(a) Define the following expectations:

$$
\begin{aligned}
& m_{L}=\mathbb{E}(\text { number of balls before the end } \mid \text { start just before entering box } \mathrm{L}) \\
& m_{R}=\mathbb{E}(\text { number of balls before the end } \mid \text { start just before entering box } \mathrm{R})
\end{aligned}
$$

Using first-step analysis, the equations are:

$$
\begin{align*}
& m_{L}=1+\frac{1}{6} m_{L}+\frac{3}{6} m_{R} \tag{a}\\
& m_{R}=1+\frac{2}{4} m_{L}+\frac{1}{4} m_{R} \tag{b}
\end{align*}
$$

Rearranging (b):

$$
\begin{align*}
\frac{3}{4} m_{R} & =1+\frac{2}{4} m_{L} \\
\Rightarrow \quad m_{R} & =\frac{4}{3}+\frac{2}{3} m_{L} \tag{c}
\end{align*}
$$

Substituting (c) in (a):

$$
\begin{aligned}
\frac{5}{6} m_{L} & =1+\frac{2}{3}+\frac{1}{3} m_{L} \\
\frac{3}{6} m_{L} & =\frac{10}{6} \\
m_{L} & =\frac{10}{3}
\end{aligned}
$$

So also, from (c):

$$
\begin{equation*}
m_{R}=\frac{32}{9} \tag{5}
\end{equation*}
$$

(b) From the diagram,

$$
\begin{equation*}
\mathbb{E}(N)=\frac{1}{2} m_{L}+\frac{1}{2} m_{R}=\frac{1}{2}\left\{\frac{10}{3}+\frac{32}{9}\right\}=\frac{31}{9} . \tag{1}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\mathbb{P}(L, R, R, \text { Stop })=\frac{1}{2} \times \frac{3}{6} \times \frac{1}{4} \times \frac{1}{4}=\frac{1}{64} \quad(0.0156) \tag{2}
\end{equation*}
$$

(d) Define the following probabilities:

$$
\begin{aligned}
& p_{S}=\mathbb{P}(\text { get no Lefts before the end } \mid \text { start at state } \text { Start }) \\
& p_{R}=\mathbb{P}(\text { get no Lefts before the end } \mid \text { start at state } \mathrm{R})
\end{aligned}
$$

First-step analysis:

$$
\begin{align*}
p_{S} & =\frac{1}{2} p_{R}+\frac{1}{2} \times 0 \\
p_{R} & =\frac{1}{4} p_{R}+\frac{1}{4} \times 1+\frac{2}{4} \times 0 \\
\Rightarrow \quad \frac{3}{4} p_{R} & =\frac{1}{4} \\
p_{R} & =\frac{1}{3} \\
\therefore \quad p_{S} & =\frac{1}{6} . \tag{3}
\end{align*}
$$

The required probability is $p_{s}=\frac{1}{6}$.
(e) We need to define a new state, L_{2}, that describes getting the second Left in a row. Let L_{1} be a state describing the first Left in any sequence of Lefts. We can terminate the diagram at L_{2} because our interest is only in whether we hit state L_{2} before we hit state Stop: we don't care what happens after L_{2}.

The new diagram is here.

Define the following probabilities:
$h_{S}=\mathbb{P}$ (hit state $L_{2} \mid$ start at Start)
$h_{L}=\mathbb{P}\left(\right.$ hit state $L_{2} \mid$ start at $\left.L_{1}\right)$
$h_{R}=\mathbb{P}\left(\right.$ hit state $L_{2} \mid$ start at $\left.R\right)$

First-step analysis:

$$
\begin{align*}
h_{S} & =\frac{1}{2} h_{L}+\frac{1}{2} h_{R} \tag{a}\\
h_{L} & =\frac{1}{6}+\frac{3}{6} h_{R} \tag{b}\\
h_{R} & =\frac{2}{4} h_{L}+\frac{1}{4} h_{R} \tag{c}
\end{align*}
$$

$$
\begin{aligned}
(\mathrm{c}) & \Rightarrow & & h_{R}=\frac{2}{3} h_{L} \\
\text { Subst in (b) } & \Rightarrow & & h_{L}=\frac{1}{6}+\frac{1}{3} h_{L} \\
& \Rightarrow & & h_{L}=\frac{1}{4} \\
& \Rightarrow & & h_{R}=\frac{1}{6}
\end{aligned}
$$

Thus the probability of ever getting two lefts in a row is $h_{S}=\frac{1}{2} \times \frac{1}{4}+\frac{1}{2} \times \frac{1}{6}=\frac{5}{24}$ (0.208).
(f) False: The new diagram can not give the same distribution of N as the first diagram, for any p and q. The reason is that Left and Right balls do need to be distinguished. The probability of stopping after a Left ball $(2 / 6)$ is different from the probability of stopping after a Right ball $(1 / 4)$, so the two states can not be treated as having an identical stopping probability q.
To be sure that there is no p and q that can give the same distribution of N, we can show that we would need $q=\frac{1}{\mathbb{E}(N)}=\frac{9}{31}, p=\frac{22}{31}$ to match the value of $\mathbb{E}(N)$ given in (b). However, with these values of p and q, we would get $\mathbb{P}(N=1)=\frac{9}{31}$ with the new diagram, but $\mathbb{P}(N=1)=\frac{1}{2}\left(\frac{2}{6}+\frac{1}{4}\right)=\frac{7}{24}$ for the old diagram. These are not the same, so no values of p and q can give the required distribution of N.

Total:

