1.(a) The expressions are:

$$
\begin{aligned}
E_{S} & =1+E_{M} \\
E_{M} & =1+\frac{1}{4} E_{M}+\frac{3}{4} E_{D} \\
E_{D} & =1+\frac{1}{2} E_{D}+\frac{1}{4} E_{M}+\frac{1}{4} \times 0
\end{aligned}
$$

Basic simplification gives the following equations:

$$
\begin{align*}
E_{S} & =1+E_{M} \tag{1}\\
3 E_{M} & =4+3 E_{D} \tag{2}\\
E_{D} & =2+\frac{1}{2} E_{M} \tag{3}
\end{align*}
$$

Solving:

$$
\begin{aligned}
(3) \text { in }(2): \quad 3 E_{M} & =4+3\left(2+\frac{1}{2} E_{M}\right) \\
\Rightarrow \quad\left(3-\frac{3}{2}\right) E_{M} & =4+3 \times 2 \\
E_{M} & =\frac{20}{3}=6.67 \text { courses. }
\end{aligned}
$$

Substituting in (3),

$$
E_{D}=2+\frac{1}{2} \times \frac{20}{3}=\frac{16}{3}=5.33 \text { courses, as stated. }
$$

Substituting in (1):

$$
E_{S}=1+\frac{20}{3}=\frac{23}{3}=7.67 \text { courses in total. }
$$

The final answers are:

$$
\begin{equation*}
E_{S}=7.67, \quad E_{M}=6.67, \quad E_{D}=5.33 \tag{8}
\end{equation*}
$$

(b) The Main and Dessert courses each take an average of 5 minutes. Only Main and Dessert courses occur after the first entry into state Main.
Thus the total expected time, starting from first entry into state Main, is 5 minutes times the total expected \#courses, starting from first entry into state Main:
$\mathbb{E}\{$ time starting from first entry into state Main $\}=5 E_{M}=5 \times \frac{20}{3}=\frac{100}{3}$ minutes.
For the total expected time, we just need to add the 3 minutes expected time for one Soup course:

$$
\begin{equation*}
\mathbb{E}\{\text { total time }\}=3+\frac{100}{3}=\frac{109}{3}=36.3 \text { minutes. } \tag{3}
\end{equation*}
$$

(c) Define the following expectations:

$$
\begin{aligned}
D_{S} & =\mathbb{E}\{\# \text { desserts before stop, starting at entry into state Soup }\} \\
D_{M} & =\mathbb{E}\{\# \text { desserts before stop, starting at entry into state Main }\} \\
D_{D} & =\mathbb{E}\{\# \text { desserts before stop, starting at entry into state Dessert }\}
\end{aligned}
$$

Using first-step analysis, the equations are:

$$
\begin{aligned}
D_{S} & =D_{M} \\
D_{M} & =\frac{1}{4} D_{M}+\frac{3}{4} D_{D} \\
D_{D} & =1+\frac{1}{2} D_{D}+\frac{1}{4} D_{M}
\end{aligned}
$$

Basic simplification gives the following:

$$
\begin{align*}
D_{S} & =D_{M} \tag{4}\\
D_{M} & =D_{D} \tag{5}\\
D_{D} & =1+\frac{1}{2} D_{D}+\frac{1}{4} D_{M} \tag{6}\\
\text { Substitute (5) into (6) } \Rightarrow \quad D_{D} & =1+\frac{1}{2} D_{D}+\frac{1}{4} D_{D} \\
\Rightarrow \quad \frac{1}{4} D_{D} & =1 \\
\therefore \quad D_{D} & =4 \text { desserts. } \tag{4}
\end{align*}
$$

The expected number of desserts that the student eats is $D_{S}=4$.
2.(a) The redrawn diagram is below:

Define the following probabilities:

$$
\begin{aligned}
p_{M} & =\mathbb{P}\{\text { end in state } L M, \text { starting from state Main }\} \\
p_{D} & =\mathbb{P}\{\text { end in state } L M, \text { starting from state Dessert }\}
\end{aligned}
$$

We wish to find p_{M}. Using first-step analysis, the equations are:

$$
\begin{aligned}
p_{M} & =\frac{1}{2}+\frac{1}{2} p_{D} \\
p_{D} & =\frac{1}{4} p_{M}
\end{aligned}
$$

Substituting $p_{D}=\frac{1}{4} p_{M}$ into the expression for p_{M} :

$$
\begin{aligned}
p_{M} & =\frac{1}{2}+\frac{1}{2} \times \frac{1}{4} p_{M} \\
\Rightarrow \quad\left(1-\frac{1}{8}\right) p_{M} & =\frac{1}{2} \\
\Rightarrow \quad p_{M} & =\frac{4}{7} .
\end{aligned}
$$

The answer is:

$$
\begin{equation*}
p_{M}=\mathbb{P}(\text { last course eaten is a Main })=\frac{4}{7} . \tag{6}
\end{equation*}
$$

(b)

$$
\mathbb{P}(\# \text { desserts }>1)=1-\mathbb{P}(\# \text { desserts }=0)-\mathbb{P}(\# \text { desserts }=1)
$$

Using the diagram:

$$
\mathbb{P}(\# \text { desserts }=0)=\frac{1}{2}
$$

Similarly, to get exactly one dessert, we must enter state Dessert exactly once, following which we must either stop immediately, or return to state Main and then stop. So:

$$
\begin{aligned}
\mathbb{P}(\# \text { desserts }=1) & =\frac{1}{2}\left(\frac{3}{4}+\frac{1}{4} \times \frac{1}{2}\right) \\
& =\frac{7}{16} .
\end{aligned}
$$

Thus:

$$
\begin{align*}
\mathbb{P}(\# \text { desserts }>1) & =1-\mathbb{P}(\# \text { desserts }=0)-\mathbb{P}(\# \text { desserts }=1) \\
& =1-\frac{1}{2}-\frac{7}{16} \\
& =\frac{1}{16} . \tag{3}
\end{align*}
$$

The probability that the lecturer eats more than one dessert is $\frac{1}{16}$.

