(a) Define the following expectations:

$$
\begin{aligned}
m_{B} & =\mathbb{E}(\text { number of times Baby passes the ball } \mid \text { start at state } \mathrm{B}) \\
m_{M} & =\mathbb{E}(\text { number of times Baby passes the ball } \mid \text { start at state } \mathrm{M}) \\
m_{D} & =\mathbb{E}(\text { number of times Baby passes the ball } \mid \text { start at state } \mathrm{D})
\end{aligned}
$$

First-step analysis equations: (note we add 1 only when Baby passes the ball)

$$
\begin{align*}
m_{B} & =1+\frac{1}{2} m_{M}+\frac{1}{2} m_{D} \tag{a}\\
m_{M} & =\frac{2}{5} m_{B}+\frac{1}{5} m_{D} \tag{b}\\
m_{D} & =\frac{3}{5} m_{B}+\frac{1}{5} m_{M} \tag{c}
\end{align*}
$$

Substitute (c) in (b):

$$
\begin{align*}
m_{M} & =\frac{2}{5} m_{B}+\frac{1}{5}\left(\frac{3}{5} m_{B}+\frac{1}{5} m_{M}\right) \\
\Rightarrow \quad m_{M} & =\frac{13}{24} m_{B} . \tag{d}\\
\text { In (c): } \quad m_{D} & =\left(\frac{3}{5}+\frac{1}{5} \times \frac{13}{24}\right) m_{B} \\
\Rightarrow \quad m_{D} & =\frac{17}{24} m_{B} . \tag{e}
\end{align*}
$$

Substitute (d) and (e) in (a):

$$
\begin{aligned}
m_{B} & =1+\frac{1}{2}\left(\frac{13}{24}+\frac{17}{24}\right) m_{B} \\
\Rightarrow \quad m_{B} & =\frac{8}{3}
\end{aligned}
$$

The final answer is
$m_{B}=\mathbb{E}($ number of times Baby passes the ball \mid start at state $B)=\frac{8}{3}=2.67$ times.
(b)

$$
\begin{equation*}
\mathbb{P}(B, D, M, \text { Stop })=1 \times \frac{1}{2} \times \frac{1}{5} \times \frac{2}{5}=\frac{1}{25}=0.04 \tag{2}
\end{equation*}
$$

(c) There are only two trajectories allowing only one pass: they are B, M, Stop and B, D, Stop. Thus

$$
\begin{align*}
\mathbb{P}(\text { only one pass }) & =\mathbb{P}(B, M, \text { Stop })+\mathbb{P}(B, D, \text { Stop }) \\
& =\frac{1}{2} \times \frac{2}{5}+\frac{1}{2} \times \frac{1}{5} \\
& =\frac{3}{10} \quad(0.3) \tag{2}
\end{align*}
$$

(d) (i) The new diagram distinguishes between the case where Mum stops the game (state MS), and the case where Dad stops the game (state DS).

(ii) Define the following probabilities:

$$
\begin{aligned}
p_{M} & =\mathbb{P}(\text { ends in state MS } \mid \text { start at state } \mathrm{M}) \\
p_{B} & =\mathbb{P}(\text { ends in state } \mathrm{MS} \mid \text { start at state } \mathrm{B}) \\
p_{D} & =\mathbb{P}(\text { ends in state } \mathrm{MS} \mid \text { start at state } \mathrm{D})
\end{aligned}
$$

(iii) First-step analysis equations: $p_{M}=\frac{2}{5}+\frac{2}{5} p_{B}+\frac{1}{5} p_{D}$

$$
\begin{align*}
& p_{B}=\frac{1}{2} p_{M}+\frac{1}{2} p_{D} \\
& p_{D}=\frac{3}{5} p_{B}+\frac{1}{5} p_{M} \tag{5}
\end{align*}
$$

Complete the solution by solving for p_{B}.
(e) Let state MD denote a pass from Mum to Dad. We can terminate the process here because it is the state of interest.

Diagram:

Define the notation:

$$
\begin{aligned}
p_{M} & =\mathbb{P}(\text { ends in state MD } \mid \text { start at state } \mathrm{M}) \\
p_{B} & =\mathbb{P}(\text { ends in state } \mathrm{MD} \mid \text { start at state } \mathrm{B}) \\
p_{D} & =\mathbb{P}(\text { ends in state MD } \mid \text { start at state } \mathrm{D})
\end{aligned}
$$

First-step analysis equations: $p_{M}=\frac{1}{5}+\frac{2}{5} p_{B}$

$$
\begin{align*}
& p_{B}=\frac{1}{2} p_{M}+\frac{1}{2} p_{D} \tag{b}\\
& p_{D}=\frac{3}{5} p_{B}+\frac{1}{5} p_{M}
\end{align*}
$$

Substitute (c) in (b):

$$
\begin{align*}
p_{B} & =\frac{1}{2} p_{M}+\frac{1}{2}\left(\frac{3}{5} p_{B}+\frac{1}{5} p_{M}\right) \\
\Rightarrow \quad p_{M} & =\frac{7}{6} p_{B} \tag{d}
\end{align*}
$$

Substitute (d) in (a):

$$
\begin{aligned}
\frac{7}{6} p_{B} & =\frac{1}{5}+\frac{2}{5} p_{B} \\
\Rightarrow \quad \frac{23}{30} p_{B} & =\frac{1}{5} \\
p_{B} & =\frac{6}{23}
\end{aligned}
$$

The final answer is:
$p_{B}=\mathbb{P}($ ever have a pass from Mum to Dad \mid start at state $B)=\frac{6}{23} \quad(0.261)$.

