1.(a) Define the following probabilities:

$$
\begin{aligned}
& p_{A}=\mathbb{P}(\text { last song played is } A \mid \text { start at the beginning of Song } A) \\
& p_{B}=\mathbb{P}(\text { last song played is } A \mid \text { start at the beginning of Song } B) \\
& p_{C}=\mathbb{P}(\text { last song played is } A \mid \text { start at the beginning of Song } C)
\end{aligned}
$$

Using first-step analysis, the equations are:

$$
\begin{align*}
& p_{A}=\frac{3}{4} p_{B}+\frac{1}{4} \times 1 \tag{a}\\
& p_{B}=\frac{1}{4} p_{A}+\frac{3}{4} p_{C} \tag{b}\\
& p_{C}=\frac{3}{4} \times 0+\frac{1}{4} p_{B} \tag{c}
\end{align*}
$$

Substituting (a) and (c) into (b):

$$
\begin{aligned}
p_{B} & =\frac{1}{4}\left(\frac{3}{4} p_{B}+\frac{1}{4}\right)+\frac{3}{4}\left(\frac{1}{4} p_{B}\right) \\
\Rightarrow \quad 16 p_{B} & =6 p_{B}+1 \\
\Rightarrow p_{B} & =\frac{1}{10} \\
\text { Substitute in (a) } \Rightarrow p_{A} & =\frac{13}{40}=0.325 .
\end{aligned}
$$

The probability that A is the last song played, starting from the beginning, is $p_{A}=0.325$.
(b) Define the following expectations:

$$
\begin{aligned}
& e_{A}=\mathbb{E}\{\# \text { times song } B \text { played } \mid \text { start at the beginning of Song } A\} \\
& e_{B}=\mathbb{E}\{\# \text { times song } B \text { played } \mid \text { start at the beginning of Song } B\} \\
& e_{C}=\mathbb{E}\{\# \text { times song } B \text { played } \mid \text { start at the beginning of Song } C\}
\end{aligned}
$$

Note that $\mathbb{E}(N)=e_{A}$. Using first-step analysis, the equations are:

$$
\begin{align*}
& e_{A}=p e_{B}+(1-p) \times 0 \tag{a}\\
& e_{B}=1+p e_{C}+(1-p) e_{A} \tag{b}\\
& e_{C}=(1-p) e_{B}+p \times 0 \tag{c}
\end{align*}
$$

Substituting (a) and (c) into (b):

$$
\begin{aligned}
e_{B} & =1+p(1-p) e_{B}+(1-p) p e_{B} \\
\Rightarrow \quad e_{B}\{1-2 p(1-p)\} & =1 \\
\Rightarrow e_{B} & =\frac{1}{1-2 p+2 p^{2}}
\end{aligned}
$$

Substitute in (a) $\Rightarrow e_{A}=\mathbb{E}(N)=\frac{p}{1-2 p+2 p^{2}}$, as stated.
(c) For $\mathbb{E}(N)=1$, we require:

$$
\begin{aligned}
1 & =\frac{p}{1-2 p+2 p^{2}} \\
\Rightarrow \quad 2 p^{2}-3 p+1 & =0 \\
\Rightarrow \quad(2 p-1)(p-1) & =0
\end{aligned}
$$

The two values of p that ensure $\mathbb{E}(N)=1$ are $p=\frac{1}{2}$ and $p=1$.
When $p=1$, the process goes $A \rightarrow B \rightarrow C \rightarrow$ Stop with certainty, so $N=1$ always and $\operatorname{Var}(N)=0$. When $p=\frac{1}{2}, N$ is not constant. Thus $p=\frac{1}{2}$ will give the higher variance for N.
2.(a) All states are symmetric, so we can imagine that the robber is in Room 1 and the policeman is in Room 2. At the next step, the robber will be in Room 2 with probability $1 / 3$ and either Room 3 or 4 with probability $2 / 3$ combined. The diagram is:

Define $m_{1}=\mathbb{E}\{$ number of steps to finish in Strategy $1 \mid$ start in state Different $\}$, then

$$
m_{1}=1+\frac{2}{3} m_{1} \quad \Rightarrow \quad m_{1}=3 \text { steps } .
$$

(b) Again, imagine that the robber is in Room 1 and the policeman is in Room 2. At the next step, we have the following possibilities, each with probability $1 / 9$:

Robber	Policeman		
2	1	3	4
3	1	3	4
4	1	3	4

The robber and policeman are in the same room with probability $2 / 9$: they could be both in Room 3 or both in Room 4. Thus the diagram is:

Define $m_{2}=\mathbb{E}\{$ number of steps to finish in Strategy $2 \mid$ start in state Different $\}$, then

$$
m_{2}=1+\frac{7}{9} m_{2} \quad \Rightarrow \quad m_{2}=9 / 2=4.5 \text { steps. }
$$

(c) We have $m_{1}=3$ and $m_{2}=4.5$. The policeman should use Strategy 1, because $m_{1}<m_{2}$.

