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What is capture-recapture?

Capture-recapture describes a suite of methods where we make repeated attempts to capture
animals (or in general, objects) from a population. We need to be able to recognise each animal
individually. The aim is to learn enough about the recapture process that we can draw conclusions
about the animals that were not captured.

Capture-recapture data typically consist of capture histories which specify a 0 (not caught) or a
1 (caught) for each of k capture occasions. The following capture history across k = 5 capture
occasions denotes an animal that was caught on occasions 3 and 5:

0 0 1 0 1

The full data-set is a data frame where each row denotes the capture history of one animal:

1 0 0 0 0
1 0 0 1 0
0 0 1 0 1
...

...
...

The population probably contains animals with capture history 000 . . . 0 that were never seen,
and of course these cannot be listed in the data.

The precise conclusions we wish to draw about the population differ according to context, with
the major distinction being between closed and open population models.

• Closed population capture-recapture involves populations that are assumed to be closed
for the duration of the study: no births, deaths, immigration, or emigration. Our interest in
closed populations is estimating population size, N .

Using the animals that we do capture, we know how often we missed them on each capture
attempt. This enables us to estimate the capture probability at each occasion, and hence the
number of animals that were missed every time: in other words, the number with capture
history 000 . . . 0 that were never seen. Along with the animals that we did see, this gives us
the population size, N .

Models for closed populations are often referred to by well-known abbreviations M0, Mt, Mb,
Mh, Mtb, Mtbh, . . . . The letters t, b, and h describe characteristics of the recapture process,
described later.
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• Open population capture-recapture methods are used to study populations that do have
births, deaths, immigration, and emigration in some combination. The questions of interest
here fall into two main categories:

— Survival-only models: here we only care about estimating survival; not about birth or
population size. This is the province of Cormack-Jolly-Seber (CJS) models. Estimation
can be done easily by conditioning on first capture and disregarding the animals that are
never caught. All we need is that the same survival processes should apply to all animals,
whether caught or not.

The idea of survival-only capture-recapture is that there comes a point where a string of
zeros in the capture history is unlikely to be due to repeated capture failure and probably
indicates that the animal has died. For example, consider the capture history:

1 0 1 1 1 0 0 0 0 0 0 0 0 0 0

The initial intensity of captures fizzles out at later times. It’s likely that the animal has
died, although we don’t know how many of the final zeros denote death and how many
denote lack of capture while alive. We don’t attempt to estimate the exact time of death
for each animal, but rather to estimate the survival probability,

φ = P(survives to time t+ 1 | alive at time t).

This relies on having enough information about the recapture process throughout the
study for the model to be able to distinguish between lack-of-capture and lack-of-survival.

— Survival, recruitment, and population size: as soon as we wish to know about
population growth or recruitment, in other words births and immigration, we can no
longer condition on first capture, because the capture of new individuals that we didn’t
know about previously is exactly what informs us about birth and immigration. The
same goes for estimating population size: the population probably includes animals that
were never caught, so we don’t gain information about population size by conditioning on
capture.

Jolly-Seber (JS) models were the original models for estimating recruitment and population
size along with survival in open populations. These have been improved over the years and
there is now a suite of models in this category: notably POPAN models; Pradel models;
and robust design models. We will look at all these later.

Capture histories inform us about birth in much the same way as they inform us about
death. For example, consider the capture history:

0 0 0 0 0 1 0 1 1 1 0 0 0 0 0

If the recapture probability is sufficiently high, it’s unlikely that an animal would avoid
capture for all of the first 5 capture occasions, and again for all of the last 5. Thus this
capture history would tend to suggest an animal that was born at some point after the
start of the study, and died before the end of the study. Again, we don’t attempt to
deduce an exact time of birth or death, but rather to estimate parameters that control
the probability of animals joining the population or leaving the population at each time.
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The examples above demonstrate that learning about the recapture process is pivotal to capture-
recapture, because this is how we elicit non-captures despite presence in closed population
models, and distinguish between non-capture, death, and not-yet-birth in open populations.
This explains the pivotal role of capture probabilities to capture-recapture inference. Although
they are nuisance parameters, they underpin all inference of interest. Unfortunately, inference
on the interest parameters is often sensitive to violation of assumptions about capture proba-
bility, for example if individuals differ in their catchability (known as individual heterogeneity).
This is what makes capture-recapture modelling complicated, and as the models become com-
plicated they also have an awkward tendency to become less-than-well-behaved with regards
to statistical properties that we often take for granted when modelling.

Where to find out more

A good place to get a quick overview of any particular class of capture-recapture models is the
manual for program Mark (Cooch and White, 2013). The recent book Analysis of Capture-
Recapture Data by McCrea and Morgan (2015) is another excellent resource, being comprehen-
sive, up-to-date and readable. These resources are good for getting anchored in the literature
on most aspects of capture-recapture, with the exception of spatial capture-recapture mod-
els which are still too recent to be comprehensively covered. Books about spatially-explicit
capture-recapture are on the way, as are a couple of review papers by David Borchers.

Closed population capture-recapture

Most mark-recapture models follow the same general structure, given below. Different models
allow different simplifications of this structure in terms of sufficient statistics, and sometimes
it takes a bit of work to recognise the resulting likelihood as a special case of the general
structure. For this reason it is helpful to start with the most general case and simplify for
individual models, rather than starting with the simplest cases and generalising. When building
complicated models, it is really helpful to know what the formulation ‘must’ look like in terms
of general structure.

We will start with closed populations because the notation and definitions are quite simple.

Design and assumptions:

• There are k capture occasions: t = 1, 2, . . . , k.

• Capture histories of different animals are independent of each other.

• The population is closed, both geographically (no immigrants / emigrants) and demo-
graphically (no births /deaths).

• Animals can be correctly recognised on recapture (no mark loss).

Parameters:

• N is the unknown number of animals in the closed population, and is the parameter of
interest.
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• θ is a set of parameters controlling capture probability.

– Define pθ to be the probability that an animal is ever caught. This has to be the
same for all animals, because we know nothing about the animals that were never
caught.

– As an example, Model Mt assumes that all animals have the same capture probability
at time t. Then θ is the vector of capture probabilities for times t = 1, . . . , k : so
θ = (p1, . . . , pk). The probability that an animal is never caught is

(1− p1)(1− p2) . . . (1− pk),

so pθ is the complement:

pθ = 1−
k∏

t=1

(1− pt).

Data:

• n is the total number of animals ever caught. (The notation D is sometimes used instead
of n, where D denotes the number of distinct animals in the sample.)

• xi is the capture history of animal i, where xi is a string of 0s and 1s of length k: for
example we might have xi = 00110 when k = 5. We observe capture histories x1, . . . ,xn,
and the remaining N − n animals in the population have capture history 00 . . . 0.

Likelihood structure

The likelihood of the parameters (N,θ) based on data (n ;x1, . . . ,xn) is:

L (N,θ) =

(
N

n

)
(1− pθ)N−n

n∏
i=1

P(xi ; θ) . (1)

This likelihood differs from run-of-the-mill statistical models in that it is not a regular likelihood:
it does not comprise independent, identically distributed observations drawn from a specified
probability distribution, due to the leading binomial term. Additionally, the range of the data
n is truncated by the parameter N , because we require n ≤ N . The non-regularity means
that we cannot assume that standard maximum likelihood theory will necessarily apply. In
particular, we will see below that the asymptotic distribution of N̂ is lognormal, rather than
normal.

It is perhaps more obvious to see why (1) is the right formulation if we rewrite it as follows:

L (N,θ) =

(
N

n

)
pnθ (1− pθ)N−n

n∏
i=1

{
P(xi ; θ)

pθ

}
. (2)

Conceptually, we first choose n of the N animals to be detected, with probability pθ each.
The likelihood of this step depends upon both N and pθ. We then go through the chosen
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animals i = 1, . . . , n one at a time, and factor in the likelihood of the specific capture history
of animal i, conditional on animal i being detected. The likelihood factorization amounts to
the formulation:

P (n, {xi}) = P(n)P ({xi} |n) .

To check that (2) has the correct structure, imagine that there is only one capture occasion,
leading to only two possible capture histories: xi = 1 with probability pθ, or xi = 0 with
probability 1− pθ. Then (2) reduces to the standard binomial likelihood,

L (N,θ) =

(
N

n

)
pnθ (1− pθ)N−n,

which is correct, despite being useless for estimation (as there are two parameters and only one
piece of data, n).

Estimation using the full likelihood

The likelihood L (N,θ) in (2) can be maximized with respect to N and θ to find the maximum

likelihood estimates, N̂ and θ̂. As usual, we typically minimize the negative log-likelihood.
Although parameter N (the population size) is strictly-speaking an integer, it is much easier to
treat it as a continuous parameter so that the usual optimization functions can be used. The
following reference list is useful:

• log(N ! ) = lgamma(N+1), where lgamma is the log-gamma function in R, and this rela-
tionship extends continuously when N is treated as a continuous parameter. This means
that log(N ! ) can be replaced by lgamma(N+1) for all N ∈ R+ when coding the likelihood.

• There are a couple of ways of computing log
(
N
n

)
in R:

log

{(
N

n

)}
= log(N ! )− log {(N − n)!} − log (n!)

= lgamma(N + 1)− lgamma(N− n + 1)− lgamma(n + 1)

= lchoose(N, n).

• The first and second derivatives of the log-gamma function are respectively called the
digamma and trigamma functions. In particular, the following identities are useful for
brave souls who wish to compute analytical likelihood derivatives:

∂

∂N
log

{(
N

n

)}
= digamma(N + 1)− digamma(N− n + 1)

=
N∑

r=N−n+1

1

r
for N ∈ R+ and n ∈ N+

= sum( 1/seq(N-n+1,N) ) ;
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and

∂2

∂N2
log

{(
N

n

)}
= trigamma(N + 1)− trigamma(N− n + 1)

=
N∑

r=N−n+1

− 1

r2
for N ∈ R+ and n ∈ N+

= -sum( 1/seq(N-n+1,N)2 ) .

• The gamma and digamma functions have their own Wikipedia pages:

https://en.wikipedia.org/wiki/Gamma_function

https://en.wikipedia.org/wiki/Digamma_function

Note that the digamma and trigamma functions are derivatives of the log of the gamma
function.

The non-regularity of the likelihood follows through to a non-standard asymptotic distribution
of the MLEs. The following result is proved in Fewster and Jupp (2009):

Result: The MLE of population size, N̂ , has an asymptotic log-normal distribution; whereas the
MLEs of the capture parameters, θ, have asymptotic normal distributions.

(Practical experiment suggests that there is only a small difference between CIs for N calculated
under lognormal and normal protocols, except perhaps as the sample size transitions from ‘nowhere-
near-good-enough’ to ‘nearly-good-enough’, at which point the CI coverage properties do seem to be
a little better under the lognormal approximation. Nevertheless, we might as well get it right.)

Practical guide to DIY closed-model capture-recapture using the full likelihood

The following steps usually seem to work pretty well.

1. Create a suitably awesome parametrization of the capture history probabilities P(xi ; θ) in
terms of the parameters θ.

(Note: I didn’t really mean that. As we shall see below, ‘awesome’ models have a habit of becoming
statistically unviable. My real recommendation is to sort out as much of the complexity as possible
by sampling design, so that at the modelling stage you can hope to use a very simple model.)

2. Minimize the negative logarithm of equation (1) or (2) with respect to N and θ.

(I prefer R functions nlm and nlminb, with nlm seemingly the more reliable. Many people use optim,
but I’ve found it very unreliable: just my bad luck or really true? Supplying analytic gradient and
hessian functions will greatly enhance the performance of nlm, but is often unrealistic. Alternatively,
ADMB can give excellent results when the model is sufficiently complicated or slow to merit the extra
coding effort. ADMB is not a magic bullet: I’ve seen it fail where nlm succeeds effortlessly; however
more often ADMB succeeds brilliantly where nlm is either extremely slow or needs extremely good
starting values to find the optimum.)
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3. Find estimated variances or standard errors of the MLEs by one of the following methods:

• Use nlm(..., hessian=TRUE): the hessian is returned with the final estimates. The
following code is illustrative.

mle.res <- nlm(negloglike.func, p=startvals, hessian=T, typsize=startvals)

## Variance matrix: the inverse hessian

varmat <- try(solve(mle.res$hessian))

## If inverting the hessian succeeded, the estimated variances

## are the diagonal elements:

if(!inherits(varmat, "try-error"))

var.est <- diag(varmat)

The standard errors are the square root of the variance estimates. Note the use of the
argument typsize in the code above: this tells the optimization algorithm the ‘typical
size’ of the parameter estimates it is looking for. It is particularly useful to improve
convergence properties for capture-recapture models, when one of the parameters (N) is
of a different order of magnitude to the others, which are typically the size of probabilities
or not much larger.

• If using nlminb or another method that does not return the hessian, use function hessian

in library(numDeriv).

• If using ADMB, standard errors are returned as part of the final result.

4. For parameter N , use the following lognormal confidence interval:

(N̂/C, N̂C ),

where

C = exp

1.96

√√√√log

{
1 +

v̂ar(N̂)

N̂2

} 
This formula applies to 95% confidence intervals. For a general confidence level, replace 1.96
by qnorm(1-(1-conf)/2), for example the value 1.96 is gained from qnorm(1-(1-0.95)/2).

For the parameters in θ, use normal confidence intervals:(
θ̂ − 1.96

√
v̂ar(θ̂) , θ̂ + 1.96

√
v̂ar(θ̂)

)
.

Again, for confidence levels other than 95%, replace 1.96 by qnorm(1-(1-conf)/2).

These are known as Wald confidence intervals (Fewster and Jupp, 2013).
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5. Always check the bias and confidence interval coverage properties of estimators by simulation,
using generating parameters that realistically mirror those of the real situation. If confidence
interval coverage is poor, the sample sizes might not be large enough for Wald confidence
intervals to be effective. Profile likelihood confidence intervals are thought to do better than
Wald intervals when the sample sizes are small, and are what I would try first, but they might
not be successful either. One other possibility is CIs based on inverting a score test, which
are also based on the profile likelihood. I haven’t tried these, but I would look into them
optimistically if necessary. The three types of confidence interval (in slightly impenetrable
language) are listed in Section 3.2 of Fewster and Jupp (2013). At some point, bootstrap
becomes the only option. With very small samples, the parametric bootstrap can have better
properties than the nonparametric bootstrap, even though it does seem a bit like cheating,
because there is not enough variability in the small sample for the nonparametric bootstrap to
adequately capture the true variance. Alternatively, if you have informative prior information,
go Bayesian to use it and reduce the curse of small samples.

Notes: 1. We shall see below a seemingly-innocuous model (Mtb) that needs enormous sample sizes
before the MLEs and their confidence intervals have good statistical properties, despite only having a
few parameters. The concept of ‘small’ sample sizes is relative to the information content of the data
for the parameters of interest. Capture-recapture data contains a lot of information in principle, such
as behavioural responses, but some of it is too subtle for realistic sample sizes to tease it apart from
other factors.

2. Profile likelihood confidence intervals take some extra coding: I’m not sure but they might be
obtainable from ADMB? Profile likelihood CIs are supplied in program Mark, at least for some
models: I’m not clear on how widespread the option is. The Mark manual (Cooch and White, 2013)
says both good things and bad things about them: see sections 1.7 for the good and 14.10.1 for the
bad.

Estimation using the conditional likelihood

Writing the likelihood in form (2) has the advantage of portraying the capture histories as IID
observations from a normalised probability distribution. Explicitly:

L (N,θ) =

(
N

n

)
pnθ (1− pθ)N−n

n∏
i=1

{
P(xi ; θ)

pθ

}

=

(
N

n

)
pnθ (1− pθ)N−n

n∏
i=1

P(xi | animal i is detected ; θ) , (3)

where P(xi | animal i is detected ; θ) is the conditional probability of capture history xi, given
detection.

The point here is that the observed capture histories are independent, identically distributed
draws from the conditional distribution. The same is not true of the original product term,
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∏n
i=1 P(xi ; θ), because one value of the unconditional probability distribution is unobserv-

able: the zero history 00 . . . 0. With the rewritten formulation, the product term now forms a
regular, conditional likelihood, which we’ll call LC :

L (N,θ) =

(
N

n

)
pnθ (1− pθ)N−n LC(θ) , (4)

where LC(θ) =
∏n

i=1 {P(xi ; θ)/pθ} is a regular likelihood involving the capture parameters θ
only: it does not involve the pesky non-regular parameter N .

Aside: Format (3) is a special case of the general formulation

L (N,θ) =

(
N

n

)
pnθ (1− pθ)N−n

n∏
i=1

f(xi | animal i is detected ; θ) ,

where f(· ; θ) is any probability density without any missing bits. This formulation encapsulates
a range of other models beyond capture-recapture, including distance-sampling models. Fewster
and Jupp (2009) call models of this formulation binomial detectability models. The same
theoretical considerations apply to all models of this structure. The results in F&J2009 generalize
those of Sanathanan (1972), which is usually cited for the asymptotic equivalence of N̂ and N̂c in a
capture-recapture context.

Because LC is a regular likelihood, all the usual maximum likelihood theory can be applied. In
principle, we could treat LC as ‘the’ likelihood, and maximize it to find MLEs of θ, which should
be well-behaved with asymptotic normal distributions, and then use the resulting estimates to
estimate N (see below).

However, while the regularity of LC is an advantage, there is a corresponding disadvantage: LC

is not the full and correct likelihood — at least, not if we assume that the binomial formulation
of (2) is correct. When we maximize LC , we miss out components of the full likelihood L that
involve the parameters θ, as we can see from (4); so LC does not in itself encompass all the
available information about θ.

The conditional formulation can be used, as we describe next, but it does require an awareness
that it is not equivalent to the full likelihood L, despite numerous assertions in the literature
that it is. They are asymptotically equivalent, but this does not ensure that their finite-sample
properties will be similar: sometimes they are, but other times they are not. As we shall see,
in poorly-informed models the conditional formulation can go badly wrong: while the full like-
lihood might perform badly, the conditional likelihood can perform much worse. However, in
some contexts the conditional formulation might be the more reasonable choice, for example if
we don’t trust the binomial formulation (as in distance sampling). In other contexts the con-
ditional formulation is the only viable choice, for example if we are using individual covariates
to inform the recapture process.
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Practical guide to model-fitting using the conditional likelihood

1. Parametrize the capture history probabilities P(xi ; θ) in terms of the parameters θ as before.

2. Minimize − log {LC(θ)} with respect to the parameters θ:

LC(θ) =
n∏

i=1

{
P(xi ; θ)

pθ

}
.

Let θ̂c be the MLEs resulting from maximizing LC(θ). Parameter N is not involved in this
step.

3. Find estimated variances of θ̂c by inverting the hessian matrix of LC at the maximum, as for
a standard regular likelihood.

4. To estimate parameter N in the conditional formulation, the simplest case is to use

N̂c =
n

pθ̂c
.

That is,

N̂c =
n

overall estimated probability of capture based on θ̂c
.

This expression can be justified in a few different ways:

• N̂c is the method-of-moments estimator from the binomial formulation n ∼ Binomial(N, pθ):

E(n) = Npθ ⇒ N̂c =
n

pθ̂c
.

• A two-stage likelihood process. The full likelihood is:

L (N,θ) =

(
N

n

)
pnθ (1− pθ)N−nLC(θ) = LB(N,θ)LC(θ) .

First find θ̂c by maximizing the LC(θ) component with respect to θ and use it to find pθ̂c .

Then plug pθ̂c into the component LB(N,θ) =
(
N
n

)
pnθ (1− pθ)N−n, and maximize the LB

component with respect to N to gain N̂c. The resulting estimator N̂c = n/pθ̂c is correct in

the sense that the integer part of N̂c is the integer value of N that maximizes LB. (There

is a small offset for continuous N : N̂c is actually higher than the value that maximizes LB

in R, by up to about 0.5 of an animal.)

• N̂c is often described as a Horvitz-Thompson-like estimator. This way of thinking
is the most useful for generalizing to more complicated models. Horvitz-Thompson es-
timators come from survey sampling theory: the idea is to adjust for cases where some
units in a population are sampled with lower probability than others. The estimators used
in capture-recapture and distance sampling are called Horvitz-Thompson-like because we
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don’t know what the probability of sampling each unit (animal) is: we have estimated
it. In a nutshell, the idea is that for every animal that you captured with probability
pθ, there were actually 1/pθ animals out there in the population. For example, for every
animal you captured with probability 1/3, there were three in the population. Thus, for
every n animals you captured with probability pθ each, there were n/pθ in the population:

so N̂c = n/pθ̂c . The reason why this way of thinking is useful is because we can ex-
tend it to the case where we estimate different capture probabilities for different animals.
For example, if animal i has covariates zi, and we estimate a specific capture probabil-
ity p(zi) for this covariate combination, then for every animal captured with probability
zi we estimate that there were 1/p(zi) animals out there in the population with those
same covariates. This leads to the more complicated Horvitz-Thompson-like estimator of
N̂HT =

∑
i 1/p(zi).

5. We now need to estimate the variance of N̂c. Typically, papers that use conditional esti-
mation devote some effort to deriving the appropriate variance estimator, because N̂c is not
encompassed by the hessian matrix gained from maximizing LC . Reading between the lines in
equations (13) to (17) of Fewster and Jupp (2009), the following estimator can be gleaned and
is reasonably straightforward to obtain:

v̂ar
(
N̂c

)
= exp

{
2 log N̂c + varlog

}{
exp (varlog)− 1

}
where varlog = v̂ar

(
log N̂c

)
= q̂T V̂c q̂ +

(
1− pθ̂c

)
N̂c pθ̂c

where q̂ =
d log pθ
dθ

∣∣∣∣
θ̂c

=

(
∂ log pθ
∂θ1

,
∂ log pθ
∂θ2

, . . . ,
∂ log pθ
∂θp

)T
∣∣∣∣∣
θ̂c

;

where V̂c is the estimated variance matrix gained from inverting the hessian of the LC maximiza-
tion. The first line above is simply the variance of a lognormal random variable for which the
mean of the log is taken to be log(N̂c) and the variance of the log is varlog. The other two lines

use equations (13) to (17) of F&J(2009) to infer the transformation from V̂c to v̂ar
(

log N̂c

)
.

6. Finally use the lognormal confidence interval for N (replacing 1.96 by the appropriate
quantity if required):

(N̂/C, N̂C ),

where

C = exp

1.96

√√√√log

{
1 +

v̂ar(N̂c)

N̂2

} 
and use normal confidence intervals for parameters θ:(

θ̂c − 1.96

√
v̂ar(θ̂c) , θ̂c + 1.96

√
v̂ar(θ̂c)

)
,
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where v̂ar(θ̂c) is gained from the diagonal elements of V̂c.

7. Test estimator properties by simulation as usual.

Why use the conditional method?

Yang and Chao (2005) suggest four reasons why the conditional approach (N̂c, θ̂c) might be

preferred over maximizing the full likelihood to gain (N̂ , θ̂). Some of these reasons are more
persuasive than others.

1. Covariate models. As described above, if capture probability depends upon individual covari-
ates, the conditional approach enables us to estimate N without having to make assumptions
about the distribution of the covariate values in the population at large (noting that we are
unable to observe the covariates of those animals not captured).

This is the most persuasive reason for using the conditional approach, in my opinion.

2. The two approaches are asymptotically equivalent.

Yes, they are, but subsequent work has shown that their finite-sample properties can be very different,
and not favourable towards the conditional model in instances examined (F&J2009).

3. The conditional MLE can be thought of as a Horvitz-Thompson estimator.

True, but not clear why this is a particular advantage!

4. The conditional MLE is scale-invariant, whereas the full MLE is not. This means
that, if every animal’s capture history in the study were replaced by (say) 10 copies of itself,

then the resulting estimate N̂c would be 10 times the estimate gained from the original data.
This property applies to N̂c but not to the full-likelihood estimator N̂ .

Although it seems intuitive, it’s not clear that scale-invariance is really an advantage. It could equally
mean that if N̂c starts out bad in the initial sample, it doesn’t get better in a sample size 10 times
larger!

I shall add another possible reason for using the conditional MLE rather than the full MLE,
although the precise details of this reason are hazy:

5. The conditional MLE might be more suitable if it is hard to justify binomial sampling of
individuals, as assumed by the binomial term in the full likelihood.

This is considered to be the case in distance sampling, in which the conditional approach is invariably
used, because of the spatial layout of the population. For capture-recapture I am a little hazy about
the potency of this argument: perhaps without the binomial sampling assumption the assumptions
underpinning N̂c are invalid anyway?
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Classification of closed capture-recapture models

Otis et al. (1978) proposed the following abbreviations for closed population capture-recapture
models that remain the primary classification of model types today. The different models
pertain to different influences on the recapture process.

Throughout, let xi = (xi1, . . . , xik) be the capture history of animal i at times t = 1, . . . , k.
Each xit = 0 or 1 according to non-capture or capture of animal i at time t.

Model M0

Model M0 is the simplest capture-recapture model, and is too simplistic to be of much practical
use. All animals have the same probability p of capture on all capture occasions. The parameter
θ is therefore simply θ = p. The probability of capture history xi is:

P(xi ; θ) = P(xi ; p) =
k∏

t=1

pxit(1− p)1−xit .

For example, capture history xi = 00101 has probability (1− p)(1− p)p(1− p)p.

The overall probability of capture is pθ = 1− (1− p)k.

Model Mt

Model Mt corresponds to Time-dependence on capture. All animals are assumed to have the
same probability of capture at each capture occasion, but the probability can vary across
capture occasions (i.e. vary over time). Model Mt is the simplest model likely to be useful in
practice.

Under model Mt, all animals have probability pt of being captured at time t, where p1, . . . , pk
are estimated as free parameters. The capture parameter is θ = (p1, . . . , pk). The probability
of capture history xi is:

P(xi ; θ) =
k∏

t=1

pxit
t (1− pt)1−xit .

For example, capture history xi = 00101 has probability (1− p1)(1− p2)p3(1− p4)p5.

The overall probability of capture is

pθ = 1−
k∏

t=1

(1− pt).

If the assumptions of model Mt can be met, it is a very good model to use. It is well-informed
by the data and doesn’t suffer from hidden pitfalls (as far as I am aware). For situations
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where sampling is expensive or difficult and sample sizes are small, model Mt could be the
only model that the data can adequately support. To reduce the number of parameters, and
therefore improve precision, some of the capture probabilities pt are often constrained to be
equal, perhaps based on the amount of sampling effort on the different occasions, or perhaps
by trying several possibilities and using AIC or AICc to select the most parsimonious.

Model Mb

Model Mb corresponds to Behavioural response to capture. The idea is that the experience
of being captured on a previous occasion might influence the animal’s catchability on future
occasions: in other words, animals become trap-happy or trap-shy.

In practice, time-dependence in capture is very likely, so the influence of behaviour is likely to
be considered alongside time effects. We use notation Mtb to describe the model in which the
probability of initial capture varies over time, and the catchability of each animal changes after
its first capture relative to animals that have not yet been caught.

In the extreme, model Mtb would include a different parameter for first capture at every sam-
pling occasion, p1, . . . , pk, and for recapture at every sampling occasion past the first, c2, . . . , ck.
The capture parameter is θ = (p1, . . . , pk, c2, . . . , ck). The probability of a capture history
xi = 00101 would be:

P(00101) = (1− p1)(1− p2)p3(1− c4)c5.

However, this saturated model is non-identifiable without further constraints on the parameters
(Otis et al., 1978). This is known because the minimal sufficient statistic has dimension 2t− 1,
but the number of parameters in the saturated model is 2t, including parameter N .

Chao et al. (2000) use a conditional MLE approach to fit the following submodel of Mtb. (They
justify the choice of conditional approach on the basis of scale-invariance.) The behavioural
response is encapsulated by a single parameter φ that multiplies the initial-capture probability
at each time. That is,

ct = φpt for t = 2, . . . , k.

The case φ > 1 represents a trap-happy response, and φ < 1 represents trap-shy response.

The capture parameter becomes θ = (p1, . . . , pk, φ), and the probability of capture history
xi = 00101 is:

P(00101) = (1− p1)(1− p2)p3(1− φp4)φp5.

The overall probability of capture in Model Mtb relates to the first capture of each animal only,
so it doesn’t involve φ:

pθ = 1−
k∏

t=1

(1− pt).

Even though model Mtb only contains one more parameter than model Mt, its practical per-
formance can be very poor. The problem is that a low recapture rate could be due to either
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high initial capture probabilities and a low φ, or to low initial capture probabilities. The
addition of parameter φ therefore introduces substantial variance to the initial capture prob-
abilities p1, . . . , pk. Moreover, the overall capture probability pθ only involves p1, . . . , pk, so
it is not counterbalanced by φ in any way, as φ oscillates from large (forcing p1, . . . , pk to
be small) to small (forcing p1, . . . , pk to be large). This induces high variance in the crit-
ical parameter pθ, and the problem is worse for the conditional MLE approach which al-
lows pθ to be estimated without being tempered by N . Overall this can result in extremely
high variance in N̂c. The full likelihood approach can also give very high variance in N̂ ,
but it is not quite as severe as the conditional likelihood approach. More details are in
the powerpoint Conditional_and_Unconditional_Estimation.pptx and in the R code file
Closed_Populations.R.

My recommendation is to avoid model Mtb unless you have very juicy sample sizes, and always
to test models by simulation when they rely on teasing apart subtle signals in the recapture
data.

Model Mh

Model Mh refers to individual Heterogeneity in capture probability: that is, different animals
in the population are intrinsically less likely to be captured than others. These models are the
hardest to fit and assess. Unfortunately, individual heterogeneity is a real effect, especially for
intelligent animals, and it does have a non-trivial impact on population size estimates if left
unaccounted for.

If heterogeneity corresponds to a fixed, time-constant attribute of individuals (individuals are by
nature capture-averse or capture-willing), failure to account for it causes abundance estimates
to be negatively biased. We can see this by imagining that the population corresponds to
two groups: one of individuals that are commonly captured, and the other of individuals that
are never captured. The ensuing abundance estimate might be accurate as an assessment of
how many ‘catchable’ animals there are in the population, but it will entirely disregard the
uncatchable ones, and will therefore underestimate the true population size.

Other issues of heterogeneity correspond to changes through an individual’s life stages: for
example a single individual might be more catchable when it is reproducing than it is at other
times. This case was considered by Carroll et al. (2013) for southern right whales on calving
grounds, at which females are more catchable in their calving years than at other times. If
the catchability of an animal changes over time, the blanket rule that ‘heterogeneity causes
negative bias’ no longer applies: the bias can probably go in any direction.

The major problem with heterogeneity is that we know nothing about the animals we can’t
catch. The whole business of fitting and evaluating models becomes very difficult when we
need to distinguish between non-capture due to individual variability, and non-capture due to
us simply not being very good at capturing things.

McCrea and Morgan (2015) give a good summary of heterogeneity issues in their Section 3.5,
including appropriate references. Briefly, the main approaches to dealing with heterogeneity
are:
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• Finite mixture models (Pledger, 2000): usually fitted with two mixture components. An-
imals are imagined to belong to one of two groups representing ‘more catchable’ and ‘less
catchable’ animals, and the mixture probability is estimated alongside capture probabil-
ities for each group.

• Infinite mixture models (e.g. Morgan and Ridout, 2008): here we imagine the capture
probability pi for animal i to be itself a random variable with (for example) a beta
distribution, so the resulting distribution of the number of captures of animal i is a
compound distribution such as the beta-binomial, for which the probabilities can be
expressed in closed form. The likelihood is then maximized with respect to the parameters
of the beta distribution. This can also be conceptualized as a random-effect model.
Morgan and Ridout (2008) also combine this beta-binomial distribution in a two-point
mixture with an ordinary binomial, which has the advantage of containing the single
binomial model M0, Pledger’s two-point binomial, and the pure beta-binomial model
as special cases, and can help to temper the extremities of the individual models on
troublesome data sets.

• Covariate models, in which capture probabilities are related to measurable individual
covariates such as weight or sex. Here, a logistic formulation is typically used, following
Huggins (1989):

P(xit = 1 | zi) =
{

1 + exp(−βTzi)
}−1

,

where zi is a vector of individual covariates of animal i, and the regression coefficients β
are estimated. A good summary, plus a nice treatment of what to do when covariates are
missing, is given by Lee et al (in press).

Covariate models are almost always fitted using the conditional likelihood LC , with the
Horvitz-Thompson-like estimator N̂HT to estimate N :

N̂HT =
n∑

i=1

1

p̂(zi)
,

where p̂(zi) is the overall probability that animal i was ever captured, and is gained from
the conditional MLEs β̂.

As far as I know, covariate models are the only way that the every-effect model Mtbh can be
fitted. Without covariates, the different influences of behaviour, individual heterogeneity,
and time become confounded.

All heterogeneity models are vulnerable to thorny issues. Covariate models suffer from the
obvious problem of model misspecification, as well as the concern that the conditional likelihood
formulation, and any covariate combinations that induce very low estimates of p̂(zi), could
create very high variance in estimating N . Mixture models have various issues of parameter
identifiability, and it can be difficult to get likelihoods to converge. Although I have not
experimented with any of these models directly, I would guess that they perform well in data-
rich settings where data are drawn from the model to be fitted, but it could be a challenge to
apply them confidently to real populations. Having said this, they seek to address an important,
non-ignorable problem, and it is not clear how else the problem might be addressed.
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Note: I’ve focused on the classical modelling framework throughout. There is considerable potential
for Bayesian models, and if there is a reason to use informative priors this can help to mitigate
the problems of weak identifiability that plague complicated capture-recapture models. For a
brilliant application of the Dirichlet process prior to account for individual heterogeneity, see
Ford (2013).

Open population capture-recapture

Once the principles underlying closed-population capture-recapture are understood, methods
for open population models follow quite naturally. The primary points of difference are:

• Parameters of interest, which might or might not include population size, N . Tradi-
tionally, survival was the chief focus of open-population capture-recapture. Methods for
simultaneous estimation of survival and population growth, with or without N , have grad-
ually become more prominent. Extensions to models for immigration and emigration are
natural, and might involve sampling multiple locations to investigate movement between
them.

• If population size N is of interest, it has to be carefully formulated — because in an open
population it is always changing.

• Time dependence in capture histories. An animal can only be captured at time t if it is
alive at the time.

• Plethora of different fitting methods. The typical options in wide use seem a little hap-
hazard for those of us with delicate statistical sensibilities. In particular, there seems to
be an avoidance of N in widely-used open-population models: some papers seem to go
to great analytical length to avoid N . To me, this seems to be either at odds with the
modern computing power at our disposal, or just odd. The experiences we have just had
with closed populations suggest that omitting N might be a risk rather than a benefit.
This is a speculation that warrants more investigation.

The open-population models that seem to be in popular use are flavours of the following types:

• Cormack-Jolly-Seber models (CJS) for estimating survival only (Cormack, 1964; Jolly,
1965; Seber, 1965).

• POPAN models, which include estimation of survival and recruitment. The standard
reference is Schwarz and Arnason (1996). I think POPAN models have largely supplanted
the traditional Jolly-Seber models (Jolly, 1965; Seber, 1965), though the occasional JS
model fit might still be found. These models includeN via what is called a superpopulation
parameter, Ns. The superpopulation comprises all animals ever exposed to capture, and
this definition needs to be understood carefully.

• Pradel models (Pradel, 1996), which are essentially POPAN models without N . These
use a rather clever trick to fit both survival and recruitment without involving N , and
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are well-used because (I think) they are the only models on offer in program MARK that
allow recruitment to be modelled through the annual growth rate, λ. Although the trick
is clever, I am not convinced it is necessary — see above — and it would be interesting
to compare performance of the Pradel fits with POPAN-lambda fits as developed in the
esteemed software CAPOW (Fewster et al., sometime soon).

• Robust design models, also called Pollock’s robust design (Pollock, 1982; Williams et
al., 2002). Here, sampling takes place in two phases: primary samples are the usual,
large-scale capture occasions (for example, annual sampling), and the population is open
between these periods. Additionally, there are secondary samples that are taken within
each primary period, during which the population is (typically) assumed to be closed. For
example, sampling might take place over a 20-day period every year, in which case each
day could be considered a secondary sampling occasion, and each year could be considered
a primary sampling occasion. Potentially, the secondary periods could add considerable
information. I have not explored robust design models, but I imagine that they will
perform well as long as the recapture rate is sufficiently high between the secondary
samples within the primary samples: this might be asking quite a lot.

Cormack-Jolly-Seber (CJS) models

The CJS model investigates survival only. It conditions on the first capture of each animal,
which means that there is no scope for including animals that are never caught, so there is no
scope for estimating N . Additionally, by conditioning on the first capture of each animal, there
is no scope for estimating the entry process by which new animals join the population, in other
words no possibility of estimating recruitment. Instead, the conceptual model is that we are
the ones releasing the animals into the population to ‘see how long they last’.

We need a new parameter, φt, that describes the probability of survival from time t to time
t+ 1:

φt = P(animal survives to time t+ 1 | animal is alive at time t) .

Note: Throughout, we refer to ‘survival’ to mean ‘staying in the population’, and ‘death’ to mean
‘leaving the population’, whether by true death or permanent emigration. We cannot distin-
guish between these two scenarios in the CJS model. The parameters φt are strictly referred to
as apparent survival probabilities, rather than true survival probabilities, to emphasize the
difference.

The capture history probabilities, p2, . . . , pk, are defined as before. Note that there is no
probability for time t = 1, because there are no recaptures at time 1: only first-captures, which
are conditioned upon. The parameter vector is θ = (φ1, . . . , φk−1, p2, . . . , pk). However, the
saturated model is not identifiable: there is no information by which we can separate φk−1
and pk. For other times t, we can separate φt−1 and pt because an animal undetected at time
t might pop up at a time later than t, and this reveals it was still alive at time t but went
undetected. Formally, we can tell that φk−1 and pk are confounded because the only possible
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capture records at time k for an animal previously captured are 1 (with probability φk−1pk) or
0 (with probability 1− φk−1 + φk−1(1− pk) = 1− φk−1pk). So the two parameters φk−1 and pk
only ever appear in the likelihood as the product φk−1pk, so only the product can be estimated.

This raises a couple of important points about open population capture-recapture models in
general:

• Parameter identifiability is a big issue. Sometimes, it is quite obvious that some
parameters will not be identifiable, for example φk−1 and pk above. However, sometimes
confounding can be very subtle. The phenomenon of parameters that can’t be estimated
is often called parameter redundancy in a capture-recapture context, and identifying
combinations of redundant parameters can sometimes be done using heavy-duty symbolic
algebra to find the model rank. Most of the work on parameter redundancy in capture-
recapture models comes from Byron Morgan and associates, and an introduction to the
topic is in Chapter 10 of McCrea and Morgan (2015).

Note: There is some subtle difference in terminology between parameter redundancy and non-
identifiability, but I am not sure what it is.

• The second important point is that identifiability depends upon the data. A com-
bination of parameters that is identifiable in principle might not be identifiable for a
particular data-set, because there just happen to be no observations in the data by which
those parameters can be separated. This means that sometimes a model will unexpect-
edly fail on a particular data set: again, it can be difficult to identify what the precise
‘problem’ with the data or the model is.

• In practice, these problems are usually dealt with by fitting parsimonious models (e.g.
constraining φ1 = φ2 = . . . = φk−1) and looking out for parameters that have given
boundary estimates (0 or 1 for probabilities) or seem to be estimated with unusually high
variance. Such parameters can be constrained equal to another parameter, in particular
one that seems to have been estimated without difficulty.

Capture history probabilities in the CJS model are straightfoward to obtain, but they require
a recurrence relation to deal with final 0s. The recurrence relation is simply a partitioning over
the multiple possibilities of non-survival, or survival but non-capture, from the last sighting
onwards.

Consider the capture history below:

xi = ( 0 0 1 0 1 1 0 0 0 )

Remembering that we condition on the first capture at time 3, the capture history probability
does not involve any of φ1, φ2, p1, p2, or p3. We obtain:

P(xi) = φ3 (1− p4)φ4 p5 φ5 p6 P(never seen again after occasion 6 | alive at occasion 6);

Now let
χt = P(never seen again after occasion t | alive at occasion t) .
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Clearly, χk = 1: animals are never seen after occasion k, because k is the last capture occasion.
Note that the χt parameters are cleverly defined to condition on being alive at time t, not on
being seen at time t. This is what enables us to establish the recurrence relation. Moving on,
the probability an animal is never seen again after time k− 1, given that it is alive at k− 1, is:

χk−1 = 1− φk−1 + φk−1(1− pk),

to account for the two possibilities that the animal failed to survive from k − 1 to k, or that it
did survive from k − 1 to k but then was not seen at time k.

The pattern is established with the next record:

χk−2 = 1− φk−2 + φk−2(1− pk−1)χk−1,

because the possibilities for an animal never being seen again after time k − 2, despite being
alive at time k − 2, are:

• failed to survive from time k − 2 to time k − 1: probability 1− φk−2;

• survived from time k − 2 to time k − 1, was not seen at time k − 1, and was never seen
again after time k − 1: probability φk−2(1− pk−1)χk−1.

In general,
χt = 1− φt + φt(1− pt+1)χt+1,

with boundary condition χk = 1. This recursion can easily be programmed into the likelihood
function to find the χt parameters for all times t = 1, . . . , k. Thus our final expression for the
probability of capture history

xi = ( 0 0 1 0 1 1 0 0 0 )

is:
P(xi) = φ3 (1− p4)φ4 p5 φ5 p6 χ6.

Survey gaps are readily incorporated into this model. If annual survival is modelled as a
constant, in other words P( survive to year r + 1 | alive in year r ) = φ for all r, then the
probability of surviving a gap of g years is φg instead of φ. Capture history probabilities,
including the computation of the χt, are adjusted. For example, if there is a gap of g years
from capture occasion t to capture occasion t+ 1, we have:

χt = 1− φg + φg(1− pt+1)χt+1.

Aside: My understanding is that it can be quite tricky to ensure that MARK is doing the right thing when
it comes to survey gaps. MARK does do the right thing, but the user often doesn’t. Users need to
take care when setting up their survey and formulation in MARK, but it seems to be tricky to get it
right. This issue occurred with one of my collaborators and a survival model with differential survival
at age 1: the apparent discrepancies between my R code and MARK results were finally resolved as
being due to a model misspecification in MARK.
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The CJS model can be fitted simply by maximizing
∏n

i=1 P(xi |θ) where the capture history
probabilities P(xi) are given above. Closed-form estimators are also available: see Section 4.3.2
in McCrea and Morgan (2015). Variance estimates may be gained from the inverse hessian.

POPAN models

POPAN models derive from the superpopulation framework of Schwarz and Arnason (1996),
which is itself an extension of Crosbie and Manly (1985). It is called the POPAN model because
Arnason and Schwarz also developed software called POPAN for ‘Population Analysis’. The
POPAN-style model can be fitted in MARK.

(I’m unclear whether the POPAN software is accessed by MARK, or whether it has been rewritten
for MARK, but the end result is the same.)

The big step forward here is that POPAN models include both abundance and recruitment.
They are treated cleverly by the introduction of the idea of a superpopulation, which has size
Ns and contains all animals ever exposed to capture. Note that this means that animals that
are born and died in a survey gap are never exposed to capture, so they are not included
in the superpopulation. This makes the notion of a superpopulation quite hard to link to a
biological reality — not least because the superpopulation size depends upon our own choice of
survey times — but from a statistical perspective it creates a parsimonious fitting framework.
Parameters that do have proper biological interpretations, such as the number alive at any
survey time, can then be derived from the fitted parameters including Ns.

One particularly useful property of the superpopulation formulation is that it establishes a full
likelihood framework, and furthermore the likelihood has the same structure as equation (2).
(As Fewster and Jupp (2009) would say, it is a binomial detectability model.) This means that all

the theory we examined earlier applies directly: for example, the asymptotic lognormality of N̂s,
the asymptotic normality of θ̂, and the relationship between conditional likelihood estimators
and full likelihood estimators.

In its saturated version, the POPAN model includes the following parameters:

• Capture probabilities p1, . . . , pk as usual. Probability pt is the conditional probability
that an animal is captured at time t, given that it is alive at time t.

• Survival probabilities φ1, . . . , φk−1, as for the CJS model. Probability φt is the conditional
probability that an animal survives to time t+ 1, given that it is alive at time t.

• The superpopulation parameter, Ns: the number of animals ever exposed to capture by
being alive and in the population at a survey time.

• A new set of parameters that describe the probability of animals entering the population
for the first time at each time t = 1, 2, . . . , k. These parameters are inconveniently
known as pent(1), . . . , pent(k), where pent is described as ‘probability of entry’. I don’t like
this terminology because it sounds too much like ‘probability of survival’. However,
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while survival probabilities φ1, . . . , φk−1 are represented by free parameters that need not
bear any relationship to each other, the pent(1), . . . , pent(k) parameters by contrast measure
proportions of the same thing and therefore must sum to 1.

Explicitly, each of the Ns animals in the superpopulation is first exposed to capture at one
of the surveys 1, 2, . . . , k. We can think of the animals lining up one by one to have their
‘survey of entry’ decided. For each animal i, we select one of the surveys 1, 2, . . . , k to
be the survey of entry for animal i, with probabilities pent(1), pent(2), . . . , pent(k) respectively.
Thus, pent(t) is the probability that survey t is selected to be the survey of entry for each
animal, and the pent parameters must satisfy

pent(1) + pent(2) + . . .+ pent(k) = 1.

An improved terminology, in my view, is to say that the pent probabilities are entry
proportions rather than probability of entry.

As with the CJS model, the saturated POPAN model is not identifiable. The final parameters
φk−1 and pk are confounded, as before, because we can’t distinguish non-capture from non-
survival at the end of the study. Similarly, the same effect happens at the other end: we
can’t distinguish non-capture from non-birth at the start of the study, so pent(1) and p1 are also
confounded. It is likely that there will be further issues of identifiability for any given data set,
so a more parsimonious model is preferable, for example with φ1 = . . . = φk = φ.

Care needs to be taken with the pent(t) parameters: for example, if there are uneven gaps
between surveys then it is not reasonable to assume that the pent(t) parameters should be
constant, because in a real population new animals (births) will accrue over the gaps. The
pent(1) parameter is likely to be much larger than others, because all the animals alive at the
first survey are first exposed to capture at that time, whereas the other pent(t) parameters only
describe new births since the time of the first survey.

Capture history probabilities are calculated as for the CJS model, but this time we need a
recurrence relation at both ends of the observed captures, to describe the various possibilities
of not-yet-birth and birth-but-no-capture for a string of zeros at the start of the study.

For example, the probability of capture history

xi = ( 0 0 1 0 1 1 0 0 0 )

is:

P(xi) =
{
pent(1)(1− p1)φ1(1− p2)φ2 + pent(2)(1− p2)φ2 + pent(3)

}
p3φ3 (1− p4)φ4 p5 φ5 p6 χ6 ,

where χ6 follows the same recurrence relation as for the CJS model:

χt = 1− φt + φt(1− pt+1)χt+1 ; χk = 1.

In practice, we calculate the term in braces by setting up a similar recurrence relation to that
used for χt.
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Finally, the parameters are Ns and θ = (φ1, . . . , φk−1, pent(2), . . . , pent(k), p1, . . . , pk), or rather a
more parsimonious version of the latter. (Note that the pent parameters sum to 1, so there are
only k − 1 free parameters in the saturated model.)

The full likelihood is exactly analogous to (2), but with the superpopulation size Ns replacing N ,
and with the relatively complicated capture history probabilities described above in P(xi ; θ):

L (Ns,θ) =

(
Ns

n

)
pnθ (1− pθ)Ns−n

n∏
i=1

{
P(xi ; θ)

pθ

}
.

The probability that an animal is ever seen, pθ, is most easily given by its complement: the
probability that an animal is never seen:

1− pθ = pent(1) (1− p1)χ1 + pent(2) (1− p2)χ2 + . . .+ pent(k) (1− pk)χk .

We can derive the expected numbers alive at times 1, 2, . . . , k from the model parameters. Let
EN1, . . . , ENk be the expected numbers of animals exposed to capture at times 1, 2, . . . , k.
These are expected numbers in the sense that the model doesn’t prescribe that they should
be the exact numbers: for example, although proportion pent(1) of the Ns animals enter the
population at time 1 on average, the number need not be Ns pent(1) exactly, and is in fact a
Binomial(Ns, pent(1)) random variable. We can gain expected numbers by the following equa-
tions:

EN1 = Ns pent(1)

ENt = φt−1ENt−1 +Ns pent(t) ,

because the expected numbers alive at time t comprise those surviving from time t − 1, plus
new entrants at time t.

If we wish to include the variability in N1, . . . , Nk, this amounts to incorporating demographic
variability (variance in births and deaths) within the model. A boostrap approach is probably
the best way to achieve this.

CAPOW software for POPAN models

The POPAN models available in MARK only model the pent parameters as free parameters. It
is natural to wish to constrain them to a growth curve, so that we can estimate annual rate of
population growth, λ. The definition of λ is:

λ =
ENt+1

ENt

,

where this relationship is assumed to be constant for t = 1, . . . , k − 1 if we are estimating a
single population growth rate over the period. If we are doing this, it also makes sense to
constrain φt = φ to be constant for t = 1, . . . , k − 1, as it would be a rather odd model to
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allow φ to vary over time but for the birth rate to exactly cancel out any variability and remain
constant. The annual birth rate is readily shown to be λ− φ.

The CAPOW software (Fewster et al., sometime soon) parametrizes the POPAN model in
terms of λ, including adjustments that are needed for unequal survey gaps. This simply involves
constraining the parameters pent(1), . . . , pent(k) to their values along a smooth growth curve. See
the powerpoint Capow.pptx for more details.

CAPOW maximizes the full likelihood of the POPAN model, with respect to parameters
Ns, λ, φ, p1, . . . , pk. The saturated POPAN-λ model is identifiable. CAPOW also allows fitting
of the most general POPAN model with parameters Ns and θ = (φ1, . . . , φk−1, pent(2), . . . , pent(k),
p1, . . . , pk). When it suspects non-identifiability of a model, it does display a warning, but it
allows you to plough on regardless to see what happens. The first appearence of the POPAN-
λ model was Carroll et al. (2013), and the preliminary coding for CAPOW resulted from a
humpback whale power analysis in Carroll et al. (2015).

Pradel models

As far as I’m aware, Pradel-based models (Pradel, 1996) are the only way that MARK users
can currently fit open population models parametrized in terms of annual growth rate, λ, and
survival probability φ. (This would be possible for POPAN models too, but MARK does not
provide the λ-parametrization.) Pradel models might be better described as a fitting method.
They rely on the observation that, just as the CJS model estimates survival by moving forward
through a capture history having conditioned upon its start-point, one might equally reverse the
capture history, condition on the last capture, and estimate something related to recruitment
by moving backwards. Essentially, we condition on the animal being captured at its last known
occasion, and ‘let it go’ backwards to see how long it ‘survives’, which is clearly related to
when it was born. Pradel (1996) then derives an ingenious set of results that enable φ and λ
parameters to be fitted together in the same model, conditional on the animal being captured
at some point in the study. The simultaneous model does not estimate any sort of abundance,
N , but it does use the idea of (N1, . . . , Nk), and how they must relate to λ and φ, to derive
the expressions that enable λ and φ to be fitted together. I suspect that the resulting fitting
method is similar (or perhaps identical) to use of the conditional likelihood LC based on the
POPAN likelihood, but I haven’t checked this out.

Pradel models are popular because MARK users want to estimate λ as well as φ, and the Pradel
models are the only way of doing so. However, users also want to estimate N at the same time,
and currently the only way they can do this with standard capture-recapture data is to use
the Pradel model to estimate λ, then separately to use the POPAN model to estimate Ns with
the pent parametrization. Alternatively, if their data are suitable for a robust design, they can
estimate N and λ together through the Pradel-robust-design methods.

Although it is ingenious, I am sceptical that there is any advantage to using a Pradel model
once the λ-POPAN model is available (via CAPOW!) But then, I am a natural sceptic, and a
little biased.
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Robust design

Pollock’s robust design (Pollock, 1982; Williams et al., 2002) offers a way of getting the best
of both open and closed population models, by conducting mini closed-population capture-
recapture experiments within each of the primary survey sessions. For example, the population
might be sampled once per year for 20 days, in which case the primary sampling periods are
the annual occasions, and the secondary sampling periods are the 20 days within the year. The
idea is that the secondary samples span a sufficiently short time that it is reasonable to assume
that the population is closed, so population size can be estimated for each period separately,
whereas the changes between primary periods reveal information about survival and population
growth, perhaps modelled using a Pradel formulation (which is provided by MARK).

Robust design models typically include an extra layer of parameters for temporary emigration.
This is effectively a way of dealing with a particular type of individual heterogeneity in capture
probability: the issue that an animal might be wholly unavailable for sampling in one or more of
the primary periods, because it is not in the population exposed to capture. It has emigrated,
but there is the chance that it might come back for a later primary period. (If there is no
chance it will come back, it would be classified as a non-survival rather than an emigrant.)

Suppose that there are 4 primary periods, and 10 secondary periods. A capture history for a
single animal might look like this:

0100101101 − 0000000000 − 1011101010 − 0001111001

Given the intensity of captures in the first, third, and fourth periods, the complete non-capture
in the second period is surprising, and suggests evidence that the animal was not available for
capture in the second period. Consequently, new parameters describing temporary emigration
are introduced to account for this.

Choices for modelling temporary emigration include:

• Random emigration: the probability that each animal is unavailable for capture in
primary period t (temporarily emigrated) is γt;

• Markovian emigration: the probability that an animal is unavailable for capture in
primary period t depends upon whether it was available for capture in primary period
t− 1: this involves two parameters, γ′t and γ′′t , describing the probability of unavailability
in period t conditional on being unavailable or available in period t− 1, respectively.

There are also versions of the model involving behavioural response to capture: a robust-design
version of model Mtb.

While I don’t have direct experience with the robust design framework, it seems like a good
idea, with its performance presumably being highly dependent upon having a suitably high
recapture rate between the secondary sampling sessions, such that the all-zero capture history
within a period can be easily distinguished from a typical capture history.
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