1.(a) Define the following probabilities:

$$
\begin{aligned}
p_{S} & =\mathbb{P}(\text { visitor attends the Lecture } \mid \text { start at state } S) \\
p_{P} & =\mathbb{P}(\text { visitor attends the Lecture } \mid \text { start at state } P) \\
p_{R} & =\mathbb{P}(\text { visitor attends the Lecture } \mid \text { start at state } R)
\end{aligned}
$$

First-step analysis equations:

$$
\begin{align*}
& p_{S}=0.3 p_{P}+0.7 p_{R} \tag{a}\\
& p_{P}=0.4 p_{P}+0.3 p_{R}+0.2 \tag{b}\\
& p_{R}=0.5 p_{R}+0.2 p_{P}+0.1 \tag{c}
\end{align*}
$$

Rearrange (b) and (c) and multiply by 10 :

$$
\begin{align*}
6 p_{P} & =3 p_{R}+2 \\
5 p_{R} & =2 p_{P}+1
\end{align*}
$$

Substitute $3 \times\left(\mathrm{c}^{\star}\right)$ in $\left(\mathrm{b}^{\star}\right)$:

$$
\begin{aligned}
15 p_{R}-3 & =3 p_{R}+2 \\
\Rightarrow \quad p_{R} & =\frac{5}{12}=\frac{10}{24}=0.417
\end{aligned}
$$

Substitute $p_{R}=\frac{10}{24}$ in (b^{\star}):

$$
\begin{aligned}
6 p_{P} & =3 \times \frac{10}{24}+2 \\
\Rightarrow \quad p_{P} & =\frac{5}{24}+\frac{8}{24}=\frac{13}{24}=0.542 .
\end{aligned}
$$

Substitute $p_{P}=\frac{13}{24}$ and $p_{R}=\frac{10}{24}$ in (a):

$$
\begin{aligned}
p_{S} & =0.3 \times \frac{13}{24}+0.7 \times \frac{10}{24} \\
\Rightarrow \quad p_{S} & =\frac{109}{240}=0.454
\end{aligned}
$$

The final answer is:

$$
\begin{equation*}
p_{S}=\mathbb{P}(\text { visitor attends the Lecture } \mid \text { start at state } S)=\frac{109}{240}=0.454 . \tag{5}
\end{equation*}
$$

(b) Define the following expectations:

$$
\begin{aligned}
m_{S} & =\mathbb{E}(\text { number of Rides } \mid \text { start at state } S) \\
m_{P} & =\mathbb{E}(\text { number of Rides } \mid \text { start at state } P) \\
m_{R} & =\mathbb{E}(\text { number of Rides } \mid \text { start at state } R)
\end{aligned}
$$

First-step analysis equations: we add 1 ride only on the arrows leaving state \boldsymbol{R}.

$$
\begin{array}{ll}
m_{S}=0.3 m_{P}+0.7 m_{R} & \text { (a) } \\
m_{P}=0.4 m_{P}+0.3 m_{R} & \text { (b) } \\
m_{R}=1+0.5 m_{R}+0.2 m_{P} & \text { (c) (Add } 1 \text { for this equation only.) } \tag{b}
\end{array}
$$

Substituting (b) into $2 \times$ (c) and rearranging:

$$
m_{R}=2+0.4\left(\frac{3}{6}\right) m_{R} \quad \Rightarrow \quad m_{R}=\frac{2}{0.8}=2.5
$$

Thus from (b) and (a):

$$
\begin{aligned}
m_{P} & =\frac{3}{6} m_{R}=1.25 \\
m_{S} & =0.3 \times 1.25+0.7 \times 2.5=2.125
\end{aligned}
$$

The final answer is:

$$
\begin{equation*}
m_{S}=\mathbb{E}(\text { number of Rides } \mid \text { start at state } S)=\frac{17}{8}=2.125 \tag{4}
\end{equation*}
$$

(c) We are told there are 12 people currently in state P, and 48 people in state R.

Each of the 12 people in state P eventually attend the lecture independently with probability $p_{P}=\frac{13}{24}$ from part (a). Thus the number of these 12 who attend the lecture is $X_{1} \sim \operatorname{Binomial}\left(12, \frac{13}{24}\right)$ and the expected number is $\mathbb{E}\left(X_{1}\right)=12 \times \frac{13}{24}=6.5$.

Each of the 48 people in state R eventually attend the lecture independently with probability $p_{R}=\frac{10}{24}$ from part (a). Thus the number of these 48 who attend the lecture is $X_{2} \sim \operatorname{Binomial}\left(48, \frac{10}{24}\right)$ and the expected number is $\mathbb{E}\left(X_{2}\right)=48 \times \frac{10}{24}=20$.
Overall, the expected number of people to attend the Lecture out of these 60 people is:

$$
\begin{equation*}
\mathbb{E}\left(X_{1}+X_{2}\right)=\mathbb{E}\left(X_{1}\right)+\mathbb{E}\left(X_{2}\right)=6.5+20=26.5 \tag{3}
\end{equation*}
$$

2.(a) Consider:

$$
\begin{aligned}
Y & \sim \operatorname{Poisson}(\lambda) \\
X \mid Y & \sim \operatorname{Poisson}(3+Y)
\end{aligned}
$$

Then

$$
\mathbb{E}(X \mid Y)=3+Y \quad \text { and } \quad \operatorname{Var}(X \mid Y)=3+Y .
$$

Thus:

$$
\begin{align*}
\mathbb{E}(X+Y \mid Y) & =\mathbb{E}(X \mid Y)+Y \quad \text { (treating } Y \text { as a constant within the expectation) } \\
& =3+Y+Y \\
& =3+2 Y . \tag{1}
\end{align*}
$$

Similarly:

$$
\begin{array}{rlrl}
\operatorname{Var}(X+Y \mid Y) & =\operatorname{Var}(X \mid Y) \quad(Y \text { is a constant within the variance, and constants vanish }) \\
& =3+Y . & (2) \tag{2}
\end{array}
$$

Using the Law of Total Expectation:

$$
\begin{array}{rlr}
\mathbb{E}(X+Y) & =\mathbb{E}_{Y}\{\mathbb{E}(X+Y \mid Y)\} \\
& =\mathbb{E}_{Y}\{3+2 Y\} \quad \text { using (1) above } \\
\therefore \quad \mathbb{E}(X+Y) & =3+2 \lambda .
\end{array}
$$

Using the Law of Total Variance:

$$
\begin{align*}
\operatorname{Var}(X+Y) & =\mathbb{E}_{Y}\{\operatorname{Var}(X+Y \mid Y)\}+\operatorname{Var}_{Y}\{\mathbb{E}(X+Y \mid Y)\} \\
& =\mathbb{E}_{Y}\{3+Y\}+\operatorname{Var}_{Y}\{3+2 Y\} \quad \text { using (1) and (2) above } \\
& =3+\lambda+2^{2} \times \lambda \\
\therefore \quad \operatorname{Var}(X+Y) & =3+5 \lambda . \tag{5}
\end{align*}
$$

(b) Using probability as a conditional expectation (which is identical to the Partition Theorem for a discrete random variable Y):

$$
\begin{align*}
& \mathbb{P}(X+Y=10)= \sum_{y=0}^{10} \mathbb{P}(X+Y=10 \mid Y=y) \mathbb{P}(Y=y) \\
& \quad \text { (note that } \mathbb{P}(X+Y=10 \mid Y=y)=0 \text { if } y>10, \\
&\text { so the sum only goes up to } y=10) \\
&= \sum_{y=0}^{10} \mathbb{P}(X=10-y \mid Y=y) \mathbb{P}(Y=y) \\
&= \sum_{y=0}^{10} \frac{(3+y)^{10-y}}{(10-y)!} e^{-(3+y)} \mathbb{P}(Y=y) \\
& \quad \text { because }[X \mid Y=y] \sim \operatorname{Poisson}(3+y) \\
&= \sum_{y=0}^{10} \frac{(3+y)^{10-y}}{(10-y)!} e^{-(3+y)} \times \frac{\lambda^{y}}{y!} e^{-\lambda} \\
& \therefore \quad \mathbb{P}(X+Y=10)= \sum_{y=0}^{10} \frac{\lambda^{y}(3+y)^{10-y}}{y!(10-y)!} e^{-(3+y+\lambda)} . \tag{3}
\end{align*}
$$

Total:

