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Spatial Capture–Recapture Models
David Borchers and Rachel Fewster

Abstract. There has been a rapid growth in spatial capture–recapture (SCR)
methods in the last decade. This paper provides an overview of existing SCR
models and suggestions on how they might develop in future. The core of the
paper is a likelihood framework that synthesises existing SCR models. This
is used to illustrate similarities and differences between models.

The key difference between conventional capture–recapture models and
SCR models is that the latter include a spatial point process model for indi-
viduals’ locations and allow capture probability to depend on location. This
extends the kinds of inferences that can be drawn from capture–recapture
surveys, allowing them to address questions of a fundamentally spatial na-
ture, relating to animal distribution, habitat preference, movement patterns,
spatial connectivity of habitats and dependence of demographic parameters
on spatial variables.

Key words and phrases: Capture–recapture, competing risks, detection haz-
ard, Poisson process, spatial modelling.

1. INTRODUCTION

This review draws together the various spatial cap-
ture–recapture models in the literature into a com-
mon analytic framework. [We will call them “Spatial
capture–recapture” (SCR) rather than “Spatially ex-
plicit capture–recapture” (SECR) methods, for brevi-
ty.] Design issues are not considered, nor are diagnos-
tic or model selection issues. The focus is on the mod-
els, and to a lesser extent methods of inference. As the
majority of existing SCR models deal with closed pop-
ulation estimation, open population SCR Jolly–Seber
and Cormack–Jolly–Seber methods are reviewed only
briefly in the last section of the paper. We assume that
the reader is familiar with non-spatial CR models.

SCR models are distinguished from non-spatial CR
models by the fact that they include individuals’ loca-
tions as latent or hidden variables. This makes them
hierarchical. They can be considered to be state space
models of a sort, insofar as the locations of individuals
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in the population characterise the population state at
any time, and the observation process depends on this
state.

The paper is structured as follows: Section 2 intro-
duces spatial point process models, Section 3 deals
with spatial observation models, Section 4 develops
likelihood functions and deals briefly with inference
methods. Various extensions to the basic SCR models
are covered in Sections 5 through 9, followed by a dis-
cussion and summary in Section 10.

2. SPATIAL POINT PROCESS MODELS

Consider a population of individuals occupying
some finite two-dimensional region. The column vec-
tor si denotes the Cartesian coordinates of the loca-
tion of individual i in the population. We treat indi-
viduals’ locations as realisations of some spatial point
process and arrange these vectors in an N × 2 matrix
SN = (s1, . . . , sN)′ in which the number of rows (N ) is
random and the ith row is s′

i . For a given value of N ,
we denote this matrix SN |N to make conditioning on
N explicit. The first n rows are the locations of the n

individuals that are detected on a survey, and we denote
these Sn.

The notation “[ ]” is used to denote a probability
distribution, so that [SN,N] = [SN |N ][N ], for exam-
ple, where [N ] is the probability mass function of N
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and [SN |N ] is the probability density function of indi-
viduals’ locations, given that there are N individuals.
To avoid more complicated notation than is essential,
we do not distinguish in our notation between random
variables and realisations of random variables. The dis-
tinction is usually apparent from the context.

We can think of SN as arising from a spatial point
process with two sub-levels:

[N ]: The lowest level is a stochastic model for in-
dividual abundance, N .

[SN |N ]: Given N , this is a stochastic model for the
locations of the N individuals.

Most SCR models used to date assume a homoge-
neous, uncorrelated distribution of individuals in space.
This is a computationally convenient but a biologi-
cally unrealistic model for most populations. Follow-
ing Borchers and Efford (2008), we deal with the case
in which individuals occur in the survey region accord-
ing to a nonhomogeneous Poisson process (NHPP).
This covers almost all SCR spatial models currently
in the literature (Reich and Gardner, 2014, is an ex-
ception; see Section 2.1) and allows variation in den-
sity in space, but not dependence between the loca-
tions of individuals. We assume that individuals occur
in the plane according to an NHPP with intensity λ(s)
at location s. As λ(s) is the population density at s,
which must be non-negative, dependence on s is natu-
rally modelled using a log link function, that is,

λ(s) = ex′β,(1)

where x is a column vector of explanatory variables.
This would include s or spatially referenced variables
evaluated at s. To accommodate non-monotonic depen-
dence on explanatory variables, Borchers and Kidney
(2014) proposed use of regression splines in the linear
predictor x′β and this method is implemented in the
maximum likelihood package “secr” (Efford, 2013).

With this model, N has a Poisson distribution

[N ] = �Ne−�

N ! ,(2)

where � = ∫
λ(s) ds, where integration is over the sub-

set of R
2 comprising the survey region. Conditional

on N , and noting that the order of the rows in SN is
arbitrary so that there are N ! ways to get the same set
of sis,

[SN |N ] = N !
N∏

i=1

λ(si)

�
.(3)

The joint distribution of SN and N constitutes an
NHPP:

[SN,N] = e−�
N∏

i=1

λ(si ).(4)

2.1 More Complex Spatial Point Process Models

A somewhat limiting feature of an NHPP is that
while it accommodates spatial variation in density,
it does not accommodate spatial correlation. Using a
Neyman–Scott process (see Illian et al., 2009, pp. 374–
379) is one way to model this; another is to use a log-
Gaussian Cox process (LGCP) (see Illian et al., 2009,
pp. 381–382). This is obtained by modelling the inten-
sity of the NHPP, λ(s), as a log-linear function of a
Gaussian random field {Z(s)} (which has spatial corre-
lation structure), for example, λ(si ) = eZ(si ).

One can also usefully extend an NHPP by adding
“marks”, that is, features of points, to give a marked
NHPP. This allows individual-level characteristics that
may vary in space to be modelled. One such feature
might, for example, be group size, where group loca-
tions are governed by an NHPP or LGCP.

While LGCPs can deal with spatial clustering, they
do not readily accommodate spatial avoidance, as
would be typical of territorial species for example.
Candidate spatial models for this situation include
a Strauss process and other “pair potential” spatial
models (see Illian et al., 2009, pp. 141–142). Reich
and Gardner (2014) developed an SCR model using a
Strauss process with constant density in the survey re-
gion (unlike the NHPP, which allows varying density).

3. SPATIAL DETECTION MODELS

The observation process in SCR studies depends on
the realisation of the spatial point process: which indi-
viduals you detect where, depends on where the indi-
viduals are located. It also obviously depends on the
detector locations. We denote the detector locations
L = (l1, . . . , lK)′, where lk (k = 1, . . . ,K) is a column
vector of Cartesian coordinates of the kth detector’s lo-
cation. Individuals are more likely to be detected by a
detector that was close (by some measure) to its loca-
tion (si for individual i) than a detector that was far
away, so the observation process is a function of the
distance measure dik of the individual’s location, si ,
from the detector’s location, lk . For brevity, we do not
include L explicitly in expressions for the observation
process.

It is useful to formulate the observation process as a
hierarchy too, conditional on the realisation SN of the
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spatial point process. To do this, we define for individ-
ual i (i = 1, . . . ,N ) the following hierarchy of random
variables:

δi is 1 if the individual was detected at all in the
course of the survey, and is zero otherwise,

δij is 1 if the individual was detected on occasion j ,
and is zero otherwise,

δijk is 1 if the individual was detected on occasion j

by detector k, and is zero otherwise,
nijk is the number of times that the individual was

detected by detector k on occasion j , and
tijkm is the time of the mth detection of the individual

at detector k on occasion j .

Notice that the minimal data required for capture–
recapture of any sort is δij , while the minimal data
required for spatial capture–recapture is δijk (together
with the locations of the detectors). The counts nijk

provide additional information over and above that
contained in δijk , and detection times tijkm provide
additional information over and above that. So any
capture–recapture study that recorded which detectors
made detections (and the locations of all detectors) is
amenable to analysis using SCR methods. This means
that any survey that recorded these data, even if it oc-
curred prior to the advent of SCR methods, can be anal-
ysed using SCR methods.

We assume that individuals are detected indepen-
dently. While this may not always be the case (see
Section 3.2.1 below), inference becomes more difficult
when it is not. The probability of observing an individ-
ual at any detector on a survey, given its location s, is
p(s), and with independent detections the probability
distribution of � = (δ1, . . . , δN) is

[�|SN ] =
N∏

i=1

p(si )
δi

{
1 − p(si )

}1−δi .(5)

Before considering capture history models, we take
a diversion to look at ways of parameterising the inclu-
sion probability function p(s).

3.1 Detection Hazard and Encounter Rate Models

For brevity, p(si ) is written as pi and it is the proba-
bility of individual i being detected on some occasion
by some detector, while pij is the probability that it
is detected on occasion j by some detector, and pijk

is the probability that it is detected on occasion j by
detector k.

It is useful to formulate the detection process for
each individual at each detector in terms of a rate per

unit time at which detections are expected to occur.
We denote this rate for individual i on occasion j at
detector k at time t by hijk(t). When more than one
detection is possible within an occasion (with proxim-
ity detectors—see below), the expected number of en-
counters of individual i on occasion j by detector k in
the time period 0 to Tj , is the cumulative hazard over

a time period, which we denote Hijk = ∫ Tj

0 hijk(u) du.
And whether or not more than one detection is possi-
ble per occasion, the probability of individual i “sur-
viving” detection (i.e., failing to be detected) by detec-
tor k over a time period of length Tj on occasion j is
Sijk = e−Hijk . (Bold S indicates a matrix of Cartesian
coordinates of individuals, while non-bold S indicates
a detection survival function.)

Detection probability is the complement of the sur-
vival function Sijk :

pijk = 1 − Sijk = 1 − e−Hijk .(6)

With independent detections over time, detection
times [tijk = (tijk1, . . . , tijkmijk

) for the mijk detections
of individual i on occasion j by detector k] are ob-
servations from an NHPP in time. As with the spatial
NHPP intensity function, λ( ), a log link function can
be used to make the detection rate function h( ) depend
on covariates:

hjk(si , t) = e
x′
ijkθ .(7)

Here, xijk is a column vector of explanatory variables
for individual i that includes si , and if encounter rate
varies with occasion or time, j or t . For example, with
x′
ijk = (1,‖si − lk‖) and θ = (θ0, θd)′ the detection rate

is a function of the distance dik = ‖si − lk‖ of the point
si from the detector location lk , which for now we as-
sume is the same for all j .

All SCR models are of type Mh in the classification
scheme of Otis et al. (1978), that is, they have hetero-
geneity in detection probability at the level of the in-
dividual. This is because with SCR models, individu-
als’ detection probabilities depend on their locations.
There is scope for variety within each of the model
types of Otis et al. (1978). For example, one could
make the intercept (θ0 above) and/or the range param-
eter (θd above) depend on occasion and/or behavioural
response and/or additional individual covariates other
than distance dik . In short, SCR models greatly extend
the variety of possible model types, so that while the
classification of Otis et al. (1978) is useful at a gross
level, it is inadequate to describe the rich variety of
possible SCR models. The ability to model detection
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probability in more complex ways with SCR models
does not of course mean that data will be adequate to
support more complex models.

Not all SCR detection probability models in the lit-
erature use the hazard rate formulation, and most ig-
nore Tj . Notwithstanding this, we can rewrite any de-
tection probability model in terms of a detection hazard
function for a given T . For example, the half-normal
detection function pijk = g0 exp{−d2

ik/σ
2} (0 ≤ g0 ≤

1;σ > 0) which is probably the most widely-used
form, can be rewritten in a hazard rate form (with
hazard hijk independent of time t) by letting hijk =
− log(1 − g0 exp{−d2

ik/σ
2})/T . An advantage of for-

mulating it in this manner is that it provides a way of
modelling the dependence of capture probability on the
length of time that individuals are at risk of detection
(see Efford, Borchers and Mowat, 2013). The analyst
has the option of modelling at the detection function
level (e.g., pijk = g0 exp{−d2

ik/σ
2}) or at the hazard

level (e.g., hijk = h0 exp{−d2
ik/σ

2
h }) and it is straight-

forward to switch between the two.
If individuals are detected independently, then the

probability of detecting individual i on at least one de-
tector on occasion j , and of detecting the individual at
all are, respectively,

pij = 1 − e−Hij and pi = 1 − e−Hi ,(8)

where Hi = ∑
j Hij is the total detection hazard of the

K detectors over the study for individual i and Hij =∑
k Hijk is the total detection hazard on occasion j for

this individual. For notational brevity, 1 − pij and 1 −
pi are usually written as Sij and Si below.

3.2 Models for Capture Histories and Associated
Responses

We write the capture history of individual i at de-
tector k over the J occasions of the survey as ωik =

(δi1k, . . . , δiJ k), and its capture history over all detec-
tors is ωi = (ωi1, . . . ,ωiK). We collect together all in-
dividuals’ capture histories in � = (ω1, . . . ,ωN). The
form that its probability distribution takes depends on
the kind of detectors used. Following Efford, Borchers
and Byrom (2009), it is useful to distinguish between
three kinds of detector:

Single-catch traps: these detain individuals when
they detect them and are taken out of action by the
detection process. A cage trap is an example of a
single-catch trap.
Multi-catch traps: these detain individuals when
they detect them but do not “fill up”. Mist nests are
examples of multi-catch traps.
Proximity detectors: these do not detain individuals
and do not fill up. A camera trap is an example of a
proximity detector.

It is also useful to distinguish between three kinds of
response (i.e., kinds of detection):

Binary: only records of whether or not individuals
were detected at each detector on each occasion are
available.
Counts: records of how many times each individual
was detected at each detector on each occasion are
available.
Times: records of the times of each detection of
each individual at each detector on each occasion are
available.

Capture–recapture data are traditionally of the bi-
nary kind, but some detectors can generate counts or
times of detection. Different kinds of detectors can
generate different kinds of response, and impose dif-
ferent independence constraints on detections. These
are summarised in Table 1.

All detector types involve independence between
captures of the same individual on different occasions
(given si and the covariates xijk : j = 1, . . . , J ;k =

TABLE 1
Types of independence within occasions, and types of responses possible for different detector types. “(Yes)” indicates that this kind of

response is possible in principle, but whether or not it is available depends on the particular detector used

Independence

Detector Between detectors Between individuals Possible response type

type within individual? at each detector? Binary? Count? Time?

Single-catch No No Yes No (Yes)
Multi-catch No Yes Yes No (Yes)
Proximity Yes Yes Yes (Yes) (Yes)
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1, . . . ,K). We define δij = 1 if an individual was cap-
tured on occasion j and δij = 0 otherwise, and define
the vector δi = (δi1, . . . , δiJ ). It follows that

[δi |δi, si] =
{

1

pi

∏
j

p
δij

ij S
1−δij

ij

}δi

.(9)

3.2.1 Binary data. With single-catch and multi-
catch traps, more than one capture occasion is required
to generate capture–recapture data and on occasion j

individual i generates a binary response at detector k:
δijk which is 1 if the individual was captured on the
occasion by the detector, and zero otherwise.

Detections between individuals within occasions are
not independent in the case of single-catch traps (since
catching one individual will in general reduce the cap-
ture probabilities for others, by taking one trap out of
action). A general expression for the probability distri-
bution of capture histories remains to be developed for
this case.

With multi-catch traps, detections between individ-
uals are independent, but detections between traps are
not: once an individual is caught by one trap it cannot
be caught by any others. In this sense, traps “compete”
to catch individuals, and a competing risks survival
model formulation is appropriate. So for a survey of
J occasions, the conditional probability of observing
capture history ωi , given that individual i was detected
on at least one occasion, is a product of multinomials
with index 1:

[ωi |δi , si]multi =
J∏

j=1

K∏
k=1

(
Hijk

Hij

)δijk

.(10)

With proximity detectors, in which detections of the
same individual at different detectors are indepen-
dent events, the capture history distribution, condi-
tional on δi , is a product of Bernoulli distributions

[ωi |δi , si]prox =
J∏

j=1

(
1

pij

K∏
k=1

p
δijk

ijk S
1−δijk

ijk

)δij

.(11)

3.2.2 Count data. Some proximity detectors, such
as camera traps, record how many times individuals
were detected. If independence of detections can be
assumed, then given ωik and δi = 1, we can write
the probability of obtaining the count history ni =
(ni1, . . . ,niK), where nik = (ni1k, . . . , niJ k) for detec-
tor k and nijk is the number of times it was detected
on occasion j by detector k, is the product of zero-

truncated Poisson distributions, as follows (remember-
ing that pijk = 1 − e−Hijk ):

[ni |ωi , si]prox =
J∏

j=1

K∏
k=1

(
1

pijk

H
nijk

ijk e−Hijk

nijk!
)δijk

.(12)

3.2.3 Event time data. Some proximity detectors,
like camera traps, record the exact times of detection
or capture. In this case, given ni , and assuming inde-
pendent detection between detectors, the p.d.f. of de-
tection times ti = (ti11, . . . , ti1K, . . . , tiJ1, . . . , tiJK),
where tijk = (tijk1, . . . , tijknijk

), is

[ti |ni , si]prox =
J∏

j=1

K∏
k=1

[tijk|nijk, si]
(13)

=
J∏

j=1

K∏
k=1

nijk!
nijk∏
r=1

hijk(tijkr )

Hijk

(where we define the product over r to be 1 if nijk = 0).

3.3 Spatial Capture History Models

The appropriate form for the capture history model
is readily constructed by using the relevant conditional
distributions above as building blocks. For example,
with multi-catch traps and binary data (omitting θ for
brevity),

[�,�|SN ]
(14)

= [�|SN ]
N∏

i=1

[δi |δi, si][ωi |δi , si]multi.

For proximity detectors with count data,

[n,�|SN ]
(15)

= [�|SN ]
N∏

i=1

[δi |δi][ωi |δi , si]prox[ni |ωi , si]prox,

where n = (n1, . . . ,nN). And for proximity detectors
with detection times

[t,�|SN ] = [�|SN ]
N∏

i=1

[δi |δi][ωi |δi , si]prox

(16)
· [ni |ωi , si]prox[ti |ni , si]prox,

where t = (t1, . . . , tN).
For use below, note that the products in equa-

tions (14)–(16) can be factorised into a component
for the n detected individuals (with δi = 1) and the
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N −n undetected individuals. For example, the compo-
nents for the detected individuals in the cases of equa-
tions (14) and (15) are

[�n|Sn] =
n∏

i=1

[δi |δi, si][ωi |δi , si]multi(17)

and [
(n1, . . . ,nn)|Sn

]
(18)

=
n∏

i=1

[δi |δi][ωi |δi , si]prox[ni |ωi , si]prox,

where �n = (ω1, . . . ,ωn) is the capture histories of de-
tected individuals, and Sn = (s1, . . . , sn) is their loca-
tions.

3.4 Data and Detection Model Hierarchy

SCR extends non-spatial CR by adding a spatially-
referenced capture indicator, δijk , for each detector
within occasions. Depending on the detector type, we
may also have capture frequencies, nijk , and perhaps a
set of capture times, tijkr as well. There may be addi-
tional data layers on top of this also; see Section 7.1.

Our aim in constructing detection models in the
hierarchical way that we have done above, is peda-
gogical rather than practical. We have tried to show
how the various SCR detection models that appear in
the literature are related to one another, how count
data models are binary data models supplemented with
counts, for example, and how time-to-detection mod-
els are count models with temporal data. While this
formulation does let you construct any SCR detection
model by using the appropriate building blocks, [δi |δi],
[ωi |δi , si]prox, etc., as in equations (14) to (16), this is
probably not the most straightforward way of doing so
if your aim is to get an expression for the detection
model rather than to show how models are related. For
example, equation (18) reduces to

[�n|Sn] =
n∏

i=1

J∏
j=1

K∏
k=1

H
nijk

ijk e−Hijk

nijk! .(19)

This is just a Poisson regression model. Neither δi

nor ωi appear in it, and you do not need [δi |δi],
[ωi |δi , si]prox to obtain it.

4. INFERENCE METHODS

Three approaches to SCR inference have been de-
veloped. The first, inverse prediction, was developed
by Efford (2004) and although Bayesian and maximum

likelihood methods have to a large extent replaced it, it
remains the only method that can explicitly deal with
single-catch traps.

We do not cover single-catch trap likelihoods. Dis-
tiller and Borchers (2015) developed an approximate
SCR MLE for the case in which the capture times are
known, although Efford, Borchers and Byrom (2009)
showed that use of a multi-catch SCR MLE for single-
catch trap data works remarkably well for estimating
overall density in many situations. This was confirmed
by Distiller and Borchers (2015) although they found
that in some such situations inferences about spatial
distribution (rather than overall density) are biased.

4.1 Complete-Data and Semi-Complete-Data
Likelihoods

Because Bayesian inference tends to proceed from
what is sometimes called a “complete data likelihood”
(see Schofield and Barker, 2016, for example) in this
volume, which here means the likelihood as if we ob-
served SN , we start with this. Two cases have been con-
sidered, one in which the distribution of SN is modelled
using equation (4), and one in which the conditional
distribution of SN |N given N , is modelled using equa-
tion (3). We refer to the former as the “Poisson model”
and the latter as the “Binomial model”.

King et al. (2016) developed what they call a “semi-
complete-data likelihood”, which here means the like-
lihood as if we observed the locations Sn of the n de-
tected individuals, but not the locations of the unde-
tected individuals. They developed this only for the
Binomial model, but we consider it below for the Pois-
son model as well. Bayesian inference with a semi-
complete-data likelihood has some advantages over
Bayesian inference with a complete-data likelihood, as
outlined below. Maximum likelihood estimation pro-
ceeds from the “observed data likelihood”, and in-
volves marginalising a semi-complete-data likelihood
over the (unobserved) locations of detected individu-
als.

We illustrate complete-data and semi-complete-data
likelihoods below using the capture histories � as the
response. The cases in which one has count data or de-
tection time data are obtained similarly, but with n or t
in place of �.

4.1.1 Complete data likelihoods. Recall that the
spatial point process model has a parameter vector β
and the observation model has parameter vector θ . If
we observed SN , then the likelihood for the parameters
(β, θ), given �, SN and X can be written as follows
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(note that once we know �, we know �, but for model
description it is useful to condition on � in the likeli-
hood):

Lλ = [SN |β] × [�|SN ; θ][�|�,SN ; θ].(20)

The spatial point process model is in the first term and
the observation model is in the second and third.

For the Binomial model, in which we condition
on N , the complete-data likelihood is as follows:

LN = [SN |N;β] × [�|SN ; θ ][�|�,SN ; θ ].(21)

4.1.2 Semi-complete-data likelihoods. Noting that
detecting individuals from an NHPP with probability
p(s) at s, amounts to thinning the NHPP, the likelihood
component for Sn is a thinned NHPP:

[Sn;β, θ] = e−�̃
n∏

i=1

λipi,(22)

where λi = λ(si ) and �̃ = ∫
λ(s)p(s) ds. As there is no

uncertainty about δ for detected individuals, the only
other randomness in what is observed is in the cap-
ture histories of detected animals, �n = (ω1, . . . ,ωn),
and so the Poisson model semi-complete-data likeli-
hood involves the product of just two components:

Lλ̃ = [Sn|β, θ][�n|Sn; θ ].(23)

To get the Binomial model semi-complete-data like-
lihood, we write the product [SN |N;β][�|SN ; θ ] as

[SN |N;β][�|SN ; θ ]
(24)

= N !
{

n∏
i=1

fipi

}{
N∏

i=n+1

fi(1 − pi)

}
,

where fi = f (si ) = λ(si )
�

. Noting that sn+1, . . . , sN are
i.i.d. so that integrals can be taken inside the second
product above, we integrate the locations of the un-
observed individuals out of this equation. Dividing by
(N − n)! to deal with the fact that without their loca-
tions in the likelihood, the N − n unobserved individ-
uals are indistinguishable from one another, we get the
Binomial model semi-complete-data likelihood:

L
Ñ

∝ N !
(N − n)!

{
n∏

i=1

fipi

}

(25)
· {

1 − E(p)
}N−n[�n|Sn; θ ],

where E(p) = ∫
f (s)p(s) ds.

4.2 Bayesian Inference

Starting with Royle and Young (2008), Bayesian
SCR methods have focussed on the Binomial model
complete-data likelihood. With this approach SN is
treated as a parameter vector, and since N is unknown,
the parameter space has unknown dimension. While
reversible jump MCMC is one way of dealing with
this, it has not been used to date. Instead, Bayesian ap-
proaches for SCR use data augmentation with regular
MCMC, adding a vector of i.i.d. latent binary variables
z1, . . . , zM , with M > N and zi = 1 indicates that indi-
vidual i is part of the population exposed to capture. It
is assumed that [zi] = φzi (1 − φ)1−zi , independently
for all individuals, with φ, rather than N , being the
focus of inference. There is an element of arbitrari-
ness about the magnitude of M , but Royle et al. (2014)
(p. 92) say that “results will be insensitive to choice
of M , unless the data set is sufficiently small that pa-
rameters are weakly defined”.

Another way of dealing with the fact that the comp-
lete-data likelihood has unknown parameter dimen-
sion, is to use one of the semi-complete-data likeli-
hoods instead. These do not involve the locations of the
undetected individuals and are therefore of fixed and
known parameter dimension. This approach was de-
veloped for the Binomial model by King et al. (2016),
who found it to be much more efficient than using the
complete-data likelihood and data augmentation. No
Bayesian inference method has been developed to date
for the Poisson model semi-complete-data likelihood
equation (23), but there is no obstacle to doing so.

The semi-complete-data likelihood approach ex-
ploits the fact that the capture histories for all unde-
tected individuals are the same, reducing the dimen-
sion of the parameter space by (N − n) (which can be
a large number) and, crucially, converting the problem
from one with unknown parameter dimension to one
with known dimension, at the cost of having to evalu-
ate a single two-dimensional numerical integral. This
integral is

∫
f (s)p(s) ds in the case of the Binomial

model; see equations (24) and (25). In the case of the
Poisson model, it is the integral

∫
λ(s)p(s) ds.

Although the parameter space for individual i’s lo-
cation, si , is continuous, comprising a subset of R

2

that includes all individual locations from which de-
tection by at least one of the K detectors is possible,
all Bayesian and frequentist inference approaches that
have been implemented to date discretise this space
into an mx × my grid of points, which we will de-
note S, and they allow only si ∈ S. (The Bayesian SCR
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literature tends to call S a “state space”, while the fre-
quentist literature tends to call it a “mask”.) The cost
of too coarse a discretisation (mx and/or my too small)
is a poor approximation to the continuous space in
which individuals are really located, and possibly bi-
ased inference. The advantage of coarser discretisation
is computational speed. To implement both Bayesian
and frequentist methods, one also needs to decide on
the extent of S, that is, a maximum distance of points
from any detector that is to be included in S. To avoid
bias, this distance must not be shorter than the maxi-
mum distance from which an individual could be de-
tected by a detector. As this is not known, or at best
only roughly known, some experimenting with differ-
ent sizes of S is usually done prior to doing inference,
to find something like a minimum size and resolution
of S beyond which estimates are insensitive to change.

4.3 Maximum Likelihood Inference

Maximum likelihood inference in the presence of
latent variables typically proceeds by marginalising
over the latent variables, and in the case of SCR
this involves integrating s1, . . . , sn out of the Poisson
model or Binomial model semi-complete-data likeli-
hood functions (23) or (25). This is the approach that
was developed for SCR maximum likelihood inference
by Borchers and Efford (2008).

Integration is typically done numerically by defining
a discrete location space S as above, and using some-
thing as simple as a trapezoidal rule, although more so-
phisticated numerical integration methods might also
be used.

Maximum likelihood estimates (MLEs) of θ and β
(and with Binomial models, N ) are obtained by numer-
ically maximising this marginal likelihood with respect
to these parameters. Interval estimates can usually be
obtained using the inverse of the Hessian matrix ob-
tained from numerical maximisation, by profile likeli-
hood, or by bootstrap (see Section 7.2 below for a sit-
uation in which bootstrap is necessary). A number of
authors, including Borchers and Efford (2008), Efford,
Dawson and Borchers (2009) and Efford (2011) have
found that using the inverse of the Hessian to estimate
variance gives coverage probabilities close to the nom-
inal 95% in the studies they considered.

5. ADDITIONAL INDIVIDUAL RANDOM EFFECTS

Borchers and Efford (2008) developed MLE meth-
ods with an additional latent variable by adapting the fi-
nite mixture model developed by Pledger (2000) in the

context of non-spatial CR surveys, for SCR surveys.
Royle et al. (2014) propose a model with a continuous,
normally distributed random effect. The motivation for
such models is as a mechanism for dealing with un-
observable (and usually unknown) sources of hetero-
geneity in detection probability: the latent variable is
a mechanism for modelling heterogeneity in capture
probabilities that cannot be explained by observed co-
variates. We will denote the latent variable u, or u if it
is a vector.

5.1 Partially Observed Latent Variables

Sometimes a latent variable is observed when indi-
viduals are detected but not otherwise. Sex is an exam-
ple. Royle et al. (2015) developed a Binomial model
and MLE for this case, while Efford (2013) imple-
mented a Poisson model and MLE in the R package
secr. These models are constructed as described for
the latent variable above, but marginalisation is over
only the latent variables associated with undetected in-
dividuals, or if the variable is unobserved for some de-
tected individuals, for these and the undetected individ-
uals.

5.2 The Conditional Likelihood Approach

An alternative to extending the hierarchical SCR
model to incorporate a new latent variable layer, is to
perform inference in two steps: (1) estimate detection
probabilities pijk , and hence pi for each detected in-
dividual from a conditional likelihood (conditional on
individuals having been detected). (2) Use a Horvitz–
Thompson-like estimator to estimate N (and/or den-
sity) conditional on the n estimates of p1, . . . , pn. See
Borchers and Efford (2008) for details.

The advantage of this method is that it does not re-
quire specification of [u]. When u is univariate and
binary, like sex, specifying a suitable form for [u] is
straightforward. But when u is a vector, it may be dif-
ficult to know what a suitable form for the multivariate
distribution [u] is, and in this case a conditional likeli-
hood approach may be appealing.

6. MODELLING DETECTION BY MOVEMENT

Because individuals are detected by virtue of their
movement with detectors like camera traps, these de-
tectors allow inferences to be drawn about individuals’
activity patterns, movements and habitat use.

6.1 Integrating Telemetry Data

6.1.1 Telemetry data for detection probability. A
relatively simple way in which telemetry data can be
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used with SCR survey data is to use an SCR detec-
tion function model to parameterise the telemetry data.
One might, for example, assume that animals distribute
themselves about their home range centre according to
a bivariate normal distribution (as did Sollmann et al.,
2013a, for example), and use this same bivariate nor-
mal model as an SCR detection function model.

6.1.2 Telemetry data and resource selection. Royle
et al. (2013) proposed a model that integrates telemetry
data and camera trap data for the case in which indi-
viduals are identifiable from photographs, and used it
to draw inferences about habitat use and connectivity.
This model was criticised by Efford (2014) because al-
though the resource selection model includes a term ac-
counting for the quality of the resources available to the
individual in the vicinity of its activity centre, the de-
tection hazard does not. This detection hazard implies
that two individuals equidistant from a given detector,
one with very good resources in its immediate vicin-
ity, the other with very poor resources in its immediate
vicinity are equally likely to travel to the detector—and
this contradicts the resource selection model.

6.2 Non-Euclidian Distance

The SCR detection models described above use Eu-
clidian distance dik to measure the distance of individ-
uals’ activity centres from detectors, but when detec-
tion is by virtue of movement, as is the case with traps,
this may be too simple a model. Sutherland, Fuller
and Royle (2015) developed an SCR model that uses
a least-cost distance metric to reflect habitat preference
in the way animals move, and that moving the same
distance through different environments has different
costs. A parameter determining the extent to which
movement is affected by habitat covariates is estimated
with other SCR parameters. In addition to accommo-
dating habitat preference in the SCR detection func-
tion, the model allows inferences to be drawn about
space usage patterns and habitat connectivity.

6.3 Alternative Detection Function
Parameterisations

Efford and Mowat (2014) argue on biological
grounds that the range and intercept of the detection
function pijk will tend to be negatively correlated.
(Individuals that travel further on average will tend
to spend less time at any point and, therefore, have
lower detection probability at any point, including at
their activity centres, than individuals that travel less.)
They therefore propose a reparameterisation of the de-
tection hazard, in which one parameter involves the

product of the intercept parameter and the range pa-
rameter of the hazard function [i.e., (σ 2h0), where
hijk = h0 exp{−d2

ik/2σ 2}] and the other is the range
parameter (σ 2). The negative correlation between h0
and σ 2 results in (σ 2h0) being much more stable than
either of its component parameters, and not highly cor-
related with σ 2. In a broadly similar vein, Efford et al.
(2015) note that there is evidence that home range
size, encapsulated in the half-normal detection func-
tion range parameter σ , is inversely proportional to
root density

√
D across a range of densities and pro-

pose using a parameter that is the product of these two.

7. ACOUSTIC SURVEYS AND SUPPLEMENTARY
LOCATION DATA

Whereas most SCR surveys involve detection and
identification of individuals, some involve detection
of what we will call “cues”, that is, evidence of the
presence of individuals by virtue of something they
produce. Dung surveys are an example: because ge-
netic identification of individuals from dung is pos-
sible, SCR methods can be used to estimate animal
density without ever detecting any animals, but detect-
ing their dung. This is useful because for some species
dung can be much easier to detect and to survey than
the animals producing it.

Similarly, SCR methods can be used to estimate den-
sity by detecting vocalisations without ever detecting
the vocalising individuals. This allows SCR methods
to be used with vocalising species that are difficult to
see but easy to hear. Examples include various species
of songbird (see Efford, Dawson and Borchers, 2009,
Efford and Dawson, 2009, e.g.), frogs (see Stevenson
et al., 2015, e.g.) vocalising primates such as gibbons
(see Borchers et al., 2014, e.g.) and some cetacean
species (see Marques et al., 2010, e.g.).

7.1 Supplementary Location Data and Acoustic
Detection Functions

A somewhat unique feature of acoustic detections
is that they often come with supplementary informa-
tion about the location of the vocalising individuals, in
the form of precise times of arrival of sound at detec-
tors (when detectors are synchronised microphones),
received signal strength (again with microphones), es-
timated angles to sound source (with human detectors
and some types of microphone) and/or estimated dis-
tances to sound sources (in the case of human detec-
tors). These data can be used by incorporating proba-
bility models that are conditional on sound source loca-
tion, si , for each kind of supplementary location data,
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into likelihoods. Dawson and Efford (2009), Borchers
et al. (2015) and Stevenson et al. (2015) developed
and used additional probability models for received
signal strength, Borchers et al. (2015) and Stevenson
et al. (2015) for time-of-arrival data, and Borchers et al.
(2015) for estimated angles and estimated distances.
Incorporating such data can improve estimator preci-
sion substantially and in some cases reduce bias (see
Borchers et al., 2015, Stevenson et al., 2015, for exam-
ple).

Efford, Dawson and Borchers (2009) and Stevenson
et al. (2015) developed detection functions specifi-
cally for acoustic data, which are formulated in terms
of received signal strength exceeding some thresh-
old value. One can envisage that the detection models
with non-Euclidian distance developed by Sutherland,
Fuller and Royle (2015) will be very useful for acoustic
SCR surveys in which acoustic propagation is habitat-
dependent: in the same way that animals will move
preferentially through certain habitats, sound propa-
gates better through some habitats than others.

7.2 Acoustic Identification and Independence

There are problems that arise on acoustic surveys
that do not arise when individuals themselves are de-
tected. Primary among these is the difficulty of individ-
ual identification from acoustic signals. While it may
be relatively easy to identify “recaptures” of the same
vocalisation on different detectors, it may be very diffi-
cult to identify individuals themselves from their calls.
In this case, one can estimate call density from the SCR
survey and separately estimate call rate in order to es-
timate individual density (see Stevenson et al., 2015).

Another problem is lack of independence of call
source locations. Because the locations of different
calls from the same individual are not independent if
the individual’s location is not independent for each
call (as is virtually always the case), care needs to be
taken to incorporate this lack of independence when
obtaining interval estimates when we do not know
which calls are from which individuals. Stevenson
et al. (2015) describes a bootstrap method for obtaining
valid interval estimates in this case.

8. INCOMPLETE CAPTURE HISTORIES

We consider the case in which a known number,
n, of individuals (regarded as a random sample from
the population) carry individual marks and the rest of
the population cannot be individually identified. A sur-
vey with these characteristics is often called a “mark-
resight” survey.

While SCR models and inference with a marked
sample of the population are possible with single-
catch, multi-catch and proximity detectors generating
binary, count or detection time data, only SCR with
proximity detectors and count data has been consid-
ered in the literature. This is no doubt because (a) with
single- and multi-catch traps you get the opportunity to
mark all captured individuals so “mark-resight” meth-
ods are redundant, (b) the kinds of proximity detectors
that generate only binary data (hair snares and dung
surveys, e.g.) generally allow identification of all cap-
tured individuals, and (c) models with detection times
have seldom been used to date. Here, we review only
Binomial models for proximity detectors with count
data.

For this scenario, the part of the likelihood associated
with the known number n of individuals with known
identities is

Ln ∝
n∏

i=1

fi

J∏
j=1

K∏
k=1

H
nijk

ijk e−Hijk

nijk! .(26)

In addition to the recapture data, total counts ujk

(j = 1, . . . , J ;k = 1, . . . ,K) of unmarked/unidenti-
fiable individuals are observed at each detector on
each occasion (without knowing how many individu-
als the counts correspond to). The joint distribution of
u = (u11, . . . , uJK) and Su = (sn+1, . . . , sN) is easy to
write down but computationally intractable for all but
the smallest and simplest datasets. It is

[u,Su] = ∑
n∈N

N∏
i=n+1

fi

J∏
j=1

K∏
k=1

H
nijk

ijk e−Hijk

nijk! ,(27)

where N is the set of all realisations of n = (n(n+1)11,

. . . , nNJK) such that for all j , k,
∑

i nijk = ujk . The
complete-data Binomial model likelihood is the prod-
uct of equations (26) and (27).

Chandler and Royle (2013) developed a Bayesian
data augmentation method for drawing inferences
about N and other parameters from equation (27)
alone (without any capture history data), assuming uni-
form fi . This method relies entirely on spatial clus-
tering of detections informing inferences about abun-
dance and is therefore likely to be sensitive to assump-
tions about both fi and about (lack of) spatial variation
in detection functions, although this has not been inves-
tigated. They applied the method to an acoustic survey
of birds using 105 detectors, spaced such that individ-
uals are virtually certain to be detected at more than
one detector. While they were able to obtain posterior
estimates of N , the credible intervals ranged from the
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minimum possible number (i.e., 1) to roughly six times
the posterior median, and posterior estimates were sen-
sitive to assumed priors (results are summarised in Ta-
ble 18.2 of Royle et al., 2014). This method has not
been shown to produce practically useful estimates of
abundance.

However, when a sample of the population is marked
[and the product of equations (26) and (27) is used
as the likelihood], estimator performance can improve
markedly, so that this method is potentially very useful
for a wide variety of species—for any population that
is not naturally marked, but in which a sufficient num-
ber of randomly sampled individuals can be marked.
Table 2 of Chandler and Royle (2013) summarises the
improvement in estimator performance in a simulated
population of 75 individuals as between about 7% and
50% of the population is marked, with RMSE decreas-
ing by about 60%.

Building on work of Chandler and Royle (2013),
Sollmann et al. (2013b, 2013a) integrated telemetry
data and associated likelihood (some marked individ-
uals also had radio collars; see also Section 6.1 above)
with the above likelihood for mark-resight data. Credi-
ble interval half-widths were estimated to be about 8%
of the posterior median in the case of Sollmann et al.
(2013b) and about 50% in the case of Sollmann et al.
(2013a), which involved only three radio-collared indi-
viduals.

9. OPEN POPULATION MODELS

9.1 Modelling with a Series of Unlinked SCR
Estimates

With a series of SCR surveys, each providing an es-
timate of density or abundance, the simplest way to
model change in population size across the duration
of the surveys is to fit an empirical smooth of den-
sity or abundance over time. This approach is char-
acterised by the fact that recapture data do not per-
sist between the series of SCR surveys (or if they
do, are not used). SCR data are used to obtain a se-
ries of abundance estimates, without linking detec-
tions across the series. Borchers and Efford (2008) did
this assuming a log link between density and time,
which restricts change to being monotonic (always in-
creasing or always decreasing) but one can quite eas-
ily allow for non-monotonic change too. Following a
method proposed by Borchers and Kidney (2014) for
spatial smoothing, Efford (2013) implemented tempo-
ral smoothing using regression splines.

9.2 More Integrated Open Population SCR
Modelling

A more elegant and more powerful way to model
population dynamics with SCR data is to incorpo-
rate recapture data across the whole period of interest.
Relatively little work has been done on open popula-
tion SCR models of this sort. Royle et al. (2014) and
Gardner et al. (2010) consider Jolly–Seber (Jolly, 1965,
Seber, 1965) SCR (JSSCR) models, while Ergon and
Gardner (2013) and Royle et al. (2014) developed
Cormack–Jolly–Seber (Cormack, 1964, Jolly, 1965,
Seber, 1965) SCR (CJSSCR) models. Two key differ-
ences between non-spatial CJS and CJSSCR models
are (a) that movement, and hence emigration, is mod-
elled explicitly and separately from survival (see Ergon
and Gardner, 2013), which requires a spatio-temporal
model for how locations change between surveys, and
(b) that survival can be made dependent on location.
This adds complexity, but it also adds versatility in the
ability to explicitly model survival as a function of lo-
cation.

Complete-data JSSCR likelihood functions, which
model recruitment as well as survival, can be devel-
oped in a similar way, and although they did not write
the likelihood down, Gardner et al. (2010) developed
an open population model that accommodates birth and
death (albeit without spatial dependence), as did Royle
et al. (2015). Both used Bayesian data augmentation
with MCMC methods for inference. Bayesian MCMC
methods are well suited to open population models be-
cause they allow sampling from the posterior without
having to marginalise over latent variables. With closed
population SCR methods this is not really an advantage
because the latent variable structure is usually low di-
mensional and simple enough that marginalisation is
quick and easy. But because of the time series nature
of open population models, marginalising is more diffi-
cult, and Bayesian MCMC methods provide a powerful
general tool for inference in such cases.

9.3 Movement and Transience

Inference with a realistic movement model can be
challenging. Gardner et al. (2010) avoid this problem
by assuming no movement across surveys while Royle
et al. (2015) assume independence in locations of in-
dividuals across surveys. These are the two relatively
easy cases: constant locations and temporally indepen-
dent locations.

For many studies, a more realistic model is one in
which individuals’ locations vary in time but there
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is temporal dependence in any individual’s location
across time. Royle et al. (2015) note the similarity
between such a model and multi-state CR models,
while also noting the fact that SCR involves contin-
uous space (albeit approximated by a large number
of discrete points), whereas multi-state CR models in-
volve very few discrete states, and this makes infer-
ence for SCR open population models with tempo-
rally correlated locations considerably more challeng-
ing. Gardner et al. (2010) and Royle et al. (2015)
proposed a diffusion process model for movement,
Ergon and Gardner (2013) proposed what they de-
scribe as a more general dispersal model for their
CJSSCR model, which they fit using MCMC methods,
and Royle, Fuller and Sutherland (2016) developed a
Bayesian SCR estimator of abundance and movement,
modelling movement as Markovian transience or dis-
persion. Royle, Fuller and Sutherland (2016) found
their estimator to perform well, and interestingly also
found that a maximum likelihood estimator that as-
sumes no movement in locations estimated abundance
with little bias, although it gave biased estimates of de-
tection function range parameters. They therefore cau-
tion against drawing inferences about movement from
detection function range parameters from this model
when there may be movement of individuals’ activ-
ity centres. A more realistic model for many species
might be an Ornstein–Uhnlenbeck process (Ornstein
and Uhnlenbeck, 1930), which unlike a diffusion pro-
cess, has a centre of attraction, but this remains to be
investigated with SCR models.

10. DISCUSSION AND SUMMARY

To the extent that all CR surveys involve captures
at given spatial locations, all CR surveys are SCR sur-
veys. SCR methods can do everything that non-spatial
CR methods can do, and more besides (estimating den-
sity, modelling spatial distribution and dealing with un-
modelled heterogeneity due to heterogeneity in indi-
vidual locations, for example). Non-spatial CR meth-
ods are a special case of SCR methods, the special case
being that spatial information has been discarded or has
not been recorded.

One important practical aspect of SCR surveys that
we have omitted is the spatial extent of individual de-
tectors. We have treated the detectors as points above,
but SCR methods for detectors that are lines or ar-
eas of polygons have also been developed. These in-
volve somewhat different detection function models;
see Royle and Young (2008) and Efford (2011) for de-
tails and examples.

Because Bayesian methods deal so easily with hier-
archical models, they seem naturally suited to SCR in-
ference. But for most SCR models, marginalising over
the individual random effects (and individual locations,
in particular) is numerically straightforward and fast,
and frequentist inference methods have proved to be
faster than Bayesian methods. Bayesian methods come
into their own in more complex scenarios, like those of
Sections 8 and 9.2, where the difficulty of marginalis-
ing presents very substantial challenges for frequentist
methods.

Existing methods have only begun to explore the
potential for drawing inferences about the spatio-
temporal processes of populations from SCR data.
Likely future developments include the following:

Integrated movement modelling: There is a rapidly
growing body of research developing and fitting real-
istic models for modelling animal movement trajecto-
ries from individual radio tag and GPS tag data. There
is opportunity here to integrate individual movement
models and continuous-time SCR models to improve
inference at both population and individual levels.

Recapture uncertainty: While there has been a lot
of recent research activity dealing with this for non-
spatial CR, (see Link, 2003, Wright et al., 2009, Link
et al., 2010, McClintock et al., 2014a, 2014b, Fewster,
Stevenson and Borchers, 2016, in this volume, for ex-
ample) no methods have as yet been developed for
dealing with uncertainty about recapture identity on
SCR surveys. The increasing use of automated meth-
ods of species and individual identification from visual
or acoustic recordings is likely to require new methods
of dealing with this uncertainty.

Better spatial and spatio-temporal modelling: SCR
methods have only just begun to realise their poten-
tial to inform realistically complex spatial and spatio-
temporal models, and we can expect substantial devel-
opments in this area in the near future.

In summary, SCR methods have added a new dimen-
sion to CR, both literally and figuratively. A simple
illustration of the sea change that this induces is the fact
that reliable SCR inference is possible using data from
a single occasion with proximity detectors (in which
case capture histories are purely spatial), whereas a
survey with a single occasion is an anathema to non-
spatial CR.

In the same vein, a fundamental way in which SCR
changes CR is that by explicitly including space, it
provides a new tool for addressing questions of a fun-
damentally spatial nature such as species distribution,
habitat preference, movement patterns, spatial connec-
tivity and spatial aspects of population dynamics.
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