1. The equations are:

$$
\begin{align*}
p_{M} & =q p_{U}+r p_{D} \tag{a}\\
p_{U} & =q+r p_{M} \tag{b}\\
p_{D} & =q p_{M} \tag{c}
\end{align*}
$$

Substituting (b) and (c) in (a):

$$
\begin{align*}
p_{M} & =q\left(q+r p_{M}\right)+r q p_{M} \\
p_{M}(1-2 q r) & =q^{2} \\
p_{M} & =\frac{q^{2}}{1-2 q r} \quad \text { as stated. } \tag{4}
\end{align*}
$$

2.(a) Define the following expectations:

$$
\begin{aligned}
E_{B} & =\mathbb{E}\{\# \text { cups of tea before stop, starting at entry into state Bird }\} \\
E_{C} & =\mathbb{E}\{\# \text { cups of tea before stop, starting at entry into state Cup of Tea }\} \\
E_{S} & =\mathbb{E}\{\# \text { cups of tea before stop, starting at entry into state Serpent }\} .
\end{aligned}
$$

We want to find E_{B}. Using first-step analysis, the equations are:

$$
\begin{align*}
E_{B} & =\frac{2}{6} E_{C}+\frac{3}{6} E_{S} \tag{a}\\
E_{C} & =1+E_{S} \tag{b}\\
E_{S} & =\frac{2}{3} E_{B} \tag{c}
\end{align*}
$$

Substituting (c) into (a):

$$
\begin{align*}
E_{B} & =\frac{2}{6} E_{C}+\frac{3}{6} \times \frac{2}{3} E_{B} \\
\Rightarrow \quad 2 E_{B} & =E_{C} \tag{d}
\end{align*}
$$

Substituting (d) and (c) into (b):

$$
\begin{align*}
2 E_{B} & =1+\frac{2}{3} E_{B} \\
\Rightarrow \quad \frac{4}{3} E_{B} & =1 \\
\Rightarrow \quad E_{B} & =\frac{3}{4} \quad(0.75) . \tag{6}
\end{align*}
$$

(b) Define the following probabilities:

$$
\begin{aligned}
p_{B} & =\mathbb{P}\{\text { no cups of tea before stop, starting at entry into state Bird }\} \\
p_{S} & =\mathbb{P}\{\text { no cups of tea before stop, starting at entry into state Serpent }\} .
\end{aligned}
$$

We wish to find p_{B}. The equations are:

$$
\begin{aligned}
& p_{B}=\frac{1}{6}+\frac{3}{6} p_{S} \quad \Rightarrow \quad 6 p_{B}=1+3 p_{S} \\
& p_{S}=\frac{2}{3} p_{B}+\frac{1}{3} \quad \Rightarrow \quad 3 p_{S}=2 p_{B}+1
\end{aligned}
$$

Substituting (b) in (a):

$$
\begin{align*}
6 p_{B} & =1+2 p_{B}+1 \\
\Rightarrow \quad p_{B} & =\frac{1}{2} \quad(0.5) . \tag{4}
\end{align*}
$$

(c) By inspecting the diagram:

$$
N=\left\{\begin{array}{ll}
1 & \text { with probability } 1 / 6 \\
1+M & \text { with probability } 5 / 6
\end{array} \quad M= \begin{cases}1 & \text { with probability } 1 / 3 \\
1+N^{\prime} & \text { with probability } 2 / 3\end{cases}\right.
$$

where $N^{\prime} \sim N$. Thus

$$
\mathbb{E}\left(s^{N}\right)=\left\{\begin{array}{lll}
s & \text { w.p. } 1 / 6 \\
s \mathbb{E}\left(s^{M}\right) & \text { w.p. } 5 / 6
\end{array} \quad \mathbb{E}\left(s^{M}\right)= \begin{cases}s & \text { w.p. } 1 / 3 \\
s \mathbb{E}\left(s^{N}\right) & \text { w.p. } 2 / 3\end{cases}\right.
$$

So

$$
\begin{align*}
G(s) & =\mathbb{E}\left(s^{N}\right) \tag{a}\\
H(s) & =\mathbb{E}\left(s^{M}\right)=\frac{1}{6} s+\frac{5}{6} s H(s) \quad \Rightarrow \quad 6 G(s)=s+5 s H(s) \tag{b}\\
3 & =\frac{2}{3} G(s)
\end{align*}
$$

Substituting (b) in (a):

$$
\begin{aligned}
6 G(s) & =s+5 s\left\{\frac{1}{3} s+\frac{2}{3} s G(s)\right\} \\
\Rightarrow \quad 18 G(s) & =3 s+5 s^{2}+10 s^{2} G(s) \\
\Rightarrow \quad G(s)\left(18-10 s^{2}\right) & =3 s+5 s^{2} \\
\Rightarrow G(s) & =\frac{3 s+5 s^{2}}{18-10 s^{2}} \quad \text { as stated. }
\end{aligned}
$$

Substituting this in (b):

$$
\begin{align*}
H(s) & =\frac{1}{3} s+\frac{2}{3} s \times \frac{3 s+5 s^{2}}{18-10 s^{2}} \\
& =\frac{s}{3} \times \frac{\left(18-10 s^{2}\right)+\left(6 s+10 s^{2}\right)}{18-10 s^{2}} \\
& =\frac{6 s+2 s^{2}}{18-10 s^{2}} \tag{6}
\end{align*}
$$

