & =G(G(s)) \\
& =0.8+0.2(G(s))^{5} \\
& =0.8+0.2\left(0.8+0.2 s^{5}\right)^{5} \tag{3}
\end{align*}
$$

(d)

$$
\begin{equation*}
\mathbb{P}\left(Z_{2}=0\right)=G_{2}(0)=0.8+0.2(0.8)^{5}=0.866 \tag{2}
\end{equation*}
$$

(e) We need $\mathbb{E}\left(Z_{2}\right)=G_{2}^{\prime}(1)$. Now

$$
G_{2}^{\prime}(s)=0.2 \times 5\left(0.8+0.2 s^{5}\right)^{4} \times 0.2 \times 5 s^{4}
$$

so

$$
G_{2}^{\prime}(1)=0.2 \times 5(0.8+0.2)^{4} \times 1=1 .
$$

Thus

$$
\begin{equation*}
\mathbb{E}\left(Z_{2}\right)=G_{2}^{\prime}(1)=1 . \tag{3}
\end{equation*}
$$

