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Abstract

An important property of Fisher information is that it decreases weakly un-
der transformation of random variables. Kagan and Rao (2003) [A. Kagan,
C.R. Rao, Some properties and applications of the efficient Fisher score, J.
Statist. Plann. Inference 116 (2003) 343–352] showed that, in the presence
of nuisance parameters, Fisher information on the interest parameters de-
creases similarly. We prove here a general algebraic result on partitioned
positive-definite matrices, and use it to show that the decrease in Fisher in-
formation on the interest parameters is bounded below by the conditional
Fisher information on the interest parameters. A consequence is that stan-
dard large-sample confidence regions for parameters of interest based on
the deviance, score and Wald statistics become asymptotically ‘wider’ under
transformations, both in the context of independent identically distributed
random variables and for the binomial detectability models of Fewster and
Jupp (2009) [R.M. Fewster, P.E. Jupp, Inference on population size in bino-
mial detectability models, Biometrika 96 (2009) 805–820]. One implication
is that models that combine different data sources for inference on the in-
terest parameters are asymptotically more efficient than models for any of
the individual data sources, despite the possible need for further nuisance
parameters when combining the sources.
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1. Introduction

One of the key concepts in parametric statistics is Fisher information. For
a random variable X on a sample space X with density f(x; θ) depending
smoothly on a (vector) parameter θ, the Fisher information on θ given by X
is

iX(θ) = Eθ

[(
∂ log f(X; θ)

∂θ

)T
∂ log f(X; θ)

∂θ

]
.

An important property of Fisher information is that (under mild regularity
conditions) it does not increase under transformation of random variables,
i.e.

it(X) ≤ iX , (1)

where t : X → Y is a transformation and it(X) denotes the Fisher information
on θ given by t(X) (see, e.g. pp. 330–331 of [6]). Here we have followed the
usual ordering on symmetric matrices, writing A > B (or B < A) if A − B
is positive-definite and A ≥ B (or B ≤ A) if A−B is positive semi-definite.

Inequality (1) can be extended to parameters of interest. To describe
this extension it is necessary to consider partitioned matrices. Let A be a
(p+ q)× (p+ q) symmetric matrix partitioned as

A =

(
A11 A12

A21 A22

)
,

where A11 and A22 are p × p and q × q matrices, respectively. The p × p
matrix A11·2, sometimes known as the Schur complement of A22, is defined
as

A11·2 = A11 − A12A
+
22A21,

where A+
22 is the Moore–Penrose inverse of A22, defined by the properties

A+
22A22A

+
22 = A+

22, A22A
+
22A22 = A22 and A22A

+
22 and A+

22A22 are symmetric.
Now suppose that the parameter θ parameterising the distribution of X

can be decomposed as θ = (ψ, ν), where ψ is a parameter of interest of
dimension p and ν is a nuisance parameter of dimension q. Then iX can be
partitioned as

iX =

(
iψψ;X iψν;X
iνψ;X iνν;X

)
.
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An important role in inference on ψ is played by the quantity iψψ·ν;X , which
is the Schur complement of iνν;X and is known variously as the horizontal
information on ψ, the profile information on ψ or the efficient matrix of
Fisher information on ψ. Lemma 1 of [5] shows that, if it(X) > 0 then (under
mild regularity conditions)

iψψ·ν;t(X) ≤ iψψ·ν;X . (2)

The aims of this note are (i) to strengthen inequality (2) by placing it in a
wider algebraic setting, (ii) to relate the strengthened inequality to condi-
tional Fisher information, (iii) to use the strengthened inequality to compare
the asymptotic ‘widths’ of confidence regions for interest parameters in the
model for X and that for t(X).

2. An algebraic inequality

We give the general algebraic result that underlies the information in-
equality (2).

Proposition 1. Let

A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
be (p+ q)× (p+ q) symmetric matrices partitioned in a conformable way and
such that A22, B22 and A22 +B22 are invertible. Then

(A+B)11·2 = A11·2 +B11·2 + ∆12∆22∆21, (3)

where

∆12 = A12A22
−1 −B12B22

−1, (4)

∆22 = A22

{
A22

−1 − (A22 +B22)
−1}A22 (5)

and ∆21 = ∆12
T .

If A22 > 0 and B22 > 0 then

(A+B)11·2 ≥ A11·2 +B11·2 (6)

and the following are equivalent

(A+B)11·2 = A11·2 +B11·2 (7)

(A22 +B22)
−1(A21 +B21) = A22

−1A21 (8)

A22
−1A21 = B22

−1B21. (9)
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Proof. Simple manipulation gives

A−122 − (A22 +B22)
−1 = (A22 +B22)

−1B22A
−1
22 (10)

= A−122 B22(A22 +B22)
−1, (11)

B−122 − (A22 +B22)
−1 = (A22 +B22)

−1A22B
−1
22 (12)

= B−122 A22(A22 +B22)
−1, (13)

and, using (12) and (13),

A21− (A22 +B22)B
−1
22 A22(A22 +B22)

−1B21 = A22

(
A−122 A21 −B−122 B21

)
. (14)

Then

(A+B)11·2 − A11·2 −B11·2

= (A11 +B11)− (A12 +B12)(A22 +B22)
−1(A21 +B21)

−
(
A11 − A12A

−1
22 A21

)
−
(
B11 −B12B

−1
22 B21

)
= A12A

−1
22 A21 +B12B

−1
22 B21 − (A12 +B12)(A22 +B22)

−1(A21 +B21). (15)

Expanding the quadratic in (15) and making use of (11), (12), (14), (5) and
(4) gives

(A+B)11·2 − A11·2 −B11·2

= A12A
−1
22 B22(A22 +B22)

−1A21 − A12(A22 +B22)
−1B21

−B12(A22 +B22)
−1A21 +B12(A22 +B22)

−1A22B
−1
22 B21

=
{
A21 − (A22 +B22)B

−1
22 A22(A22 +B22)

−1B21

}T
A−122 B22(A22 +B22)

−1

×
{
A21 − (A22 +B22)B

−1
22 A22(A22 +B22)

−1B21

}
= ∆12∆22∆21,

proving (3).
If A22 > 0 and B22 > 0 then A22 + B22 > A22, so that

A22
−1 > (A22 + B22)

−1. Then ∆22 > 0, proving (6) and showing that (7)
is equivalent to (9). Equivalence of (8) and (9) holds for any conformable
matrices with A22, B22 and A22 +B22 invertible.

Equation (6) shows that the function that takes a partitioned symmetric
matrix A to the Schur complement A11·2 is superadditive on the space of
positive-definite matrices. In the special case of information matrices of
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independent random variables, (6) was given in Lemma 2 of [5]. For general
information matrices, the weaker result that (A + B)11·2 ≥ A11·2 was given
in Lemma 1 of [5] and (implicitly), for the case B22 = 0, B12 = 0, B21 = 0,
in section 3 of [2]. The development in Proposition 1 unifies these results by
giving a general algebraic formulation for all positive-definite matrices.

Remark 1. Proposition 1 has been presented in the algebraic language of
matrices. A geometrical interpretation can be gained by expressing Propo-
sition 1 in coordinate-free geometric language. In this setting there are (a)
two bilinear forms (represented in coordinate terms by matrices A and B)
on a (p + q)-dimensional vector space (represented in coordinate terms as
Rp+q), (b) a q-dimensional subspace, the vertical subspace (represented in
coordinate terms as {0} × Rq = {(0, ν) : 0 ∈ Rp, ν ∈ Rq}). The horizontal
subspace of a bilinear form is the orthogonal complement of the vertical sub-
space with respect to that form. A simple calculation shows that the two
horizontal subspaces are represented in coordinate terms as the subspaces{

(ψ,−A−122 A21ψ) : ψ ∈ Rp
}

and
{

(ψ,−B−122 B21ψ) : ψ ∈ Rp
}

of Rp+q. It fol-
lows that each of (7)–(9) is equivalent to the geometrical condition that the
horizontal subspaces of the two bilinear forms are the same.

The matrix ∆22 represents a bilinear form on the vertical subspace, ∆12 is
a measure of discrepancy between the two horizontal subspaces, and ∆12∆22∆21

represents a type of squared distance between them.

Corollary 1. Let A and B be symmetric with A ≥ 0 and B ≥ 0. Then

(A+B)11·2 ≥ A11·2 +B11·2. (16)

Proof. After change of basis of the parameter space, the matrices A22 and
A12 can be written as

A22 =

(
C11 0
0 0

)
and A12 = (D12, E12) ,

where C11 is an r × r matrix with C11 > 0, and D12 and E12 are p × r and
p× (q − r) matrices, respectively. Since A ≥ 0, we have E12 = 0. Then, for
positive real λ, (A+ λIp+q)22 > 0 and

(A+ λIp+q)11·2 = A11+λIp−D12 (C11 + λIr)
−1D12

T → A11−A12A
+
22A12 = A11·2

as λ → 0. Similarly, (B + λIp+q)22 > 0 and (B + λIp+q)11·2 → B11·2 as
λ→ 0. Replacing A and B in (6) by A+ λIp+q and B + λIp+q, respectively,
and taking the limit as λ→ 0 gives (16).
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3. Applications to statistics

3.1. The information inequality for interest parameters

The conditional information iX|t(X) on θ is defined as

iX|t(X)(θ) = Eθ

[(
∂ log f(X|t(X); θ)

∂θ

)T
∂ log f(X|t(X); θ)

∂θ

]
,

where f(x|t(x); θ) is the conditional density of X given t(X). The Fisher
information iX can be decomposed as

iX = it(X) + iX|t(X) (17)

(see Section 7 of [1]). Taking A = it(X) and B = iX|t(X) in Proposition 1 and
the Corollary gives the following strengthening of (2) in the spirit of (17).

Proposition 2. The inequality

iψψ·ν;X ≥ iψψ·ν;t(X) + iψψ·ν;X|t(X) (18)

holds. If iνν;t(X) > 0 and iνν;X|t(X) > 0 then equality holds in (18) if and only
if

i−1νν;X iνψ;X = i−1νν;t(X) iνψ;t(X).

3.2. Application to confidence regions

The standard likelihood-based large-sample approximate confidence re-
gions for ψ are derived by inverting the likelihood ratio, Wald, and score
tests, using either Fisher information or observed information. The large-
sample approximate 100(1 − α)% confidence regions based on observations
on random variables X1, . . . , Xn are

(i) Wald regions based on Fisher information,

CRα,X,e =
{
ψ :
(
ψ − ψ̂X1,...,Xn

)T

îψψ·ν;X1,...,Xn

(
ψ − ψ̂X1,...,Xn

)
< χ2

p;α

}
,

(19)
where ψ̂X1,...,Xn is the maximum likelihood estimate of ψ, îψψ·ν;X1,...,Xn

is the horizontal Fisher information on ψ based on X1, . . . , Xn and
evaluated at θ̂X1,...,Xn , p is the dimension of ψ, and χ2

p;α denotes the
upper α quantile of the χ2 distribution with p degrees of freedom;
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(ii) Wald regions based on observed information,

CRα,X,o =
{
ψ :
(
ψ − ψ̂X1,...,Xn

)T

ĵψψ·ν;X1,...,Xn

(
ψ − ψ̂X1,...,Xn

)
< χ2

p;α

}
,

(20)
where

ĵψψ·ν;X1,...,Xn = ĵψψ;X1,...,Xn − ĵψν;X1,...,Xn ĵ
−1
νν;X1,...,Xn

ĵνψ;X1,...,Xn

with

ĵθθ;X1,...,Xn = − ∂2l

∂θT∂θ
(θ̂) =

(
ĵψψ;X1,...,Xn ĵψν;X1,...,Xn

ĵνψ;X1,...,Xn ĵνν;X1,...,Xn

)
being the observed information on θ at θ̂X1,...,Xn and l(ψ, ν;x1, . . . , xn)
denoting the log-likelihood;

(iii) deviance regions (also called profile likelihood confidence regions),

CRα,X,d =
{
ψ : 2

(
lp(ψ̂X1,...,Xn)− lp(ψ)

)
< χ2

p;α

}
, (21)

with lp denoting the profile log-likelihood, defined by lp(ψ;x1, . . . , xn) =
supν l(ψ, ν;x1, . . . , xn);

(iv) ‘expected’ score regions,

CRα,X,es =

{
ψ :

∂lp
∂ψ

(ψ)̂i−1ψψ·ν;X
∂lp
∂ψ

(ψ)T < χ2
p;α

}
; (22)

(v) ‘observed’ score regions,

CRα,X,os =

{
ψ :

∂lp
∂ψ

(ψ)ĵ−1ψψ·ν;X
∂lp
∂ψ

(ψ)T < χ2
p;α

}
. (23)

We now show that the confidence regions for ψ based onX are asymptotic-
ally ‘shorter’ than those based on t(X), for each of these standard types of
confidence region.

Remark 2. If all instances of î and ĵ in (i), (ii), (iv), and (v) above are
replaced by i and j evaluated at the maximum likelihood estimate of θ given
ψ, for each candidate value of ψ in the confidence region, then Propositions
3 and 4 below hold without change.
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3.2.1. The i.i.d. case

Proposition 3. Let t : X → Y be a transformation. Denote by CRα,X,m and
CRα,t(X),m the confidence regions (19)–(23) for ψ based on observations on
X1, . . . , Xn and t(X1), . . . , t(Xn), respectively. If iψψ·ν;X|t(X) > 0 then, using
any coordinate system for ψ,

P
(

CRα,X,m − ψ̂X ⊂ CRα,t(X),m − ψ̂t(X)

)
→ 1 as n→∞, (24)

for m = e, o, d, es, os, where ψ̂X and ψ̂t(X) are the maximum likelihood esti-
mates of ψ based on X1, . . . , Xn and t(X1), . . . , t(Xn), respectively, ⊂ in (24)

denotes strict inclusion, and CRα,X,m− ψ̂X =
{
ψ − ψ̂X : ψ ∈ CRα,X,m

}
, etc.

Proof. From Proposition 2, iψψ·ν;X > iψψ·ν;t(X). It follows from consistency

of θ̂X1,...,Xn and θ̂t(X1),...,t(Xn) that, with probability tending to 1 as n → ∞,

iψψ·ν;X(θ̂X1,...,Xn) > iψψ·ν;t(X)(θ̂t(X1),...,t(Xn)). Then (24) follows in the case

m = e. The case m = o follows using n−1ĵθθ;X1,...,Xn − îθθ;X → 0 as n → ∞.
Standard second-order expansions of log-likelihood (e.g. Chapter 3 of [3])
yield the results in the cases m = d, m = es and m = os.

3.2.2. Binomial detectability models

Many models used in the estimation of population size are binomial
detectability models in the sense of [4]. These models involve a binomially-
distributed number, n, of independent identically distributed observations
x1, . . . , xn and the probability density functions have the form

f(n, x1, . . . , xn;N, θ) =

(
N

n

)
p(θ)n {1− p(θ)}N−n

n∏
i=1

k(xi; θ),

where the interest parameter N is the size of the population, θ is a nuisance
parameter, p is a specified function with 0 < p(θ) < 1 and k is a probability
density function. Although binomial detectability models lie outside the
strict context of independent identically distributed random variables, there
are results analogous to those of Proposition 3. These are given in Proposition
4 below.

It follows from Theorem 1 of [4] that, under mild regularity conditions
(such as those of Section 4.2.2 of [7]), the asymptotic distribution of the
maximum likelihood estimate log N̂ of logN is

N1/2
(

log N̂ − logN
)
∼ N

(
0, iNN ·θ(θ)

−1) ,
8



asymptotically, as N →∞, where

iNN ·θ = iNN − iNθi−1θθ iθN

with (
iNN iNθ
iθN iθθ

)
being the Fisher information on (N, θ). Thus, log N̂ is a consistent estimator
of logN , although N̂ is not a consistent estimator of N .

Arguments similar to those used in the proof of Proposition 3 give the
following result on confidence regions for N in binomial detectability models.

Proposition 4. Let t : X → Y be a transformation. Let CRα,X,m and
CRα,t(X),m be confidence regions (19)–(23) for logN based on a binomial
detectability model with population size N . If iNN ·θ;X|t(X) > 0 then

P
(

CRα,X,m − log N̂X ⊂ CRα,t(X),m − log N̂ t(X)

)
→ 1 as N →∞, (25)

for m = e, o, d, es, os, where N̂X and N̂t(X) are the maximum likelihood esti-
mates of N based on n,X1, . . . , Xn and n, t(X1), . . . , t(Xn), respectively.

Proposition 4 applies to confidence regions for logN . Simulations showed
a pattern of increasing inclusion of CRα,X,m−log N̂X in CRα,t(X),m−log N̂ t(X)

as N was increased, where t : X → Y mapped observation X = (Y, Z) to
Y . In contrast, no pattern of increasing inclusion of analogous confidence
regions for N emerged. This makes us suspect that the analogue of (25) for
N does not hold.

3.3. Implication for modelling

Propositions 3 and 4 have an important implication for model-building.
Given a parametric statistical model parameterised by (ψ, ν) for a random
variable Y , where ψ is a parameter of interest and ν is a nuisance param-
eter, one might ask when it is worth ‘enlarging’ the model to gain more
information about ψ. A more precise version of the question considers para-
metric statistical models parameterised by (ψ, ν, ω) for (Y, Z), where Z is an
additional random variable, such that the marginal model for Y is the given
model parameterised by (ψ, ν). Then inference on ψ can be carried out either
using the full likelihood on (ψ, ν, ω) based on observations of (Y, Z) or using
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the marginal likelihood of (ψ, ν) based on observations of Y alone. The ques-
tion is then ‘Under what conditions does the model for (Y, Z) yield shorter
confidence regions for ψ than the model for Y does?’. Taking X = (Y, Z)
and t(Y, Z) = Y in Propositions 3 and 4 shows that, provided that the hori-
zontal conditional information on ψ from Z given Y is non-singular, the use
of (Y, Z) produces asymptotically ‘shorter’ confidence regions than are given
by the use of Y alone. This formalises the intuitive idea that (if there is neg-
ligible cost in taking observations on additional variables or handling a more
complicated model) it is (asymptotically) always worth observing additional
variables, despite the addition of extra nuisance parameters, provided that
the additional variables are informative about ψ, i.e. iψψ·(ν,ω);Z|Y > 0.
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