(a) Define the following expectations:

$$
\begin{aligned}
m_{K} & =\mathbb{E}\{\text { time to finish, starting at entry into Kitchen }\} \\
m_{B} & =\mathbb{E}\{\text { time to finish, starting at entry into Bedroom }\} \\
m_{L} & =\mathbb{E}\{\text { time to finish, starting at entry into Lounge }\}
\end{aligned}
$$

Using first-step analysis, the equations are:

$$
\begin{align*}
m_{K} & =2+\frac{2}{5} m_{B}+\frac{2}{5} m_{L} \tag{a}\\
m_{B} & =15+m_{K} \tag{b}\\
m_{L} & =4+m_{K} \tag{c}
\end{align*}
$$

Substituting (b) and (c) into (a):

$$
\begin{aligned}
m_{K} & =2+\frac{2}{5}\left(15+m_{K}\right)+\frac{2}{5}\left(4+m_{K}\right) \\
\Rightarrow \quad 5 m_{K} & =10+30+2 m_{K}+8+2 m_{K} \\
\Rightarrow \quad m_{K} & =48 \text { minutes. }
\end{aligned}
$$

(b) Define the following expectations:

$$
\begin{aligned}
n_{K} & =\mathbb{E}\{\# \text { visits to bedroom, starting at entry into Kitchen }\} \\
n_{B} & =\mathbb{E}\{\# \text { visits to bedroom, starting at entry into Bedroom }\} \\
n_{L} & =\mathbb{E}\{\# \text { visits to bedroom, starting at entry into Lounge }\}
\end{aligned}
$$

We wish to find n_{K}. The equations are:

$$
\begin{align*}
n_{K} & =\frac{2}{5} n_{B}+\frac{2}{5} n_{L} \tag{a}\\
n_{B} & =1+n_{K} \tag{b}\\
n_{L} & =n_{K} \tag{c}
\end{align*}
$$

Substituting (b) and (c) into (a):

$$
\begin{align*}
n_{K} & =\frac{2}{5}+\frac{2}{5} n_{K}+\frac{2}{5} n_{K} \\
\Rightarrow \quad n_{K} & =2 \quad \text { (Expected number of visits to bedroom.) } \tag{4}
\end{align*}
$$

(c) $\quad \mathbb{E}(\#$ escapes $)=\mathbb{E}(\#$ visits to bedroom $)+\mathbb{E}(\#$ visits to lounge $)$.

The diagram is symmetrical in probabilities, so

$$
\mathbb{E}(\# \text { visits to lounge })=\mathbb{E}(\# \text { visits to bedroom })=2 \text { from part }(\mathrm{b}) .
$$

Thus

$$
\begin{equation*}
\mathbb{E}(\# \text { escapes })=2+2=4 \tag{2}
\end{equation*}
$$

(d) N is the number of visits to the bedroom, starting at the kitchen. By inspecting the diagram:

$$
N= \begin{cases}1+N^{\prime} & \text { with probability } 2 / 5 \\ 0 & \text { with probability } 1 / 5 \\ N^{\prime \prime} & \text { with probability } 2 / 5\end{cases}
$$

where $N^{\prime} \sim N^{\prime \prime} \sim N$. Thus

$$
\mathbb{E}\left(s^{N}\right)= \begin{cases}s \mathbb{E}\left(s^{N}\right) & \text { with probability } 2 / 5 \\ 1 & \text { with probability } 1 / 5 \\ \mathbb{E}\left(s^{N}\right) & \text { with probability } 2 / 5\end{cases}
$$

So

$$
\begin{align*}
G(s)=\mathbb{E}\left(s^{N}\right) & =\frac{2}{5} s G(s)+\frac{1}{5}+\frac{2}{5} G(s) \\
\Rightarrow \quad 3 G(s)-2 s G(s) & =1 \\
\Rightarrow \quad G(s) & =\frac{1}{3-2 s} \quad \text { as stated. } \tag{3}
\end{align*}
$$

(e)

$$
G(s)=\frac{1}{3-2 s}=\frac{1 / 3}{3 / 3-(2 / 3) s}=\frac{1 / 3}{1-(2 / 3) s}
$$

This is the PGF of the $\operatorname{Geometric}\left(p=\frac{1}{3}\right)$ distribution, so $N \sim \operatorname{Geometric}\left(p=\frac{1}{3}\right)$. Thus the probability that Mrs Figg and the cat never visit the bedroom is

$$
\begin{equation*}
\mathbb{P}(N=0)=\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{0}=\frac{1}{3} . \tag{3}
\end{equation*}
$$

(f) By inspection, the state at 10 minutes is partitioned by the following possibilities:

Steps	State at 10 minutes	Probability
$K \rightarrow B$	Bedroom	$\frac{2}{5}$
$K \rightarrow$ Success	Finished	$\frac{1}{5}$
$K \rightarrow L \rightarrow K \rightarrow B$	Bedroom	$\frac{2}{5} \times \frac{2}{5}=\frac{4}{25}$
$K \rightarrow L \rightarrow K \rightarrow$ Success	Finished	$\frac{2}{5} \times \frac{1}{5}=\frac{2}{25}$
$K \rightarrow L \rightarrow K \rightarrow L$	Lounge	$\frac{2}{5} \times \frac{2}{5}=\frac{4}{25}$

Thus

$$
\begin{aligned}
\mathbb{P}(\text { in bedroom after } 10 \text { minutes }) & =\frac{2}{5}+\frac{4}{25}=\frac{14}{25} \\
\mathbb{P}(\text { in lounge after } 10 \text { minutes }) & =\frac{4}{25} \\
\mathbb{P}(\text { finished after } 10 \text { minutes }) & =\frac{1}{5}+\frac{2}{25}=\frac{7}{25} .
\end{aligned}
$$

