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Abstract Genetic data are in widespread use in ecological research, and an
understanding of this type of data and its uses and interpretations will soon
be an imperative for ecological statisticans. Here we provide an introduction
to the subject, intended for statisticians who have no previous knowledge of
genetics. Although there are numerous types of genetic data, we restrict at-
tention to multilocus genotype data from microsatellite loci. We look at two
application areas in wide use: investigating population structure using ge-
netic assignment and related techniques; and using genotype data in capture-
recapture studies for estimating population size and demographic parameters.
In each case we outline the conceptual framework and draw attention to both
the strengths and weaknesses of existing approaches to analysis and interpre-
tation.
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1 Introduction

Genetic data contain a wealth of information about numerous processes in
ecology and evolution, many of which can only be studied through the genetic
lens. However, it is often difficult for statisticians to acquire the background
knowledge necessary to contribute to the field. Statistical analysis of genetic
data requires at least some understanding of how the data arise, encompassing
both the biological mechanisms underlying genetic structures and inheritance,
and the laboratory processes by which the data are extracted and reported.
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The associated biological literature is often impenetrable to those from outside
the field, and even familiar concepts such as statistical independence are often
expressed in unfamiliar terminology.

The aim of this article is to provide insight into the use of genetic data in
ecological research, for statisticians with no previous knowledge of genetics.
There is a vast array of genetic structures in nature, as well as numerous
ways of extracting the data, and many different approaches to data analysis
to serve a plethora of objectives, so it is impossible to capture the breadth
of the field in a single paper. Instead we focus on just one type of genetic
data — microsatellite genotype data — and two application areas likely to
be of particular interest to statistical ecologists: (i) investigating population
structure and provenance of individuals using genetic assignment and related
techniques; and (ii) using DNA samples for individual identification in capture-
recapture studies for estimating population size and demographic parameters.
Even within these areas we restrict discussion to a subset of the available
methodologies. The intention is to convey sufficient understanding in these
areas to generate insight that is transferable to other genetic contexts and
data types. For example, much of the statistical foundation that has been
developed for microsatellite data is directly transferable to new data emerging
from next-generation sequencing (NGS), but NGS data does demand a review
of the underlying statistical assumptions, and also presents many opportunities
for developing new analysis methods. We focus on microsatellite data here —
despite the rapid escalation of cheap NGS technologies and consequent decline
in the use of microsatellites — because most of the literature in ecological
population genetics to date is based on this data type and the particular
errors that arise from the way that it is generated.

1.1 Genotype data

A genetic locus (plural loci) is a position on a chromosome. It describes a
genetic location or address. The different genetic choices available at a locus
are called alleles. For example, we can imagine that humans have a genetic
locus for eye colour, at which the available alleles are the genetic sequences
for blue eyes, brown eyes, and so on. We shall only treat the case where each
individual inherits two alleles at each locus: one from its mother, and one from
its father. The set of two specific alleles that an individual possesses is called
its genotype at this locus. For example, at a locus for eye colour a human might
possess one allele for blue eyes and one for brown eyes, in which case we could
describe his or her genotype as ‘blue, brown’. It is not generally known which
of the two alleles was inherited from the mother, and which from the father.

The selection of alleles available at a locus is a result of the accumulation
of genetic mutations over hundreds of thousands of years. For genetic loci that
control biological functions, known as coding loci, some mutations change the
gene’s function and might be eliminated or promoted by natural or sexual
selection. However, in much of the genome, mutations are of neutral impact
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and are said to be selectively neutral. This is particularly true in the case of
non-coding DNA: genetic code that serves no obvious purpose but seemingly
surrounds the functional DNA like packaging in a box. Non-coding loci have
traditionally been of primary interest in population genetics studies, because
the accumulated mutations provide a choice of numerous different alleles that
can discriminate between individuals and populations. All loci behave alike
in terms of genetic inheritance, but non-coding loci tend to have more allele
types, a property known as polymorphism.

A microsatellite locus is a type of locus that has proved particularly use-
ful in population genetics studies. Microsatellite loci consist of short frag-
ments of DNA that are repeated multiple times. For instance, the sequence
ACACACACAC consists of the short fragment AC repeated five times. The
term satellite is used because repetitive DNA has a higher density than typical
DNA and tends to separate into a satellite band in a centrifuge. Microsatel-
lites are also known as short tandem repeats (STRs), simple sequence repeats
(SSRs), or variable number tandem repeats (VNTRs). They are typically se-
lected in the belief that they are non-coding loci, although there remains the
possibility that some may have biological functions that have not been recog-
nised.

Microsatellites have a relatively high mutation rate, because it is easy for
the DNA to ‘slip’ during replication — effectively losing count of the number of
repeats. Consequently, microsatellite loci often exhibit several different alleles
that are distinguishable by their different lengths, such as the two alleles ACA-
CAC and ACACACACACAC. This type of genetic structure offers two key
advantages. Firstly, the relatively large number of available alleles enables good
discrimination between individuals, so a suite of about 10 such loci is often
sufficient for each individual in a population to have a unique genetic profile.
Secondly, the ability to distinguish different alleles by their lengths, instead
of having to inspect their precise genetic sequences, means that microsatellite
genotypes were for many years relatively inexpensive to obtain. This situa-
tion is now in flux with the emergence of cheap next-generation technologies.
The primary difference between microsatellite and next-generation protocols
is that microsatellite studies target a small number of highly polymorphic loci,
whereas next-generation technologies target a massive number of loci but there
are typically only two alleles available at each locus.

It is worth having a sketch understanding of how microsatellite genotypes
are obtained in the laboratory, because the process involves a small but non-
negligible error rate that needs to be taken into account in statistical analysis.
The description that follows is not biologically precise but is sufficient for
understanding the process of error-generation. Microsatellite loci may initially
be identified for a species by genetic sequencing. The genetic sequences on
either side of the microsatellite are noted: these regions are called the binding
sites. It is hoped (but not guaranteed) that the binding sequences are the
same for all individuals of the species. For example, the fragment GCTAAT-
ACACAC-TTATA has a left binding sequence of GCTAAT and a right binding
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sequence of TTATA. In reality, the binding sequences are sufficiently long to
identify the correct region of DNA uniquely.

The microsatellite is genotyped by bombarding a DNA sample with primers
consisting of sequences that will bond strongly with the left and right binding
sequences. The primers fix on the two binding sites and a reaction follows in
which the DNA between them is copied, therefore doubling the number of tar-
get microsatellite fragments in the mixture. The process is repeated in several
cycles, each of which doubles the occurrence of the microsatellite fragment un-
til it dominates the DNA mixture. This process of amplifying the microsatellite
fragment is known as polymerase chain reaction (PCR). Once it is complete,
an electric current is applied to propel the fragments across a gel: a process
called electrophoresis. Shorter fragments encounter less resistance in the gel
and move faster than longer fragments, enabling microsatellite lengths to be
deduced. The output of the electrophoresis is plotted on an electropherogram
or chromatogram, which plots allele length on the horizontal axis and intensity
on the vertical axis. The allele lengths present in the mixture appear as peaks
on the plotted output.

The end product of genotyping is a numeric label for each allele, such as
128 or 130, corresponding to the length of the fragment including the binding
sequences. The labels are automatically generated from the electropherogram
using computer software, but they should be checked by humans because la-
belling decisions are not always clear-cut. The absolute number 128 does not
have much relevance, but the difference between allele lengths can be relevant.
For example, if the microsatellite constitutes repeats ACAC. . .AC, the two
alleles 128 and 130 are likely to differ by just one repeat of the AC motif.

If the procedure works perfectly, the output trace of an individual’s geno-
type contains either one or two peaks, corresponding to the allele lengths of
the individual’s alleles. If there is just one peak, say at allele 128, the individ-
ual is assumed to be homozygous at this locus and its genotype is deduced to
be 128,128. If there are two peaks, for instance at 128 and 130, the individual
is heterozygous with genotype 128,130.

In a typical study, each individual is genotyped at several microsatellite
loci: typically from 10 to 20. With ℓ loci, the resulting suite of 2ℓ alleles is
the individual’s multilocus genotype. As long as each locus has a reasonable
number of allele types available, these numbers of loci are usually enough to
give very high discrimination between individuals. A measure of discriminative
power is called the probability of identity, PID (Paetkau and Strobeck 1994),
and gives the probability that two individuals have the same ℓ-locus genotype
by chance. Ideally, this is extremely small, typically less than 10−8. For closely
related individuals, the equivalent quantity is termed PIDsib (Evett and Weir
1998). Although PIDsib is commonly several orders of magnitude larger than
PID, it is still typically very small: perhaps 10−3 or less. Whether this is
sufficient depends upon the population under study and the objectives of the
analysis. If PID or PIDsib are not sufficiently small, this can be addressed by
adding more loci to the study. However, adding more loci is likely to come
at the cost of genotyping fewer individuals within the available budget. It is



Some applications of genetics in statistical ecology 5

Table 1 Example of multilocus genotype data from New Zealand ship rats (Rattus rattus).
Each row corresponds to a single rat, whose ID and sampling location are specified. Genotype
data from four loci are shown. The locus names are D10, D11, D15, and D16, and each rat
possesses two alleles at each locus, denoted by numeric labels. The label 0 denotes missing
data for that rat at that locus.

Rat ID Location D10 D11 D15 D16

B42 Broken Islands 96 130 276 276 250 262 155 165
B43 Broken Islands 96 96 276 280 234 262 165 165
B44 Broken Islands 96 96 276 280 236 262 155 165
A45 Aotea 126 128 276 278 234 236 155 165
A46 Aotea 96 128 0 0 234 236 155 165
A47 Aotea 120 122 276 284 238 238 167 167

highly advisable to run a pilot study to establish how best to balance the
number of loci versus the number of individuals that can be genotyped.

1.2 Data format

Table 1 shows an example of multilocus microsatellite genotype data from
New Zealand ship rats (Rattus rattus). The data format shown is typical and
is similar to that used by the popular software Genepop (Rousset 2008). Rats
were sampled from the Great Barrier Island archipelago, including the large
main island (Aotea) and a small island cluster called the Broken Islands about
300m offshore from the main island. Each rat was genotyped at 10 microsatel-
lite loci, of which four are shown in Table 1 (Fewster et al. 2011; Jacob et
al. 1995). From the table, it is already evident that it will be challenging to
visualize the data in a meaningful way. However, even from this small snippet
of data, there is a hint that the Broken Island rats have lower allelic diver-
sity than the Aotea rats. This will be confirmed by the visualisations that we
introduce later.

1.3 Missing data

Missing data are unavoidable in genetic studies, and statistical methodologies
must be capable of handling them. Missing data are denoted by the allele
label ‘0’ in Table 1, and indicate that the PCR amplification failed for that
individual at that locus. Such failures are common when the DNA sample is
of low quality — for example, derived from hair, feathers, or faeces — but also
occur for high-quality tissue samples that have degraded due to inadequate
or delayed preservation. Missing data can also result from random chance, or
from a systematic cause such as null alleles or long allele dropout, which are
described below. Sometimes missing records can be restored after repeated
efforts to extract and profile the DNA, but typically some records will remain
missing.
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1.4 Allelic dropout

Allelic dropout describes the situation where a heterozygous genotype such as
120,130 is misreported as 130,130, because the 120 allele failed to amplify dur-
ing PCR. The 120 allele is said to have ‘dropped out’ of the profile. Dropout,
where just one of the two alleles fails to amplify, differs from missing data,
where both of the alleles fail to amplify, because dropout is not observable
from the output trace. Whereas missing data delivers no genotype, dropout
delivers the wrong genotype.

Dropout errors have the effect of exaggerating the apparent homozygosity in
the sample, such that more individuals appear to be homozygous than is really
the case. High rates of homozygosity are prevalent in very small populations, or
in populations with inbreeding among close kin, and are associated with poor
population health because the homozygosity applies not only to non-coding
microsatellite loci but also to functional genetic loci. An individual with two
copies of the same detrimental allele will suffer from its effects, whereas if the
individual has only a single copy, the problematic effects are often overridden
by its other allele. A high rate of homozygosity is a real concern for endangered
populations, because there is such a vast number of genetically-controlled traits
that it is very likely that at least one life-threatening defect, susceptibility,
or behaviour will become prevalent in the population. When estimating the
homozygosity levels in a population, therefore, researchers must be aware of
the possible exaggerating effects of allelic dropout.

1.5 Systematic causes of allelic dropout and missing data

Although missing data and allelic dropout are often due to poor sample condi-
tion or random chance, there are also some systematic effects that will tend to
guarantee that particular alleles or genotypes fail to be reported correctly. Such
effects interfere with assumptions that data are missing-at-random, and the
consequent impact on the proposed analysis should be considered. For some
analyses, systematic missingness of certain alleles might be of little concern,
whereas for others it might invalidate the results. Here we describe two mech-
anisms for systematic dropout, known as null alleles and long allele dropout.

Null alleles occur when an individual has a mutation in the binding site
used by the primers in the PCR process, so the primers fail to bind and the
microsatellite allele flanked by the binding sites is not amplified (Chapuis
and Estoup 2007; Pompanon et al. 2005). If an individual possesses such a
mutation, its genotype will never be correctly read at this locus. An individual
with two copies of the null allele will be reported as missing data (profile 0,0),
whereas if it has only one copy — for example, if its real profile is 120,130
but the 120 allele is flanked by a mutation and will not amplify — then the
genotype will be misreported as 130,130, corresponding to allelic dropout. Null
alleles are alleles like any others, inherited according to the same processes,
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but they are only ‘observable’ when the individual is homozygous for the null
allele — in which case its profile is always reported as missing at that locus.

Long allele dropout, or short allele dominance, describes another artefact
of PCR whereby longer alleles might be more likely to suffer dropout than
shorter ones, because longer alleles take longer to replicate so there is greater
risk that the reaction is not completed within each PCR cycle. In some cases
an allele might be sufficiently long that the reaction is never completed, so
it always drops out. In other cases, a partially-successful amplification might
be readable from the output trace when both of an individual’s alleles are
long, but otherwise a small peak from a longer allele might be obscured by a
much more dominant peak from a shorter allele. Thus, for example, genotype
120,160 might tend to be consistently misread as 120,120, whereas genotype
156,160 might tend to be correctly read because the signal from the two peaks
is roughly equal, albeit weak.

1.6 Stutter and false allele reads

There are numerous other causes of error in microsatellite genotype data (Pom-
panon et al. 2005; Taberlet and Luikart 1999). Sometimes a microsatellite allele
length is simply misreported, giving a false allele record. This could happen
due to sample contamination — for example, from not cleaning equipment
properly between dealing with samples from different individuals — or due
to laboratory handling or labelling errors that ascribe a locus reading to the
wrong sample. A more systematic reason for false allele reads comes from
the PCR process itself. During PCR, the microsatellite fragment flanked by
the binding site is repeatedly replicated. If the replication is occasionally in-
complete, or if slippage occurs during replication in much the same way as
mutations occur in reality, the replicated fragment might be a different length
from the microsatellite it is aiming to replicate. This fragment is then itself
amplified in the next PCR cycle, leading to a mixture of correct and incorrect
lengths in the final solution. It is common for this to occur to some small
degree, leading to a stutter on the output genotyping trace consisting of minor
peaks at allele lengths slightly different from that of the target microsatellite
fragment. Usually the peak at the correct microsatellite length clearly dom-
inates the minor peaks caused by stutter; but occasionally it is difficult to
distinguish between the cases where the true genotype is (say) 128,130, and
where it is 130,130 with a minor peak at 128 caused by stutter.

The occurrence of problems such as stutter and false allele reads can in
some cases be reduced by a careful selection of which microsatellite loci to
genotype, as some are more error-prone than others. This again highlights the
importance of setting aside funds for pilot studies.
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1.7 Importance of error-handling

Errors and missing data are inherent in genotyping data, and statistical anal-
yses must be designed to accommodate them. The importance of errors and
error-handling depends upon the context of the analysis. If genotyped samples
are used to reconstruct capture histories for a capture-recapture analysis, then
the validity of the analysis rests on the correct matching of samples to individ-
ual animals. Failing to allow for common errors such as dropout in this context
will lower the apparent recapture rate and lead to a systematic overestimation
of population size (Wright et al. 2009; Vale et al. 2014). Similarly, if genetic
data are used to investigate parentage, errors in individual reads could falsify
conclusions: a single instance of allelic dropout could appear to exclude the
true parent from having produced a particular offspring. By contrast, studies
of population structure and connectivity do not rely to such a degree on the
accuracy of individual genotypes, and occasional misreads are of lesser impor-
tance. In Section 3 we give examples where possible to calibrate the level of
genetic error and missingness that might be expected in modern studies.

2 Genetic assignment and population structure

The term population genetics describes the study of the structure, connectivity,
and evolutionary history of ecological populations based on their contempo-
rary genetic profiles. It is a fascinating field of study, because genetic data offer
insights that would be difficult or impossible to gain by other means. How-
ever, the information encoded in the genetic record can be hard to extract and
interpret, which for statisticians creates considerable opportunities for inno-
vative development. The genetic processes underlying today’s populations are
immensely complex, including processes that unfold over vast time-scales such
as natural selection, mutation, and genetic drift, down to the complicated busi-
ness of sexual reproduction which involves the scrambling of parental genes at
every generation. Alongside these is a vast array of species mating systems,
migration and dispersal patterns, and other behavioural considerations that
conspire to ensure that inference from genetic data is far from straightforward.

In this section we describe the statistical foundation of some widely-used
techniques for exploring population structure and estimating the provenance
of individual animals. The term population structure is used to signal the ex-
istence of identifiable subpopulations within a larger population, contrasting
with so-called unstructured situations where the whole population is geneti-
cally homogeneous. For example, if the genetic profiles of different islands in
an archipelago are distinct from one another, it might be relatively easy given
an individual from any of the islands to determine which island it has come
from. The archipelago population in this case is said to be highly structured.
On the other hand, an unstructured population would present no clear genetic
differences between the islands, either because of ongoing mixing of island
individuals or because of a common genetic heritage.
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It is clear from this that concepts of population structure are linked with
the question of assigning the provenance of individuals, and indeed both types
of investigation may be tackled using the same statistical foundation, which
we outline below.

2.1 Principles of genetic assignment

Genetic assignment is the process of estimating the source population of an
individual by comparing the individual’s genotype with the profiles of candi-
date source populations. A precise mathematical treatment quickly cascades
into volumes of notation and subscripts — concerning alleles within loci, loci
within individuals, and individuals within populations — and this level of ab-
straction readily conceals the common-sense principles of the subject. For this
reason we defer the mathematical treatment to Section 2.4, and here focus on
introducing the ideas in a simple everyday context. The aim is to anchor the
principles in common-sense reasoning which will aid interpretation in more
complex and abstract scenarios.

Genetic assignment techniques rely upon the observation that populations
that are isolated from one another develop differences in how common are
the different allele types within them. For example, among humans, alleles for
blond hair are very common in Sweden and less common in Italy. However,
blond alleles are present in both populations: it is the difference in prevalence
that underpins the process of genetic assignment.

The statistical basis of genetic assignment is very simple, and can be illus-
trated by the same example. Suppose we wish to decide upon a native source
country for a blond (fair-haired) person, out of three candidate countries: Swe-
den, Italy, and England. In Sweden, we take reference samples and estimate
that blonds constitute 75% of the population. The blond person of interest is
therefore given 75% chance of arising in Sweden: P (blond | Swedish) = 0.75.
Similarly, we estimate that blonds constitute 10% of the population in Italy,
and 40% of the population in England, yielding P (blond | Italian) = 0.10 and
P (blond |English) = 0.40. (Figures are rough estimates based on genetic maps
of Europe from www.eupedia.com.)

The total of the genetic evidence in this case is the trio of numbers (0.75, 0.10, 0.40),
giving the probability of finding the blond genotype in the three candidate
countries. Specifically, the genetic evidence constitutes the three conditional
probabilities P (blond | Swedish), P (blond | Italian), and P (blond |English). The
order of the conditioning is important, and should not be confused with
P (nationality | blond).

The trio of probabilities (0.75, 0.10, 0.40) has the interpretation that the
blond person could have been born in any of the three countries, but that the
examined genes are very common in Sweden, common in England, and less
common in Italy. As such, it tells us little about the provenance of the individ-
ual, except that all three candidate countries are plausible sources. However,
the multi-dimensional probability vector is often simplified to a more succinct
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summary, and in the process some potential for misinterpretation is created.
The software GeneClass2 (Piry et al. 2004) uses the following calculation to
rescale the numbers into assignment scores:

Assignment to Sweden:
0.75

0.75 + 0.10 + 0.40
× 100 = 60%

Assignment to Italy:
0.10

0.75 + 0.10 + 0.40
× 100 = 8%

Assignment to England:
0.40

0.75 + 0.10 + 0.40
× 100 = 32% (1)

Assignment scores are therefore a simple rescaling of the three numbers (0.75,
0.10, 0.40) so that they add up to 100. The calculation could also be thought
of as an application of Bayes’ rule using equal prior probabilities for each
population. Under this rescaling, the blond person is sometimes said to assign
60% to Sweden, 8% to Italy, and 32% to England. However, as we discuss
below, such terminology is rather misleading.

There are several problems with the transformation from the genetic evi-
dence (0.75, 0.10, 0.40) into assignment scores (60%, 8%, 32%). Most impor-
tantly, all information about the size of the genotype probabilities is lost. Large
probabilities such as ours, that signal that the blond genotype is common in
all three populations, are given the same assignment output as the vector of
tiny probabilities (0.00075, 0.00010, 0.00040) that signals the opposite conclu-
sion. A better interpretation of the evidence is needed that acknowledges the
differing conclusions from these two results: in the first case the genotype is
universally common and all three populations are plausible sources, whereas
in the second case it is universally rare and raises doubt over whether any of
the populations is the true source.

Secondly, the rescaling of the genotype probabilities, and consequent loss of
information about their magnitude, is applied not only to the single sample of
interest (the blond person), but to all samples, including the reference samples
of known origin that were used to establish the estimates of 0.75, 0.10, and
0.40 in the first place. This means that we lose calibration of what constitutes
a ‘common’ or ‘rare’ genotype in each of the populations under consideration,
and what level of variability in ‘commonness’ is exhibited among genotypes
genuinely drawn from these populations. In our example we have asserted
that a genotype with probability 0.75 is ‘common’ and one with probability
0.00075 is ‘rare’, but in reality we do not have any basis for asserting that
0.00075 denotes a rare genotype without knowing more about the range of
genotypes available, and their probabilities.

Finally, the addition of the percentage sign to the assignment scores (60%,
8%, 32%) is unfortunate because it suggests that the assignment scores should
be interpreted as probabilities or proportions. While it might be argued that
these numbers reflect the probabilities P (nationality | blond) by an application
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of Bayes’ rule with equal prior probability on each candidate source popula-
tion, such a prior preempts the point of the analysis and distorts the evidence.
In particular, the Bayes’ rule interpretation forfeits relevant information on the
absolute size of the conditional probabilities P (blond | nationality), to empha-
sise instead relative values among different populations, which is misleading
in the absence of a calibration of magnitude and variability within popula-
tions and degree of overlap between them. The implied conclusion that there
is a 60% probability that each blond person is Swedish is a reflection of the
imposed priors and set of candidate source populations rather than an ob-
jective summary of the genetic evidence. Another misleading consequence of
the transformation is the subconscious assumption that these probabilities will
tend to apply as long as the sample sizes are large enough. This is not the case,
as there is no law of large numbers that can be invoked: there is no sense in
which a large sample of blond people must inevitably converge to 60% Swedes.

We note that Piry et al. (2004) do not imply that the assignment scores
should be interpreted as probabilities: they simply describe them as ‘scores’
and do not make any further comment about how they should be interpreted
or used. The assumption by some practitioners that they can be treated as
source probabilities is a misinterpretation, but one that is perhaps encouraged
by the unfortunate use of the percentage sign.

Instead of transforming meaningful conditional probabilities through the
use of an arbitary rescaling or prior, we propose that the genetic evidence is
best presented on graphical displays that demonstrate both the magnitude
and variability of the raw genetic evidence P (blond | nationality). We outline
how such graphics may be constructed in the next section.

Some studies take the output from assignment analyses to an even greater
extreme and select a single ‘best’ population source for each individual, this
being the population with the highest assignment score. We call this prac-
tice best-population assignment. Best-population assignment can be justifiable
when the genetic evidence is very conclusive, but when applied without proper
consideration of the wider genetic and scientific context, it can generate absurd
conclusions. For example, on the basis of genes for hair colour, every blond
human in the world should be assigned to Sweden. Indeed, we can take the
argument to an even more ludicrous extreme: on the basis of genetic sex, every
male human in the world should be assigned to the tiny nation of Liechtenstein
— because according to census data in Wikipedia (2015), Liechtenstein is the
country in the world with the highest proportion of males at birth. The fact
that this is probably an artefact of the relatively small sample size available
in Liechtenstein to establish the sex ratio there only serves to reinforce the
risks of best-population assignment, as the same possibility of sampling flukes
in small reference samples applies to real studies.

Although our example takes best-population assignment to an absurd ex-
treme, it contributes two important points that sometimes get lost amidst
greater levels of abstraction. Firstly, there is no basis for assuming that an in-
dividual must have been born in the population in which its genotype is most
common. The individual might fit well into all of the candidate populations,



12 R. M. Fewster

or into none of them, and there will still be a ‘best’ population in either case.
There is no reason to assume that this must be the individual’s birth popu-
lation. Secondly, and similarly to assignment scores, there is no law of large
numbers or other rationale for converting best-population assignments into
sample compositions. For example, if 80% of a sample have a best-population
assignment to population A, there is no reason to suppose that 80% of the
sample were born in population A because the results will tend to be right
‘on average’, any more than we believe that 50% of the worldwide human
population was born in Liechtenstein. Instead, the same mistake (assignment
to Liechtenstein) is repeated over again for every human male in the sample.
The aim of the graphical displays we describe below is to supply the miss-
ing information on genetic context that determines whether practices such as
best-population assignment can be supported.

2.2 Visualising population structure

Rather than converting genetic assignment evidence to scores, we recommend
visualising the data as a way of addressing the points raised in the previous
section. We begin by looking at raw data on allele frequencies drawn from
different populations. We then describe how genetic assignment data such as
the trio (0.75, 0.10, 0.40) can be portrayed on a chart to reveal population
structure.

Figure 1 shows the sample data of ship rats from the Broken Islands and
Aotea, New Zealand, at the first four of ten genotyped loci as featured in Table
1. The barcharts show the frequency of each allele encountered in the data:
in other words, the number of times the allele appeared in the sample data
divided by 2n where n is the number of rats in the sample from the population
of interest. Missing data are shown with allele label 0. The sample sizes are
n = 60 and n = 56, which are fairly large for this type of study.

A number of features of Fig. 1 are evident. Firstly, it is clear that the
allele frequencies of the two populations are substantially different, despite
the fact that the Broken Islands lie only 300 metres offshore from the much
larger island Aotea, and ship rats are capable of swimming this distance. This
difference in allele frequencies at each locus between the two populations is
the basis on which genetic assignment works, so the evident differences here
will contribute to a successful analysis.

Secondly, the Broken Islands profile appears to be largely a subset of the
Aotea profile, as we would expect if the Broken Islands were colonized by
founders from Aotea. Among the four loci shown, there are 13 alleles that were
found in the Aotea sample but not in the Broken Islands sample, and only two
alleles for which the reverse is true. This is consistent with the possibility that
the Broken Islands were colonized by a small group of founders from Aotea,
such that Broken Island alleles are drawn from the Aotea gene-pool, but much
of the genetic diversity of the larger island is absent from the small island
group.
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Fig. 1 Allele frequencies at the four microsatellite loci shown in Table 1 for ship rats sam-
pled on the Broken Islands (n = 60 rats: top row) and on Aotea (n = 56 rats: bottom row).
Alleles are vertically aligned between the two rows, and barcharts for the two populations
are plotted on the same vertical scale for each locus.

Thirdly, rare alleles are common — in other words, both populations ex-
hibit a number of alleles that were sampled with very low frequency. This is a
common feature of genetic data: there are often many rare alleles in a popula-
tion sample, meaning that many individuals will possess at least one unusual
allele in their multilocus genotype.

Finally, despite the subsetting hypothesis, allele frequencies in the Aotea
profile are not good predictors of those in the Broken Islands. Although there
are some loci where the Broken Islands profile mirrors the pattern on Aotea,
such as D16, this is not true in general: for example, the most common allele
sampled on the Broken Islands at locus D15 is very rare in the Aotea sample.
This is consistent with so-called founder effects. The Broken Islands popula-
tion was probably founded by a small number of rats sourced from Aotea, and
as mentioned it is likely that these rats possessed some alleles that are rare on
Aotea, but would henceforth become very common in the newly-founded Bro-
ken Islands population by descent from the founders. Subsetting and founder
effects have combined to give the Broken Islands a substantially different ge-
netic profile from the nearby Aotea, so we can expect genetic assignment to
be a powerful discriminatory tool.

While plotting the raw allele frequency data as in Fig. 1 is instructive, the
barcharts are not effective as an overall display of population structure. Fig.
2 shows a more succinct chart for the ship rat data encompassing information
from all ten microsatellite loci. We call these charts GenePlots. Each individual
rat corresponds to one plotted point. Its horizontal coordinate is the estimated
log-probability of finding its genotype in the Broken Islands population, and
its vertical coordinate is the same for the Aotea population. Thus, each rat
has coordinates given by log {P (rat’s genotype | populationi)} for populations



14 R. M. Fewster

−20 −15 −10 −5

−
20

−
15

−
10

−
5

Log10 genotype probability for Broken Islands population

Lo
g 1

0 
ge

no
ty

pe
 p

ro
ba

bi
lit

y 
fo

r 
A

ot
ea

 p
op

ul
at

io
n

1% 99%

1%

99%

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

● Broken Islands
Aotea
Reinvaders

Broken Islands and Aotea

−18 −16 −14 −12 −10

−
18

−
16

−
14

−
12

−
10

Log10 genotype probability for Kaikoura Island population
Lo

g 1
0 

ge
no

ty
pe

 p
ro

ba
bi

lit
y 

fo
r 

A
ot

ea
 p

op
ul

at
io

n

1% 99%

1%

99%

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

● Kaikoura Island
Aotea
Reinvaders

Kaikoura Island and Aotea

Fig. 2 GenePlots of ship rats in the Great Barrier Island archipelago. Left: pre-2009 Broken
Islands rats (circles); Aotea rats (squares); and rats found on the Broken Islands in 2010 after
the eradication attempt (diamonds). Right: pre-2008 Kaikoura Island rats (circles); Aotea
rats (squares); and rats found on Kaikoura Island in 2009 after the eradication attempt
(diamonds).

i = 1, 2, maintaining the correct order of conditioning and therefore retain-
ing information about the size of the genotype probabilities. These estimated
genotype probabilities are based on the allele frequencies found in the refer-
ence samples, which are rats from each population whose origin is assumed
to be known. The reference samples are plotted on the GenePlot along with
any samples of unknown provenance, so as to calibrate the magnitude and
variability of genotype probabilities that naturally arise in each population.
In the first panel of Fig. 2, the reference samples are plotted as circles and
squares corresponding respectively to rats sampled before 2009 on the Broken
Islands, and rats sampled on Aotea. Because the probability of finding an ex-
act 10-locus genotype in any population will always be extremely small, we
plot genotype probabilities on a logarithmic scale. We use base-10 logarithms
so that the orders of magnitude covered by the chart can easily be deduced.

In our human blond example, the chart would comprise three axes —
one each for Sweden, Italy, and England — and the blond individual’s three-
dimensional coordinate would be the logarithm of (0.75, 0.10, 0.40), corre-
sponding to log10 {P (blond | populationi)} for i = 1, 2, 3. As in Fig. 2, these
three estimated genotype probabilities are based on reference samples from
the three countries. The primary difference between this and the chart shown
in Fig. 2 is that the genotype probabilities in Fig. 2 correspond to the full
10-locus genotype, whereas our blond human example has focused on a sin-
gle genetic trait. The probability of a 10-locus genotype is gained from the
product of the 10 single-locus probabilities, and in practice we use a Bayesian
posterior predictive genotype probability: details are given in Section 2.4. Oth-
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erwise, the principle is the same, so we can verify that the charts resolve the
issues raised in Section 2.1:

– The GenePlot genuinely plots (log posterior) genotype probabilities, a
quantity of biological relevance, so we need not be concerned about misin-
terpreting a score as a probability.

– The GenePlot retains information about the size of estimated genotype
probabilities. An individual with estimates (0.75, 0.10, 0.40) has a different
plotted point from an individual with estimates (0.00075, 0.00010, 0.00040).

– By plotting all reference samples on the same chart, we calibrate the range
of genotype probabilities that can be expected for individuals genuinely
drawn from the populations of interest. This enables us to calibrate whether
a genotype probability such as 0.00075 is genuinely ‘rare’ for a population
or whether it is within the typical range. We can also plot quantiles of the
posterior distribution for log genotype probabilities from each population,
as shown by the dashed 1% and 99% lines on Fig. 2.

In essence, the GenePlot plots ‘belongingness’ or fit of an individual to each
of K populations, with one axis for each population. The measure of belong-
ingness we use is the posterior log-genotype probability, or LGP for short: the
estimated probability of finding the individual’s genotype in the population
concerned. That is, the LGP is the estimated log {P (genotype | population)}.
If there are more than K = 2 populations, a dimension-reduced plot can be
used, for example using principal components analysis.

We now go through the features that we identified from the barcharts in
Fig. 1 and show how these can be seen on the GenePlot in Fig. 2.

1. Allele frequencies are substantially different between the Broken Islands
and Aotea. This has created a clear separation on the GenePlot between
reference samples from the Broken Islands (circles) and those from Aotea
(squares). With the exception of one rat from Aotea that clusters with the
Broken Islands reference samples, there is no overlap between the reference
samples on the chart. Interestingly, this single rat was sampled on the
part of Aotea directly opposite the Broken Islands, and might have been a
swimmer sourced from the Broken Islands.

2. The Broken Islands population is largely a genetic subset of the Aotea popu-
lation. This feature is evident on the GenePlot by looking at the quantiles
of the posterior LGP distributions. Most of the Broken Islands rats fall
between the horizontal dashed lines marking the 1% and 99% quantiles
of the posterior LGP distribution for Aotea. This means that most of the
Broken Islands rats have an acceptable belongingness to the larger Aotea
population. However, very few of the Aotea rats fall between the vertical
lines marking the 1% and 99% quantiles of the posterior LGP distribution
for the Broken Islands. This means that very few of the Aotea rats have
an acceptable belongingness to the Broken Islands. This happens because
Aotea is much more allele-rich than the Broken Islands, so a typical Aotea
rat possesses alleles that are not found on the Broken Islands. Indeed, it
is very unlikely that an Aotea rat by chance possesses only those alleles
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found on the Broken Islands, because it is conceived from a much richer
allele pool. The impoverished genetic profile of the Broken Islands is what
makes these rats distinctive from Aotea rats.

3. Rare alleles are common. As mentioned, it is common for an individual
to possess one or more alleles that are rare in its own source population.
Just one such allele will substantially lower the individual’s log genotype
probability for its own source population, and two or more such alleles
will further exaggerate the effect. The result is that the range of LGPs
exhibited in each source population is very large. Broken Islands rats are
typically plotted from LGP −10 to −5, meaning that the ‘likeliest’ native
Broken Island rats are judged 100,000 times more likely than the ‘unlike-
liest’ native Broken Island rats in their own source population. For Aotea,
the range is even larger at nearly 10 million. This enormous range empha-
sizes the danger of simplifying assignment output using assignment scores
or best-population assignments, which ignore the inherent variability of
belongingness within each source population.

The diagonal lines on Fig. 2 depict the transformation from log genotype
probabilities to assignment scores. In our human blond example, this is the
transformation from (0.75, 0.10, 0.40) to (60%, 8%, 32%). Points on the left,
central, and right diagonal lines would be given an assignment score to the
Broken Islands of 10%, 50%, and 90% respectively. A score of 90% to the
Broken Islands means that the posterior probability of finding the rat’s geno-
type in the Broken Islands is 9 times greater than the posterior probability of
finding it in Aotea. It is worth pointing out that a multiplier of 9 is not very
impressive when seen in the context of the within-population ranges of 105 to
107 described above; and from the chart it is clear that the band from 10% to
90% is very narrow. However, due to the substantial genetic differences in this
example between the Broken Islands and Aotea populations, there are almost
no points in this range. Almost all animals in this example would be given
assignment scores of greater than 90% to their source population. It would be
reasonable to undertake best-population assignment with this level of genetic
distinction between populations.

2.3 Ecological interpretation

The ecological context of the Broken Islands study is invasive species manage-
ment. New Zealand has no native land mammals, so its native ecosystems are
extremely vulnerable to impacts of introduced mammals, including ship rats.
Considerable efforts are devoted to establishing mammal-free island sanctuar-
ies. Rats eat seeds and fruit, and predate directly on invertebrates, reptiles,
and birds’ nests. Through forest damage, competition, and direct predation,
they have been solely responsible for the global extinction of several endemic
bird and reptile species (e.g. Bell et al. 2016).

An eradication of ship rats on the Broken Islands was attempted in 2009
(Fewster et al. 2011). The Broken Islands reference population shown in Fig. 2
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was sampled on the islands before the eradication took place. However, as rats
are capable swimmers, there is a constant threat of reinvasion from the extant
population on Aotea just 300 m away. In 2010, presence of rats was detected
on the Broken Islands and 19 rats were trapped. The question of management
interest is whether these rats had survived the eradication attempt, or whether
they had swum from Aotea, perhaps with subsequent breeding on the Broken
Islands. If they were survivors, this would necessitate a revision of eradication
protocols, whereas if they were swimmers, this would inform and reinforce the
need for managing the ongoing threat. Genetic assignment results from these
19 rats are plotted as diamonds on Fig. 2, from which it is clear that all 19
cluster convincingly with the Aotea population. It is not credible that any
of these rats was sourced from the pre-eradication Broken Islands population,
because they each possess too many alleles not found in the impoverished Bro-
ken Islands profile. The chart shows convincing evidence that the ‘reinvader’
rats were swimmers.

It is interesting that the genetic separation between Aotea and the Broken
Islands prior to 2009 is decisive, despite the rapid reinvasion of the islands
after the eradication. This might be due to a behavioural pattern called the
incumbent effect, whereby the pre-2009 Broken Islands rats might have re-
jected swimmers from Aotea so that they did not contribute to the breeding
population or genetic profile. We speculate that the readiness of incumbents
to accept immigrants might be affected by the frequency of immigrants. The
Broken Islands are buffered from Aotea by rugged cliffs on the Aotea side, so
immigrants might occur at relatively low frequency and this might exaggerate
an incumbent effect. Although speculative, these ideas have been reinforced
by subsequent events. Since the reinvaders were trapped in 2010, the essential
rat-free status of the Broken Islands has been maintained. However, new in-
vaders were detected each year from 2011 to 2014, sometimes taking hold into
a small population with genetic evidence of breeding on the islands, but always
genetically aligned with the Aotea population rather than the pre-eradication
Broken Islands population or the previous year’s in-situ breeding. The level
of reinvasion is frequent but not overwhelming, enabling the islands to be
managed as sanctuary islands with strong reinvasion response procedures.

The right panel of Fig. 2 shows a second island system about 3 km north of
the Broken Islands. Kaikoura Island (530 ha) is a larger island than the Broken
Islands group (125 ha). Its closest approach to Aotea is over a water gap of
only 80 m, although the terrain at this point is rugged; however there is also
frequent boat traffic between Aotea and Kaikoura, and rats are known to hitch-
hike on small craft. From Fig. 2, we see that the genetic profile of Kaikoura
Island rats (circles) is much harder to distinguish from that of Aotea rats
(squares) than was the case for the Broken Islands. Nearly all rats from either
Aotea or Kaikoura fit between the 1% and 99% posterior LGP quantiles of the
other population, meaning that they have an acceptable genetic fit to either
population. This can be seen at a glance by noting that most rats are plotted
inside the central box marked by the dashed quantile lines on Fig. 2. There
is a hint of genetic subsetting for Kaikoura Island, but it is very minor. The
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diagonal lines show that several rats from both Aotea and Kaikoura would
be given an assignment score greater than 50% for the wrong population,
and occasionally greater than 90%. This underlines the danger of relying only
on assignment scores without viewing the overall genetic variability in the
populations to establish context.

A rat eradication was attempted on Kaikoura Island in 2008. The diamonds
on the plot show eight rats captured on the island in 2009. The genetic evidence
for any of these rats alone is inconclusive, as any of them could have originated
either from the Kaikoura population denoting survivors, or from the Aotea
population denoting swimmers or hitch-hikers. However, the eight rats do show
a greater tendency to group with the Kaikoura population, and it is very
unlikely that a group of eight Aotea rats would yield seven or more with
higher genotype probabilities in Kaikoura than in Aotea (p = 0.001: Fewster
et al. 2011). This gives us evidence that the post-eradication sample contains at
least some survivors, although we do not wish to pronounce on the provenance
of any of the rats individually. The conclusion of incomplete eradication is
corroborated by the discovery of a different rat species, kiore (Rattus exulans)
on Kaikoura Island from 2009 onwards. Kiore are thought to be non-swimmers,
so it is likely that they were present on the island before the 2008 eradication
attempt, undetected due to the presence of the more dominant ship rats, and
that small numbers of both species survived the eradication attempt.

Subsequent events on Kaikoura Island have reinforced the conclusions from
the genetic analysis. The ship rat population has persisted on the island since
2009 and is now managed as a controlled, low-density population. The genetic
chart suggests that there is little isolation of the island population from Aotea,
so it would be a significant challenge to maintain as a rat-free population. In
2013, it was confirmed that rats swim from Aotea to both Kaikoura Island and
the Broken Islands using direct evidence from Rhodamine B dye (Bagasra et
al. 2016). Bait laced with the dye was distributed on Aotea, and the dye was
found during the following month in two males out of 39 ship rats trapped
on Kaikoura Island, and in two isolated male ship rats found on the Broken
Islands.

We give one final example of the insights that can be gained from genetic
assignment data. Figure 3 shows GenePlots from two different species of rats
taken from the Bay of Islands region in Northland, New Zealand. These Gene-
Plots differ from Figure 2 because they involve more than two reference pop-
ulations. The multi-dimensional LGP data is depicted on a two-dimensional
chart by plotting the first two principal components. We lose the ability to
depict posterior quantiles and assignment scores on these multi-population
charts, but we still gain considerable insight into population structure and
variation.

The left plot shows Norway rats (Rattus norvegicus) sampled in 2005 on
five islands in the group: Urupukapuka (URU), Motuarohia (MAH), Waewae-
torea (WAE), Okahu (OKA), and Poroporo (POR) (Miller et al. 2009). Four
of these islands are in a chain with each pair separated by roughly 200–800
m. Motuarohia is a few kilometres away, separated from the others by two
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Fig. 3 GenePlots of Norway rats and ship rats in the Bay of Islands region, New Zealand.
Left: Norway rats from five islands in the bay. Islands are of moderate size, up to 208 ha. All
five islands are used as reference populations. The first two principal components through the
5-dimensional plot are shown, accounting for a total of 91% variance explained comprising
60% and 31% on principal axes 1 and 2 respectively. Right: ship rats from Urupukapuka
island and two mainland sites: Te Rawhiti and Doves Bay. All three populations are used as
reference populations. The first two principal components through the 3-dimensional plot
are shown and account for a total of 98% variance explained, comprising 92% and 6% on
principal axes 1 and 2 respectively.

additional islands on which the rat populations were controlled or eradicated.
Norway rats are thought to be more eager swimmers than ship rats (Russell et
al. 2005) and the island terrain is mostly gentle with beaches at the entry and
exit points on adjacent islands. Fig. 3 shows what we mean by an unstructured
genetic profile among the islands. With the exception of the more distant Mo-
tuarohia (MAH), which separates from the others only in the direction of the
second principal axis (vertical direction), the islands are genetically homoge-
neous. The first principal axis (horizontal direction) almost entirely describes
within-population rather than between-population variation in LGP, and ac-
counts for 60% of the total variance. In a situation like this it would be highly
misleading to attempt genetic assignment based on best-population scores.

The right panel of Fig. 3 shows ship rats (Rattus rattus) from the same
location. Ship rats were mostly absent from the islands, which were overrun
by Norway rats, but a small population of ship rats was found on Urupuka-
puka, which boasts the only passenger ferry among the islands. Two adjacent
mainland populations, Te Rawhiti and Doves Bay Marina, were also sampled.
Te Rawhiti is about 1 km from Urupukapuka at closest approach, whereas
Doves Bay is about 20 km from Urupukapuka by sea, and about 80 km from
Te Rawhiti by land (Miller et al. 2009). The GenePlot in Fig. 3 shows a
striking separation between Urupukapuka rats and those from the other two
sites. Despite the very long land distance between Te Rawhiti and Doves Bay,
there is no significant habitat break and the genetic separation between these
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two populations only occurs in the second principal axis (vertical direction)
which explains only 6% of the total variance. The first principal axis (hori-
zontal direction) explains 92% of the total variance and strongly distinguishes
Urupukapuka rats from their mainland counterparts. Further inspection con-
firms that this is a similar process of genetic subsetting to that shown in the
Broken Islands in Fig. 2, with the Urupukapuka population being genetically
impoverished compared with the mainland populations.

Genetic assignment techniques have been widely applied to invasive species
management in New Zealand, including studies of rats (Russell et al. 2010),
stoats (Mustela erminea) (Veale et al. 2013), and possums (Trichosurus vulpec-
ula) (Adams et al. 2014). Different genetic data types can also be used. Robins
et al. (2016) use mitochondrial DNA to analyse the source of the disastrous
1964 ship rat invasion of Big South Cape Island, which resulted in the extinc-
tion of the last populations of three native bird and bat species (Bell et al.
2016).

2.4 Mathematical details

We now give the mathematical details underlying genetic assignment tech-
niques, including the GenePlots described above. We use the Bayesian for-
mulation of Rannala and Mountain (1997), which underpins many similar
methods.

Consider a single locus, L, at which there are k available allele types,
labelled i = 1, 2, . . . , k. The parameters that need to be estimated are the fre-
quencies of alleles 1, 2, . . . , k in each reference population. For a single reference
population R, let p = (p1, p2, . . . , pk) be the frequencies of the k alleles, where∑k

i=1 pi = 1 and 0 ≤ pi ≤ 1 for i = 1, . . . , k. Our aim is to estimate p1, . . . , pk
using sample data from the reference population R, and then to use these esti-
mates to assess the multilocus genotype probability of any queried individual
I with respect to population R. This genotype probability is log-transformed
to give the LGP of individual I in population R.

A Bayesian approach to estimating (p1, . . . , pk) is useful, because it allows
for an unsampled allele to have non-zero posterior weight. The amount of
posterior weight can be adjusted according to the size of the sample that failed
to find the allele. This means that an individual with allele i is not excluded
from population R even if allele i was not sampled among the reference samples
from population R. This is important, because as we have seen there are
typically many rare alleles present in a population, and they will not all be
exposed in the reference sample.

We use a Dirichlet prior, (p1, p2, . . . , pk) ∼ Dirichlet(τ, τ, . . . , τ), where τ
is usually chosen to be either 1 or 1/k. The prior density is

f(p1, p2, . . . pk) ∝
k∏

i=1

pτ−1
i ,
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for 0 < pi < 1 (i = 1, . . . , k) and
∑k

i=1 pi = 1.
The data are the numbers of alleles of each type observed among the refer-

ence individuals sampled from population R, denoted by x = (x1, x2, . . . , xk).

Here,
∑k

i=1 xi = 2n, where n is the number of reference individuals for which
genotype data was successfully obtained at locus L.

The likelihood is the multinomial density, x |p ∼ Multinomial(2n ;p) . The
multinomial model requires that the 2n alleles found in the n reference indi-
viduals correspond to 2n independent draws from the reference population
allele frequencies. This implies that there should not be correlation between
an individual’s two alleles, a requirement that is satisfied if the population
is in Hardy-Weinberg equilibrium but is violated if the population is substan-
tially inbred. Sources of genetic dropout such as null alleles also interfere with
the multinomial assumption. However, empirical investigations suggest that
GenePlot charts are quite robust to violations of the multinomial model, be-
cause inference derives mainly from the allele frequencies themselves rather
than from the particulars of how alleles are combined into genotypes; so issues
of inbreeding and dropout tend to be disregarded in assignment analyses.

Because the Dirichlet distribution is the conjugate prior of the multinomial,
the posterior allele frequency distribution is also Dirichlet:

(p1, p2, . . . pk |x) ∼ Dirichlet(x1 + τ, x2 + τ, . . . , xk + τ) .

If allele i is unsampled in reference population R (xi = 0), there is nonetheless
still posterior support for values pi > 0. Larger reference samples drive this
support closer to zero, but it never vanishes altogether.

Now consider a query individual, I, whose LGP we wish to assess in ref-
erence population R. The genotype of individual I at locus L consists of two
alleles, and can be written as a = (a1, a2, . . . , ak), where each ai is 0, 1, or 2,

and
∑k

i=1 ai = 2. As before, we assume that the individual’s two alleles are
independent, so a |p ∼ Multinomial(2 ;p). The marginal distribution of a is
the Dirichlet compound multinomial distribution, obtained by integrating the
multinomial density over the Dirichlet posterior of p, and it simplifies to a
simple closed form as follows:

P (a) =



(xr + τ)(xr + τ + 1)

(2n+ kτ)(2n+ kτ + 1)
if ar = 2 and aj = 0 for j ̸= r :

I is a homozygote with allele type r;

2(xr + τ)(xs + τ)

(2n+ kτ)(2n+ kτ + 1)
if ar = as = 1 and aj = 0 for j /∈ {r, s} :

I is a heterozygote with alleles r and s.

These expressions demonstrate that the Bayesian procedure has generated a
posterior probability for genotype (r, s) that is greater than 0 even if alleles
r and s were unsampled in the reference population (xr = xs = 0), but that
the posterior probability allotted to such a genotype decreases as the size n of
the reference sample increases. The posterior log genotype probability (LGP)
of individual I at locus L in population R is finally given by log10 {P (a)}.
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The typical choices for the prior parameter τ are τ = 1 (Baudouin and
Lebrun 2001) or τ = 1/k (Rannala and Mountain 1997). The posterior p |x ∼
Dirichlet(x+ τ) has marginals pr |x ∼ Beta

(
xr+ τ,

∑k
i=1(xi+ τ)− (xr+ τ)

)
,

so the marginal posterior means are

E(pr |x) =
xr + τ∑k

i=1(xi + τ)
=

xr + τ

2n+ kτ
.

This shows that the choice τ = 1/k gives less posterior weight to alleles with
low sample frequencies. The choice τ = 1 borrows probability from common
alleles to allot to rare ones, so it is more tolerant of rare alleles than the choice
τ = 1/k. We use the choice τ = 1 throughout this paper. GenePlots produced
with τ = 1/k are similar but tend to be a little more diffuse because individuals
with rare alleles are allotted lower posterior LGPs and therefore drag out the
lower tail of the LGP distribution.

The calculation above gives the LGP log10 {P (a)} for individual I in pop-
ulation R at a single locus L, which we could write as log10 {P (aL)}. The
overall multilocus log-genotype probability for individual I in population R
is gained by summing over loci L = 1, . . . , ℓ: LGPI

R = log10 {P (a1, . . . ,aℓ)} =∑ℓ
L=1 log10 {P (aL)}. This corresponds to an assumption that an individual’s

alleles are independent across different loci, which in genetic terminology is
to say that the loci are in linkage equilibrium. In theory, loci are statistically
independent if there is no physical link between them, for example if they
are located on different chromosomes or are sufficiently far apart on a single
chromosome not to be inherited as a single unit, which is very likely to be the
case in practice. However, in small populations, correlation between alleles at
different loci can arise as a sampling artefact, where ‘sampling’ denotes the
genetic sampling process of creating offspring from a small number of par-
ents. It is good practice to check for linkage disequilibrium before undertaking
an assignment analysis, but violations are unlikely to pose serious problems
unless they are extreme, because again inference is based primarily on allele
frequencies and not on their assembly into multilocus genotypes.

If there are no missing data, the GenePlot is constructed by plotting the
point for individual I at coordinate (LGPI

1 , . . . , LGPI
K) for populations R =

1, . . . ,K. The difficulty comes when individual I has missing data at some loci,
because then its log genotype probabilities are on a different scale from those of
other individuals. For example, if I has data available for only 8 out of 10 loci,
its LGP coordinates are gained by adding the results for only 8 loci, whereas
those for full-data individuals are gained by adding the results for 10 loci. This
non-comparability is the reason why most studies do not attempt a graphical
analysis as shown on the GenePlot. Missing locus data ostensibly imply that
the LGPs of different individuals within the sample data are referenced on a
multitude of different scales, and these missing data are sufficiently common
that it is impracticable to discard all individuals with missing records from the
analysis. However, the benefits of plotting the output would seem to outweigh
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the disadvantages of dealing with missing data, so we proceed by developing
a graphical display that can handle these missing records.

We deal with missing data on GenePlots by plotting individuals at the LGP
quantiles in the full-data distribution that they obtain from their available loci
in the corresponding reduced-locus distribution. Thus, if individual I has data
available for only 8 loci, we construct the LGP of I in population R initially for
these 8 loci only, and find the quantile of LGPI

R in the posterior distribution
of the 8-locus LGPR. If individual I is at the 20th percentile of this 8-locus
distribution, then its coordinate for population R in the GenePlot is the 20th
percentile of the full 10-locus posterior distribution for LGPR. This ensures
that all individuals are plotted at points that preserve their observed ‘rarity’
within each population on the basis of the data they possess. We construct the
posterior LGPR distribution by finding the distribution of LGPs in population
R over multilocus genotypes drawn from the posterior Dirichlet compound
multinomial distributions for each locus L in population R. Quantiles of the
posterior LGPR distribution may be found either by simulation (Russell et
al. 2010; Veale et al. 2013) or using a saddlepoint approximation (McMillan
and Fewster in review). A user interface for generating GenePlots using R is
available online (McMillan and Fewster in review).

2.5 Related genetic assignment methods

There is a large literature on genetic assignment and on eliciting population
structure from genetic data, and a range of methods each with their own
strengths and caveats. While we cannot attempt a complete survey here, many
of the methods in common use share a foundation with the material in the
previous sections, so a detailed look at one method as we have provided above
enables a quick grasp of many more. Here we briefly mention some additional
methods and software in wide use.

— GeneClass2. In addition to the tables of percentage assignment scores
described in Section 2.1, the GeneClass2 software (Piry et al. 2004) also offers
several other options. LGP results and the number of non-missing loci for
each individual are returned in the same tabular format, so GenePlots can be
plotted directly from the tables as long as they are restricted only to those
individuals with no missing data. If the GenePlot is to include individuals with
missing data, custom code is needed for quantile calculation (McMillan and
Fewster in review).

— Monte Carlo resampling. A feature of GeneClass2 that deserves special
mention is a suite of Monte Carlo algorithms available under the label ‘Prob-
ability Computation’. These algorithms create virtual individuals ‘bred’ from
the reference samples to generate a population quantile for the LGP of each
real individual I in each population R. For example, the algorithm of Paetkau
et al. (2004) repeatedly generates new samples of n individuals bred virtually
from the n real individuals in the reference sample from population R. Each
of the n virtual individuals is given an LGP result using the other n− 1 indi-
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viduals in its own batch as a reference population. New batches are simulated
until a large sample of LGPs is obtained, pooled across batches. The LGP of
a query individual I in the observed data, with reference to the n real refer-
ence samples from population R, is then compared against this large sample of
simulated LGPs. Its ranking among the simulated samples produces a p-value
against the null hypothesis that individual I could have arisen from popula-
tion R. The output generates similar conclusions to those from the GenePlot
posterior quantiles, but the method of estimating the quantiles is different.

— Mixed stock analysis. Many migratory species, particularly fish, whales,
and other marine species, have high fidelity to breeding sites such as natal
rivers or specific coastal areas, but also undergo migrations to areas such as
pelagic feeding grounds where the different stocks mix. Mixed stock analyses
are used to determine the proportional composition of a population that is
thought to contain a mixture of individuals from different breeding stocks.
The output of a mixed stock analysis is an estimate of stock composition:
for instance, estimating that the mixed stock comprises 20% sourced from
population A, 50% from population B, and 30% from population C. As such,
the analysis aims to be less specific than individual assignment procedures.
However, since it is based on the same principles, it is subject to much the
same caveats and considerations. In particular, genetic assignment does not
benefit from a law of averages, so there is no reason to expect that a mixed
stock analysis will be more successful than an individual assignment exercise
if there is only weak genetic discrimination between the source populations.

Mixed stock analysis is conducted by software such as ONCOR (Anderson
et al. 2008; Kalinowski et al. 2008), popular in fisheries management. For three
reference populations A, B, and C, ONCOR aims to estimate θ = (θA, θB , θC),
where θR is the proportion of the queried stock that is sourced from popula-
tion R for R ∈ {A,B,C} with 0 ≤ θR ≤ 1 and

∑
R θR = 1. To estimate θ,

ONCOR first calculates the posterior log genotype probabilities (LGPs) for
every individual I in the queried stock, following the Rannala and Mountain
(1997) method as described above. Taking antilogarithms produces the pos-
terior genotype probabilities themselves, (GPI

A,GPI
B,GPI

C). The probability of
finding I’s genotype in the mixed stock is then θAGPI

A+θBGPI
B +θCGPI

C . This
probability is multiplied across all individuals I in the query sample to gain a
likelihood for θ, which is maximized to estimate the stock composition.

— Cryptic population structure. The software Structure (Pritchard et al.
2000) is an immensely popular package for eliciting cryptic population struc-
ture from a genetic sample. By cryptic structure, we mean genetic subsets
that are not necessarily associated with their sampling location. For example,
humans in a large city might tend to marry within their own ethnic groups,
leading to genetic structure in the population that is not connected with lo-
cation. The Structure software is effectively a genetic clustering algorithm.
The number of clusters sought, K, is pre-specified by the user. Typically the
software is run by trialling several different values for K, but alternatives for
selecting K are available (e.g. Evanno et al. 2005), including software that
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uses the Dirichlet process prior (Pella and Masuda 2006; Huelsenbeck and
Andolfatto 2007).

Structure operates on much the same principles as the Rannala and Moun-
tain (1997) assignment methods described above, except for extra steps needed
to assign cluster memberships for all individuals. Cluster membership is treated
as a latent variable and sampled by a Markov chain Monte Carlo algorithm. In
essence, Structure elicits its own K reference populations based on clustering
the LGP results, as opposed to the GenePlot method which assumes reference
populations are known a priori. It is often run with an admixture model which
allows each individual to have mixed cluster membership, with compositions
estimated separately for each individual. This model is perhaps rather obscure
as far as biological interpretability goes, but it is popular because it enables
the uncertainty in cluster membership to be displayed for each individual. The
final output is a barchart with clusters discriminated by colour. A bar for each
individual displays its estimated composition by cluster: for example, a single
individual may be attributed 20% to population 1 (coloured red) and 80% to
population 2 (coloured green), leading to a bar split 20-80 between the two
colours. A typical output will show a mixture of some individuals estimated
to have ‘pure’ membership of a single cluster, and other individuals estimated
to be composed of different clusters to greater or lessser extent.

3 Estimating population size with genotype data

In this section we look at a second major area in which genetic data can be
useful in statistical ecology: estimating population size. The most straight-
forward application of genetic data in estimating population size is to treat
individual DNA profiles as unique ‘marks’ for a capture-recapture study. In
principle, capture histories can be reconstructed for all sampled animals by
treating every unique genotype profile as a unique animal, and applying stan-
dard capture-recapture models (Otis et al. 1978). In practice, this is com-
plicated by genotyping errors and missing data which can create differences
between DNA profiles obtained from the same animal. We look briefly at how
these problems have been approached by statisticians to date.

Other methods for estimating population size rely more directly on proper-
ties of genetic inheritance and genetic drift. Here, it is important to distinguish
between methods that aim to estimate census population size — the number
of animals in a population, N — and those that aim to estimate genetic effec-
tive population size, Ne. Effective population size is a genetic measure that is
related to the rate of genetic change in a population, and it does not necessar-
ily relate to census population size in a predictable or temporally-stable way.
We comment briefly below on close-kin mark-recapture, an emerging method
of estimating census population size, and on the differing aim of estimating
genetic effective population size.
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3.1 Genetic capture-recapture

We use a case study to illustrate issues of genetic sample-matching that arise
when reconstructing capture histories from genotype data. Carroll et al. (2011;
2013) describe a capture-recapture study of southern right whales (Eubalaena
australis) conducted by boat in the New Zealand subantarctic over the four
austral winters of 1995-1998. DNA samples from cetaceans are obtained by
deploying biopsy darts from a veterinary rifle. The biopsy darts glance off
the thick outer blubber of cetaceans, scooping a tiny skin sample on impact,
and drop into the sea where they are retrieved by researchers. Darts may be
attached to fishing lines and retrieved by reeling in the line after deployment,
or they can be fished out of the water using nets. DNA samples obtained from
live animal tissue, such as these, are generally of higher quality than those
obtained from dropped samples such as hair, feathers, or faeces; however,
even with high-quality tissue samples, considerable attention must be paid to
genotyping errors.

The following statistics are taken from Vale et al. (2014). Each sample is
genotyped at 13 microsatellite loci. There are 132 genetic samples, correspond-
ing to results for 132 × 13 = 1716 loci. Of these, 139 or 8% of locus records
are missing.

Reconstructing capture histories involves comparisons between all pairs
of samples to determine which samples correspond to captures of the same
individual. Only one pair of samples in the right whale dataset exhibits a full
match on all 13 loci. If problems of genetic errors and missingness were ignored,
this would mean only one recapture would be reported for the entire study, and
population size would be greatly overestimated. Applying the classical model
Mt under this strategy gives an implausible estimate of N̂ = 6148 whales (Vale
et al. 2014). The true number N is believed to be a few hundred animals.

The usual way of dealing with errors is to conduct a thorough manual
examination of near-matches, often repeatedly genotyping samples over which
there is doubt, and eventually deciding upon a rule for calling matches. This
can be a time-consuming and expensive process. In this study, we find that out
of 132×131/2 = 8646 sample pairs, the number of pairs with exact matches at
0–4 loci is 8621; at 5–6 loci is 5; at 7–8 loci is 0; and at 9–13 loci is 20. Missing
data are not counted as matches for these statistics. The results exhibit a clear
break between samples matching at 6 or fewer loci, and samples matching at
9 or more loci.

Using the least variable 9 loci in the data, the estimated probability that
two individuals have the same genotype by chance is PID = 6.0 × 10−11

(Paetkau and Strobeck 1994), or for closely related individuals, PIDsib =
1.5× 10−4 (Evett and Weir 1998). Other selections of 9 loci have even better
discrimination, so the probability of 9-locus matches occurring by chance is
always lower than about 1 in 10 000. By contrast, for the 6 most variable loci,
PID = 1.8×10−9 and PIDsib = 1.3×10−3. For other selections of 6 loci, these
probabilities are higher, so the probability of 6-locus matches occurring by
chance is greater than 1 in 1000 for close relatives. These figures indicate that,
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if the population size really is a few hundred animals including numerous close
relatives, it is reasonable to assume that a few 6-locus matches but no 9-locus
matches will be obtained between samples belonging to different individuals.
The break between 6 and 9 matching loci provides a convenient boundary
for this study, so we can reconstruct capture histories by assuming that two
samples belong to the same individual if they have at least 9 matching loci.

Assuming the 9-loci match rule is correct, we can deduce the level and types
of error in the sample. The match rule implies there are 60 non-matching loci
among samples assumed to come from the same individual, out of a total of 260
same-locus comparisons. Of the 60 non-matches, 50 are due to missing data.
The other 10 mismatched loci can only have arisen from errors: 6 could be
due to allelic dropout; 3 have a single allele substitution; and in the remaining
case the non-matching loci have no alleles in common. Thus, every type of
non-match appears in the data. The error rate by locus among non-missing
data is 10/200 (5%).

Once the data are presumed to be corrected, capture-recapture modelling
proceeds as usual. Applying model Mt to the data obtained from the 9-loci
match rule yields an estimate of N̂ = 306 whales with 95% confidence interval
(212, 443) (Vale et al. 2014).

For sampling protocols involving low-quality DNA, for example using hair,
feathers, or faeces, a much higher error rate may be expected. In principle,
identity can be established to near-certainty regardless of the error rate by
taking sufficiently many loci. However, this is not always a practical possibil-
ity using microsatellite loci, both because of the expense of genotyping, and
because microsatellite loci and primers are costly to develop and there might
only be a restricted number commercially available for a particular species.
These problems may be solved in the future by next-generation sequencing
technologies, which allow examination of thousands of loci. Distinguishing in-
dividual identity and kinship are among the most straightforward and powerful
applications promised by next-generation technologies.

3.2 Modelling misidentification

In view of the intrinsic difficulties in matching DNA samples to the same
animal, various authors have proposed ways of allowing for genotyping errors
in capture-recapture data at the modelling stage. The aims are twofold. Firstly,
it is time-consuming and expensive in laboratory work to verify problematic
samples: it is sometimes said that 95% of laboratory effort is expended on
5% of samples. Secondly, incorporating genotyping errors at the modelling
stage enables quantification of the error rate and the uncertainty that errors
contribute to the final results, which are ignored if the data set is patched up
to a final version that is treated as fixed and correct for the modelling exercise.

The misidentification model that has perhaps received the most attention
is model Mt,α (Lukacs and Burnham 2005; Yoshizaki et al. 2011; Link et al.
2010; McClintock et al. 2014; Schofield and Bonner 2015), which is similar to
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the classical model Mt (Otis et al. 1978) but with the addition of a simple
misidentification mechanism. Each sample is considered to be correctly geno-
typed with probability α. With probability 1 − α, it is incorrectly genotyped
and a unique erroneous DNA profile is generated. It is assumed that the same
genotyping error never occurs twice, so every error leads to a capture history
with a single capture in it. Information to estimate the parameter α comes
from the consequent surplus of capture histories with only one capture.

Vale et al. (2014) highlighted two significant problems with model Mt,α.
Firstly, the model itself is too simplistic to capture the genotyping error process
adequately. The assumptions that genotypes are either correct or incorrect,
and that samples either match or do not match, is not a good description of
the error process, and does not make use of the information that a pair of
samples matching at 12 out of 13 loci almost certainly belong to the same
animal, whereas a pair matching at 4 out of 13 loci almost certainly belong to
different animals. Secondly, the model is data-hungry, with very large sample
sizes needed for precise maximum likelihood estimates. Gleaning information
on the misidentification rate from the surplus of capture histories with only
one capture is an ingenious idea, but it is too subtle for the sample sizes often
encountered in real studies. A large number of single-entry capture histories
could be attributed either to low capture probabilities with a low error-rate, or
to high capture probabilities with a high error-rate. Consequently, unless the
sample sizes are very large, the α parameter, and consequently the population
size, are estimated with low precision (Vale et al. 2014).

For the southern right whale study, Vale et al. (2014) found that model
Mt,α gave poor results. When applied to the uncorrected data, as it is intended
to be, there is only one recapture in the data set so nearly all capture histories
contain only one entry. The model drives α̂ as low as possible, yielding a
boundary estimate with N̂ = maxt{nt} = 51 and α̂ = 0.09. When instead it
is applied to the corrected data using the 9-locus match rule, it returns the
opposite boundary estimate α̂ = 1.00 and gives identical results to model Mt,
namely N̂ = 306, rendering the misidentification mechanism redundant. Vale
et al. (2014) note that there does not appear to be a satisfactory application
of model Mt,α on real data in the literature to date.

A different approach to modelling misidentification is taken by Wright et
al. (2009), and further developed in Barker et al. (2014). Instead of estimat-
ing error rate indirectly through a surplus of single-entry capture histories,
they require all samples to be genotyped at least twice, therefore gaining a
direct estimate of error rate at each locus by discrepancies between repeat at-
tempts. Modelling proceeds by treating true genotypes and capture histories
as latent variables to be sampled through an MCMC algorithm. The complete
data likelihood demands parameters for the probabilities of all genotypes at
each locus, so the approach is parameter-intensive. However, it is very ap-
propriate in situations where large numbers of low-quality DNA samples are
available: for example, in studies that collect feathers, hair, or faeces. In these
cases, potentially large sample sizes mitigate parametrization problems, and
for such low-quality DNA samples it is standard protocol to conduct repeat
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genotyping (Taberlet and Luikart 1999). Because the model uses direct infor-
mation on genotyping errors, these parameters are well-informed. Wright et
al. (2009) report the posterior medians of locus-specific dropout probabilities
to be between 0.12 and 0.35 in their study of faeces from European badgers
(Meles meles) in Gloucestershire, UK. These high estimates, compared with
the empirically-estimated error rate of 0.05 in the right whale data set, high-
light the differences in genotype quality when using samples from faeces as
opposed to high-quality tissue samples.

Despite its advantages, the approach of Wright et al. (2009) is not ideal
for situations such as the right whale study, for which repeat-genotyping is
not a cost-effective use of resources in view of the high quality of DNA sam-
ples and low error rate. Furthermore, cetacean surveys have notoriously low
power to detect population change (Carroll et al., 2015), and it is unlikely
that data will be capable of supporting a heavy parametrization for genotyp-
ing error while still adequately addressing questions of interest. The state of
the art for such data is still to correct errors by a manual process prior to
modelling, as described for the right whale study. This leaves the field open
for further statistical development. It remains to be seen whether develop-
ments in next-generation sequencing might largely solve the problem of ge-
netic misidentification. Researchers with substantial microsatellite catalogues
from long-running ongoing studies might then face the dilemma of continuing
with existing genetic protocols, or recreating their entire catalogues with new
technologies.

3.3 Close-kin mark-recapture

A promising new direction for estimating population size from genetic data is
close-kin mark-recapture (Bravington et al. 2016). The simplest formulation
relies upon the observation that every individual has two parents. It oper-
ates on similar principles to capture-recapture, except that an individual is
‘marked’ by its own presence in the sample, and ‘recaptured’ if one or more
of its parents is also present in the sample: an event that is intuitively more
likely in a small population than a large one, for a sample of a given size. The
close-kin recapture rate therefore contains information about adult popula-
tion size. Estimation can be conducted on a single sample — in other words
from a single capture occasion — but is complicated by the possibility that
parents might have died before the sample is taken. This forces the inclu-
sion of a wider demographic model which enables estimation of additional
demographic parameters such as parental mortality. With modern genotyping
methods, it appears possible to extend the approach to more distant kin such
as half-siblings.

Close-kin mark-recapture methods offer innovative new ideas for estimat-
ing census population size from genetic data, especially in large-population
settings such as commercial fisheries where other data sources can be unreli-
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able. The first large-scale application is a recent study to estimate abundance
of southern bluefin tuna (Thunnus maccoyii) (Bravington et al. 2014).

3.4 Genetic effective population size, Ne

In this final section we briefly introduce the concept of genetic effective popu-
lation size, Ne. The primary purpose is to describe what Ne represents, and to
distinguish it from the usual meaning of population size, namely the number
of individuals in a population. We distinguish this usual quantity by calling it
the census population size, N .

The process of genetic inheritance through the generations can be thought
of as a sampling process. Alleles available in the parent generation are sampled
to create a new set of alleles for the offspring generation: a process called
genetic sampling (Weir 1996). As such, familiar effects of sample size come
into play. The sample proportion of a particular allele A can change much
more from one generation to the next in a small population than it can in a
large population. This change in allele frequency from one generation to the
next is called genetic drift.

Because the rate of change of genetic quantities from one generation to the
next depends upon the population size, we should be able to use information
about the rate of change of genetic quantities to provide information about
population size. Suitable genetic quantities whose rate of change depends upon
population size include allele frequencies, inbreeding coefficients, and homozy-
gosity levels. However, genetic models that link the change in these quantities
to the population size N are highly idealized, and do not necessarily describe
the reproduction of real animals. In particular, in real populations some in-
dividuals are more successful breeders than others — massively so in some
species — which can be thought of as reducing the pool of alleles available for
genetic sampling to a smaller pool belonging to only the successful breeders.
The effective population size that governs rates of genetic change is therefore
typically smaller than the census population size.

The formal definition of effective population size Ne is rather subtle. The
effective population size is the size of an idealized population whose genetic
parameters change at the same rate as those in the population of interest.
The ideal population meets the three conditions of equal sex ratio, random
mating, and constant census population size over generations, and generations
do not overlap. The idea is that the real population, with a census size of N
individuals per generation, can then be studied in genetic terms as if it were
an ideal population with size Ne individuals.

Generally, because of the uneven breeding success of individuals, the ef-
fective population size Ne is smaller than the census population size N . How
much smaller depends upon the species and mating system. For some species,
Ne might be comparable with N , whereas for other species it could be millions
of times smaller — a ratio observed in some fish species, for example. For any
given species, the ratio of Ne to N is not constant or predictable over time,



Some applications of genetics in statistical ecology 31

and there are several possible definitions of Ne depending upon which genetic
parameters are inspected and the timescale of interest. A comparison of Ne/N
ratios across different species is given by Frankham (1995).

Although Ne is a parameter of fundamental importance in evolutionary
genetics, determining the potential of a population to retain advantageous al-
leles rather than lose them to genetic drift, it is less clear how useful it is for
contemporary conservation or management. While genetic parameters such as
inbreeding coefficients are themselves relevant to conservation management,
the transformation of these into Ne does not appear to be especially helpful.
It might be useful in the management of threatened species as a way of com-
municating the severity of genetic impoverishment to laypeople, although this
benefit is counterbalanced by the difficulty of obtaining a precise estimate of
contemporary Ne for small populations, and the difficulty of quantifying what
number would represent a ‘healthy’ Ne for the population in question. Our
main aim here is to ensure that the use of genetic data to estimate census
population size N is not confused with the estimation of the genetic popula-
tion size parameter Ne. Further discussion and references for estimating Ne

can be found in Russell and Fewster (2009) and Luikart et al. (2010).

4 Concluding remarks

Our aim in this paper has been to give an introduction to two key applica-
tions of genetic data that are likely to be encountered by statistical ecologists:
genetic assignment and population structure; and population size estimation
using genetic data. There are numerous other applications of genetic data
that we have not mentioned. Relatedness studies, including parentage assign-
ment and pedigree reconstruction, have enormous applications, from designing
breeding programmes for critically endangered species to avoid inbreeding and
maximize the genetic health of a population (so-called genetic rescue), to in-
vasive species management with the aim of determining whether a sample
of reinvaders comprises independent colonists or a newly-established breeding
population. An emerging area that is likely to be the focus of much future
statistical work concerns the merging of genetic data with data from other
sources for combined inference.

We have barely touched on the enormous field of classical population genet-
ics, including the foundational Wright-Fisher model and associated concepts of
inbreeding and coancestry coefficients (Weir 1996). The coancestry coefficient
may be loosely referred to as FST and is often used as a measure of popula-
tion structure or connectivity: see Fewster et al. (2011) for how this measure
can be used for a connectivity analysis of the ship rat data featured in this
paper. Despite the many omissions, it is hoped that the concepts covered here
will provide a worthwhile introduction to genetic principles and problems, and
enable an easier route into further study.
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