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Abstract. Knowledge of the direction, magnitude, and timing of changes in bird pop-
ulation abundance is essential to enable species of priority conservation concern to be
identified, and reasons for the population changes to be understood. We give a brief review
of previous techniques for the analysis of large-scale survey data and present a new approach
based on generalized additive models (GAMs). GAMs are used to model trend as a smooth,
nonlinear function of time, and they provide a framework for testing the statistical signif-
icance of changes in abundance. In addition, the second derivatives of the modeled trend
curve may be used to identify key years in which the direction of the population trajectory
was seen to change significantly. The inclusion of covariates into models for population
abundance is also discussed and illustrated, and tests for the significance of covariate terms
are given. We apply the methods to data from the Common Birds Census of the British
Trust for Ornithology for 13 species of farmland birds. Seven of the species are shown to
have experienced statistically significant declines since the mid-1960s. Two species exhib-
ited a significant increase. The population trajectories of all but three species turned down-
ward in the 1970s, although in most cases the 1980s brought either some recovery or a
decrease in the rate of decline. The majority of populations have remained relatively stable
in the 1990s. The results are comparable with those from other analysis techniques, although
the new approach is shown to have advantages in generality and precision. We suggest
extensions of the methods and make recommendations for the design of future surveys.

Key words:  bird census schemes; British birds; change points; Common Birds Census; farmland
birds; generalized additive models; log-linear Poisson regression; nonlinear trend; population tra-

Jectory; spatiotemporal models; trend analysis.

INTRODUCTION

Accurate analysis of long-term monitoring data is
essential for the effective management and conserva-
tion of wildlife populations. An important component
of such analysis is the determination of trend in pop-
ulation abundance over time. However, the nature of
ecological data is such that obtaining reliable estimates
of annual abundance is far from straightforward. The
methods that are usually employed for time series data
are generally inappropriate, because the time span of
the surveys is too short (Bowerman and O’Connell
1987). Difficulties are also caused by missing data,
which tend to be characteristic of large-scale census
schemes (ter Braak et al. 1994, Thomas 1996). Barker
and Sauer (1992) outline some other problems typically
associated with wildlife survey data.

In the past, indices of abundance were obtained from
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census data using the chain method (e.g., Marchant et
al. 1990). The ratio of abundance in one year to abun-
dance in the next was calculated as the ratio of summed
counts in the two years, with the summation taken over
only those sites that were surveyed in both years. This
method is now generally regarded as inadequate, be-
cause of inefficient use of the data and a tendency to
generate spurious trends through random drift (Mount-
ford 1982, 1985, Peach and Baillie 1994, ter Braak et
al. 1994). A number of alternative procedures have
since been proposed, particularly for bird census
schemes (ter Braak et al. 1994, Thomas 1996). None-
theless, there is still some scope for improvement
(Thomas 1996).

In North America, most analyses are conducted using
route regression techniques. For each of many surveyed
routes, a linear regression of log-count against time is
performed to yield a log-linear, route-specific trend.
Overall trends, for example over a region or state, are
obtained by combining the route-specific results using
various weighting schemes (Geissler and Noon 1981,
Geissler and Sauer 1990, Sauer and Geissler 1990). In
Europe, attention has focused on sites-by-years models,
in which the expected count in a given site and year
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is modeled as a function of quantities known as the
site effect and the year effect. The site effect allows for
variation in abundance between plots, whereas the year
effect allows for fluctuations in abundance over time.
These models have been fitted using Poisson regression
techniques (Pannekoek and van Strien 1996) and by
the Mountford method (Mountford 1982, 1985). In con-
trast to the log-linear form prescribed by route regres-
sion, the estimates of annual abundance derived from
sites-by-years models are not constrained to follow any
pre-specified curve or shape.

The distinct approaches largely reflect differences in
the objectives of the analyses. Models that treat log-
counts as a linear function of time are designed to
estimate some average rate of population change over
a time period, although the fit is likely to be poor if
the true pattern of change was markedly nonlinear.
Conversely, unconstrained annual abundance estimates
reveal every fluctuation in population numbers, but can
be hard to interpret in terms of long-term change. Con-
sequently, neither approach is well-suited to the in-
vestigation of long-term, but nonlinear, trends in pop-
ulation numbers.

Previous attempts to distinguish genuine patterns of
nonlinear change from the ‘“‘noise”” of annual fluctua-
tion have centered on the application of smoothing al-
gorithms to annual abundance estimates. For example,
Siriwardena et al. (1998a) used a compound running-
median algorithm for the smoothing of Mountford in-
dices derived from British bird census data. However,
smoothing the output from one model amounts to the
application of a second model, and methods that in-
corporate nonlinear trend estimation directly into the
fitting of the original model would be preferable.

In this paper, we present new methods for the anal-
ysis of trends in wildlife census data, using generalized
additive models (GAMs). GAMs are not simply
smoothing devices, but provide a complete modeling
framework. Smoothing procedures are built into the
model-fitting process, so that inference based on the
resulting smooth curve of abundance indices is made
fully within the context of the original model. Instead
of requiring a linear form for the log trend, GAMs allow
any shape ranging from a straight line, through a range
of nonparametric curves of increasing complexity, to
unconstrained annual estimates. These latter are equiv-
alent to the estimates obtained for sites-by-years mod-
els from Poisson regression. The range of smooth
curves available from the GAM allows analyses of
counts to be tailored a priori according to the biological
question of interest: simple linear changes, long-term
nonlinear trends, or annual fluctuation.

Smoothing approaches have also been developed in
North America to overcome the restrictions of linearity
in the traditional route regression method. For example,
Taub (1990) and James et al. (1990, 1996) have applied
the smoothing algorithm LOESS to counts at the site
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level and higher. This method has some similarities
with the GAM approach, and these will be discussed.

We begin the present paper by formulating the GAM
and demonstrating how the conventional sites-by-years

.model may be regarded as a special case. Significance

tests are described for drawing inference from the
smooth series of GAM abundance estimates. Next, we
present a method to identify key years in which there
was seen to be a significant change in the direction of
the population trajectory. This is accomplished by es-
timating the curve of second derivatives of the abun-
dance index curve, and identifying years in which the
second derivative was significantly different from zero.
Estimating the timing of population changes in this way
helps to suggest causes of the change. We conclude
with a discussion of covariate models, which enable .
factors such as geographical location or climate to be
taken into account.

The methods are illustrated using data from the Brit-
ish Trust for Ornithology’s Common Birds Census
(CBC), although they are applicable to a wide range
of census schemes. The CBC is one of the longest
running of all wildlife monitoring schemes, with annual
data available since 1962. Plots of land, or sites, are
selected by volunteer observers for repeated visits
throughout the breeding season. Territories of all bird
species are mapped as accurately as possible according
to standard criteria, and the final site count for a given
species is the estimated number of territory-holding
males in the site. The survey design is described in
detail by Marchant et al. (1990).

GAMs are used in this paper to analyze CBC data
from farmland plots for 13 British bird species, all
predominantly granivorous. These are the Grey Par-
tridge Perdix perdix L., Stock Dove Columba oenas
L., Turtle Dove Streptopelia turtur L., Skylark Alauda
arvensis L., Chaffinch Fringilla coelebs L., Corn Bun-
ting Miliaria calandra L., Goldfinch Carduelis car-
duelis L., Greenfinch C. chloris L., Linnet C. canna-
bina L., Bullfinch Pyrrhula pyrrhula L., Tree Sparrow
Passer montanus L., Reed Bunting Emberiza schoen-
iclus L., and Yellowhammer E. citrinella L. There is
much concern about the status of many of these species,
following declines across Europe in both abundance
(Marchant and Gregory 1994, Tucker and Heath 1994,
Fuller et al. 1995, Siriwardena et al. 1998a) and range
(Gibbons et al. 1993, Tucker and Heath 1994, Fuller
et al. 1995). In particular, population numbers are
thought to have been heavily influenced by changes in
farming practice since the 1960s. A primary objective
is to identify the timing and extent of population de-
clines, so that these can be linked to possible causal
factors. For this reason, the fitting of a simple linear
trend model would not be adequate, and the analysis
demands the greater flexibility offered by the GAM
approach.
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METHODS

Formulation of a log-linear poisson regression
model for CBC counts

The application of log-linear Poisson regression
techniques to the analysis of bird census data is outlined
by ter Braak et al. (1994), who considered the approach
to be the most promising of those available at the time.
The specialized free software package TRIM (Trends
and Indices for Monitoring Data; Pannekoek and van
Strien 1996) provides an efficient implementation of
log-linear Poisson regression for data from census
schemes, although most of the features of TRIM are
also available in the generalized linear model modules
of well-known packages such as S-PLUS (Statistical
Sciences 1993), GLIM (Francis et al. 1993), or SAS
(SAS Institute 1996). We show here how the log-linear
Poisson model is formulated. In the next section, the
formulation will be extended to yield a system of gen-
eralized additive models.

Data from the Common Birds Census may be re-
garded as a set of N sites monitored over T years. The
number of sites N differs between species, because only
those plots on which the species was observed are in-
cluded in the model. For each species, the notation y;,
is used to denote the number of territories, or count,
observed in site i in year 7.

In general, each CBC site was selected and surveyed
by only one observer; the length of site coverage was
therefore highly variable and ranged from two years to
33 years for different sites. The mean length of site
coverage was 68 years for each of the 13 species’ data
sets. The remainder of site-by-year records are treated
as missing data and must be estimated through the mod-
el. On the rare occasions when a site was surveyed by
more than one observer over the time period, the results
from the different observers are treated as records from
separate sites. This ensures that effects due to differ-
ences in observer ability are not interpreted as genuine
population changes.

The log-linear Poisson model is formulated by as-
suming that the observation y, derives from a Poisson
distribution with mean p,, and that all counts are in-
dependent. The mean p,, is modeled as follows:

log(p) = a; + B, (1)

The quantities «; and B, are referred to as the site effect
for site i and the year effect for year ¢, respectively.
The one-to-one relationship between observers and
sites in the CBC means that observer effects are in-
distinguishable from site effects in the model given by
Eq. 1. In effect, a parameter is included for every pair-
ing of site and observer. With some other surveys, a
slightly different formulation might be appropriate. If
it were common not only for each site to be surveyed
by several different observers, but also for each ob-
server to survey many different sites, it might be pos-
sible to estimate observer effects separately from site
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effects by including a parameter for each in Eq. 1. This
would also allow identification of observers who con-
sistently recorded particularly high or low counts.
The model specified by Eq. 1 belongs to a class
known as generalized linear models (GLMs), and has
Poisson error distribution and logarithmic link func-
tion. GLMs are described in detail by McCullagh and
Nelder (1989). The model is fitted by finding estimates
&, and B, for the N parameters «; and the T parameters
B, Once these estimates are obtained, they are used to
provide an estimate of the mean count w, for each site
i and year ¢, which can be interpreted as a prediction
of the true count. The predicted count for site i in year
tis
f = exp(@; + B,) (@)

and the total predicted count for year ¢ is
N N N
2 b = exp(B) 2 exp(@). 3)
i= i=1

We define the abundance index for year t to be:

_ total predicted count for yeart exp(ﬁ,)
total predicted count for year 1 exp(B,)’

‘ (€]
The index measures relative abundance with respect to
an arbitrarily chosen base year; in this case, year 1.
Because the index is a ratio of exponentially trans-
formed year effects, it is easily calculated without per-
forming the sum in Eq. 3.

The index defined in Eq. 4 uses predicted counts for
all sites, regardless of whether or not observations are
available. With log-linear Poisson regression, the same
index would be obtained if predictions were replaced
by observations where possible, because the sum of the
observations is equal to the sum of the associated pre-
dictions. This occurs because the logarithmic link func-
tion is canonical for the Poisson error distribution, and
it is a general property of GLMs fitted with canonical
link and including an intercept or factor (Nelder and
Wedderburn 1972, ter Braak et al. 1994). A canonical
link function exists for every permissible GLM error
distribution (McCullagh and Nelder 1989).

From Eq. 4, it is clear that the index for the base
year is always unity. This does not mean that there is
no uncertainty associated with the abundance estimate
in that year, but rather that the uncertainty is inherited
by the rest of the index series. High uncertainty in the
base year abundance estimate will induce wide confi-
dence intervals throughout the series. If confidence in-
tervals are unduly wide, an alternative choice for the
base year might be considered.

The GLM formulated in Eq. 1 corresponds to the
“annual model” of the TRIM software package (Pan-
nekoek and van Strien 1996). The calculation of the
annual abundance estimate for any year does not take
into account the estimates for adjacent years, and in
this sense the estimates are unconstrained. The model
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lies at one extreme of the GAM framework, and is
suitable for examining yearly fluctuations but not for
discerning long-term trends.

Formulation of the generalized additive model

Model specification.—We now recast the log-linear
Poisson GLM as a generalized additive model (GAM).
GAMs are flexible extensions of GLMs, and are de-
scribed comprehensively by Hastie and Tibshirani
(1990). Once again, we assume that the counts y, follow
independent Poisson distributions, with mean ., for
the count in site i in year £. However, the linear predictor
associated with the GLM, which was given by Eq. 1,
is now replaced by a more general additive predictor.
This allows the change in mean abundance over time
to follow any smooth curve, not just a linear form or
a sequence of unrelated estimates as in Eq. 1. The form
of the predictor function is the principal difference be-
tween the GLM and the GAM.

We write the additive predictor as

log(p;) = a; + s(2). 5)

The expected count ., in site i in year ¢ therefore de-
pends upon the site effect «;, and upon any number of
other smoothly varying quantities, which are summa-
rized by the value s(?) in year ¢. The notation s(¢) simply
represents any smooth function of time. The GAM is
fitted by estimating the parameters «; and the smooth
function s, just as the GLM in Eq. 1 is fitted by esti-
mating the parameters o; and 3,.

There are two special cases of the GAM formulation
that fall into the category of GLMs. The first is the
simple linear trend model, in which s(#) = vyt for a
single parameter y to be estimated. In this case, the
expected abundance within each site varies linearly on
a logarithmic scale with time. The second case is the
log-linear Poisson regression model described in the
previous section, for which s(¢) = B, for parameters §,,
..., Brto be estimated. In this instance, the function
s is no longer smooth, and is obtained by joining the
estimates 3, with straight lines.

These two cases lie at opposite extremes of the GAM
framework. The first has maximum smoothness in the
function s, a single straight line; the second has min-
imum smoothness, a sequence of unconstrained esti-
mates joined by linear segments. Between the two ex-
tremes lie functions s with greater flexibility than the
linear trend s(7) = yt, but with smooth output in contrast
to the discrete annual estimates s(f) = B,. These inter-
mediate GAM curves provide opportunities for elicit-
ing long-term nonlinear trends that are not available at
the GLM extremes.

The output from the GAM in Eq. 5 is visualized as
follows. The fitted year effect curve §(¢) is common to
all sites, so that for any two sites i, and i,, the curves
log(,,) and log(i,,) are parallel. The intercepts of these
curves are determined by the site effects, respectively
a; and o,,. Consequently, every site is subject to the
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same trend in the logarithm of expected count over
time, although the absolute values differ between sites.

The assumption that log abundance follows the same
trend in every site, although simplistic, is the same as
that implicit in the traditional Mountford and Poisson
regression models. Indeed, the assumption is perhaps
better justified in the GAM context, because it is more
reasonable to suggest that there is a smooth pattern of
change common to all sites than to assert that all sites
are subject to the same series of annual fluctuations.
Nonetheless, the GAM system also accommodates
models that allow trends to vary between different re-
gions, or even within every site, and these will be dis-
cussed in later sections.

Once an estimate § has been obtained for the smooth
function s in Eq. 5, the annual abundance index curve
I(?) is calculated as before:

_ total predicted count for year ¢ _ exp(3(#))
total predicted count for year 1 exp(5(1))

(0 Q)
Note that / is now written as a smooth function of ¢,
in contrast to the set of point estimates specified by
Eq. 4.

Estimation of the smooth function s and specification
of the degree of smoothing.—Before the function s can
be estimated, the required level of smoothing must be
established. At the two extremes of maximum and min-
imum smoothing, where the GAM is equivalent to a
GLM, it is possible to specify s in parametric form:
namely s(#) = vyt at the upper extreme and s(¥) = 3, at
the lower. Between these extremes, however, the func-
tion s is not defined in terms of parameters, but is
estimated nonparametrically from the data by means of
scatterplot smoothers. The shape of the function is
therefore determined by the data rather than being re-
stricted to a parametric form. Note the distinction be-
tween the smoothing procedures in a GAM, which are
part of the model-fitting process, and the smoothing of
Mountford or TRIM indices in a second step after the
fit is complete.

Several options are available for the scatterplot
smoother used in estimating s, although experiment
suggests that the choice has little effect on the final
index curve. All of the analyses presented in this paper
were conducted using smoothing splines; other options
include locally weighted regression smoothers, kernel
smoothers, and running-median smoothers (Hastie and
Tibshirani 1990).

Smoothing splines fit the data using piecewise cubic
polynomials. They are chosen to satisfy a penalized
least squares criterion, which optimizes the fit while
penalizing roughness to some pre-specified extent. The
extent to which roughness is penalized, or equivalently
the level of smoothing that is applied, is calibrated by
a quantity known as the degrees of freedom (df). As
the degrees of freedom are increased, the function s
gains in flexibility: more turning points and gradient
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1.41a) 4 df 1.41b) 7 df
1.2 1.2
1.0 1.0
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0.6 0.6
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=< 0.8 _ 0.8
[} —
9
S 0.6 —_ 061
1970 1980 1990 1970 1980 1990
1.41e) 20 df 1.41f) 33 df
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0.6
1970 1980 1990 1970 1980 1990
Fic. 1. Abundance indices from GAMs with various de-

grees of freedom fitted to CBC data for the Skylark.

changes are accommodated. A straight line s(¢) = y¢
corresponds to a fit with 1 df; the curve follows a
single direction only, with no gradient changes or
turning points. Conversely, a piecewise linear fit s(#)
=B, (¢=1,...,T)employs T — 1 df; a separate
gradient is allowed between every successive pair of
points. The degrees of freedom associated with the
curve s may take any value between 1 and 7' — 1, and
are loosely interpreted as the number of parameters
used in fitting s.

The choice of the value for df is an important part
of the modeling process. For clarity, we shall write s,
for the curve s to be fitted using a smoothing spline
on the variable ¢ with d degrees of freedom, and we
shall refer to the associated model as a ‘“GAM with d
degrees of freedom.” The choice of d depends largely
on the objectives of the analysis. For inference about
long-term trends, a smooth index curve is required,
corresponding to low df; whereas information about
annual fluctuations requires unconstrained annual es-
timates and the maximum value of d. Consideration of
the length of the time series is also important, because
longer time series will demand higher values of d if it
is required to maintain a given level of flexibility in
the trend curve.

With the CBC data, our objective was to detect all
major features of population trend over the time period
while ignoring fine-scale fluctuations. Fig. 1 shows
how the abundance index curves obtained from the
Skylark data change as the value of d is increased.
Certain conceptual difficulties enter at this point, be-
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cause it is not possible to assert that any one of these
curves is more realistic than the others. The GAMs
separate underlying trend from short-term fluctuation,
but the precise point at which a signal can be considered
fluctuation rather than trend is ill-defined. The different
curves in Fig. 1 effectively represent models with dif-
ferent criteria for achieving this separation, and there
is no right answer against which to judge them.

To overcome this difficulty, it is necessary to for-
mulate our own ideas about a reasonable definition of
noise and trend. As d is raised from the low starting
value of 4 in Fig. 1, the index curve begins to reveal
new features, but still remains smooth until a period
of stability is reached around d = 10. Further increases
in d serve only to roughen the output. It is reasonable
to take those points at which the output has stabilized,
but is still smooth, as our definition of true trend; our
objectives were therefore fulfilled by a GAM with
about 10 df. This value was also suitable for the other
species examined in this paper. Experiments with trun-
cation of CBC data suggested that a value for d of
roughly 0.3 times the length of the time series tended
to produce trend curves with suitable complexity and
smoothness, although we stress that advice will vary
according to precise objectives and data. It is always
necessary to plot indices from GAMs with a range of
df before settling on a final value.

Automatic selection of the value of df in a gener-
alized additive model is sometimes recommended, us-
ing, for example, Akaike’s Information Criterion (AIC)
or generalized cross-validation (Hastie and Tibshirani
1990). Each automatic procedure produces a single val-
ue of d that is optimal with respect to some criterion.
Because the quantity optimized might be very different
from our own requirements of the model, however, we
do not recommend the use of automatic selection pro-
cedures in the context of trend analysis. For example,
we might wish to examine the same data both for long-
term trends and for information about annual fluctua-
tions. Although different values of d are clearly re-
quired for the two purposes, an automatic selection
routine would be unable to distinguish between the
distinct objectives, and would provide the same value
for both.

Diagnostics

Once the GAM has been fitted, informal verification
of the goodness-of-fit may be obtained through plots
of residuals and standard errors, which are provided by
most GAM software. Fig. 2 is an example of the di-
agnostic plot supplied by S-PLUS (Statistical Sciences
1993: version 3.4 for UNIX), which was the package
used for the analyses in this paper. The solid line on
the figure is the year effect curve s,,(f) from a GAM
with 10 df fitted to CBC data for the Corn Bunting,
whereas the dashed lines lie two standard errors away
from the central curve on either side. Calculation of
the standard errors in this context involves a compli-
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24
F1G. 2. Year effect curve s,y(f) from a GAM 07 i
with 10 df fitted to CBC data for the Corn Bun- :+
ting (solid line), with 2 SE bands (dashed lines), :fo_ :
i 4

partial deviance residuals (black dots), and rug
plot. The residuals are well distributed above

21,
and below the curve; the standard error bands .
are mostly narrow, widening at the end points .
where the observations are more sparse. o
—4
19

cated series of approximations; details are given in
Chambers and Hastie (1993).

The black dots on Fig. 2 represent partial deviance
residuals (Chambers and Hastie 1993). The deviance
is related to the difference in log-likelihood between
the fitted model and a saturated model (McCullagh and
Nelder 1989), and the deviance residual for observation
v, is the square root of the contribution made by y, to
the overall deviance. It is positive if y, is greater than
its fitted value [i,, and negative if y, is less than {i,.
With the Poisson error distribution used here, the par-
tial deviance residual for observation y, is given by

Sign(y,-, - ﬁ‘u)\/?'(

Rather than displaying their absolute values, the di-
agnostic plot shows the residuals plotted about the fit-
ted curve s,y(f). The residuals farthest from the curve
tend to represent observations with the lowest likeli-
hoods under the fitted model. Within a Poisson frame-
work, these will often be observations involving rel-
atively low counts, because small fitted values imply
a low Poisson variance and, consequently, less room
for flexibility. The highest deviance residual in Fig. 2,
for instance, occurs in the fit for year 1990, and it is
traced to an observation y, = 3 that has very low like-
lihood under its fitted value of 0.2.

A satisfactory diagnostic plot has residuals distrib-
uted evenly above and below the fitted curve, and stan-
dard error bands that are consistently narrow. Parts of
the plot where the standard error bands are particularly
wide, or where the residuals lie on only one side of
the fitted curve or display some other obvious pattern,
suggest that there are problems with the fit. Poor fits
are most likely to be caused by sparse data or by a
choice of df that is too low to give an adequate rep-
resentation of the true trend. If the value of df is less
than ~4, the diagnostic plot should be checked partic-
ularly carefully for patterns in the residuals, and the df
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i
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t

should be raised if necessary. Sparse data can be de-
tected using the rug plot along the bottom of Fig. 2,
which gives the density of observations at each point
in time (Chambers and Hastie 1993). The density of
observations is high where the rug plot is solid black.
The diagnostic plot in Fig. 2 shows a healthy fit,
although standard errors are somewhat higher at. the
. beginning and end of the time period. This is partly
due to data sparsity at these points, and also to the fact
that the reliability of a GAM fit is always reduced at
the end points of the range (Hastie and Tibshirani
1990). If a diagnostic plot indicates that the data are
too sparse for the fit to be satisfactory, an alternative
model formulation based on covariates might be con-
sidered. In that case, the site effects in Eq. 5 would be
replaced by predictors derived from habitat variables.
Because habitat information can be pooled across all
sites, this would remove the need for every site to have
its own parameter, and with fewer parameters, the mod-
el might provide a better fit to sparse data.

Inference from the GAM indices

Bootstrapped confidence intervals.—Knowledge of
the precision with which the GAM trend curve I(#) has
been estimated is central to the interpretation of the
results. By calculating approximate confidence inter-
vals for I, it may be determined whether or not apparent
population changes are statistically significant. In the-
ory, these confidence intervals could be estimated from
the standard error estimates provided by S-PLUS for
the fitted year effect curve §,). However, we prefer to
use bootstrap techniques and work directly with the
index curve I(¢). This avoids the need to transform the
standard error estimates for §,(¢) into those for 1(¢), and
releases us from assumptions about the statistical dis-
tribution of the indices, which would be necessary to
convert the standard errors of I(¢) into confidence in-
tervals. In addition, it is difficult to obtain accurate
estimates of the standard errors of smooth terms in
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GAMs (Chambers and Hastie 1993). The estimates ob-
tained from S-PLUS are adequate for detecting prob-
lems with the fit as described in the previous section,
but attempts to use them in computing intervals with
a precise confidence level are likely to be misleading.

The bootstrap method proceeds by drawing for each
of a given number of replicates a random sample of
size N, with replacement, from the original N sites. The
N sites in the sample are treated as distinct, although
in practice there are likely to be some duplicates. A
GAM is fitted to the sample from each replicate, and
the annual abundance indices are calculated. After B
bootstrap replicates, there are B values for the abun-
dance index in any given year. These are sorted into
ascending order, and approximate 100(1 — 2a)% con-
fidence limits for that year are provided by the values
with rank [ and u, where [ = (B + 1)a and u = (B +
1)(1 — «); see Buckland (1984).

All results in this paper are obtained from B = 399
bootstrap replicates, and this number is likely to be
adequate for most applications. Bootstrapping can be
a lengthy process, so the number of replicates it is
practical to take might be limited by computer resourc-
es. When this is the case, compiled software such as
the FORTRAN program GAMFIT (Hastie and Tib-
shirani 1990) might prove useful, as it can provide
substantial improvements in speed over the interpreted
code of most statistical packages.

Bootstrapped 95% confidence intervals for I(f) are
illustrated in Fig. 3 for four different GAMs applied
to CBC data for the Corn Bunting. The most notable
feature is the narrowing of the confidence interval as
the amount of smoothing is increased. This occurs be-
cause the estimates of the year effects in models with
low levels of smoothing are not constrained by the
estimates in adjacent years. Consequently, they are ob-
tained using less information than the estimates from
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models with high levels of smoothing, and therefore
the uncertainty associated with them is greater.

The narrowing of the confidence intervals demon-
strates an important advantage of GAMSs over second-
arily smoothed indices from other models, in that the
abundance trajectory is estimated with better precision.
The secondary smoothing of log-linear Poisson re-
gression indices, for example, which correspond to
those for the GAM with 33 df, would produce confi-
dence intervals as wide as those in Fig. 3a, because
the secondarily smoothed indices would inherit all of
the uncertainty of annual fluctuation. Equivalent
smoothing inside the model, however, produces nar-
rower confidence intervals as in Fig. 3b, c, d. The im-
provement can be consequential, as Siriwardena et al.
(1998a) found that the confidence intervals associated
with secondarily smoothed Mountford abundance in-
dices were often too wide to allow useful inference.

The bootstrap replicates may also be used to find
approximate confidence intervals for the percentage
population change between any two years. The per-
centage change is calculated using each of the B index
curves; the results are ordered, and the confidence in-
terval is constructed from the lower and upper percen-
tiles as before. Confidence intervals calculated in this
way provide approximate hypothesis tests for signifi-
cant population change. The hypothesis that the per-
ceéntage population change derives from a distribution
with zero mean is rejected at the 5% level if the 95%
confidence interval for the change does not contain the
point zero. The hypothesis test is two-tailed, and if the
distribution of the percentage change satisfies certain
symmetry conditions, the approximate test is exact
(Buckland 1984).

Analysis of second derivatives.—We now describe a
procedure for identifying landmark points in the pop-
ulation trajectory I (), based on the second derivatives
of the curve. The technique is made possible by the
smooth differentiable nature of the GAM output, and
it provides a useful way of interpreting and comparing
the trend curves for different species.

The second derivative of the trend curve I(¢) at time
t is a measure of the curvature of I at that time. If the
second derivative is greater than zero, the curve is turn-
ing upward (U); if it is less than zero, the curve is
turning downward (n). The magnitude of the second
derivative signifies the tightness of the curvature. Val-
ues of approximately zero indicate that the index curve
is roughly linear, and the population trajectory is
changing at a steady rate. Years in which the second
derivative is markedly different from zero are those in
which something is happening to alter that rate of pop-
ulation change. Here, we identify years in which the
curvature of the index curve is statistically significant,
and we refer to these years as change points. In con-
junction with other temporally referenced data, the tim-
ing of the change points might help to suggest causes
of the change.
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Because I is a nonparametric curve, the second de-
rivatives of I are not available directly as mathematical
expressions. Instead, numerical derivative estimates
must be used. For example, the first derivative, or gra-
dient, of I at time ¢ can be approximated by
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for some small r. Substituting Eq. 8 into itself, we
obtain a simple estimate of the second derivative at
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In Eq. 9, we use the second differences of I to estimate
the second derivatives. More elaborate estimates may
be obtained by taking higher differences of I (e.g., Da-
hlquist and Bjorck 1974: example 7.5.3). Using the
fourth differences, the estimates become

A 1
I"(t) = [—I1(t+ 2r) + 16I(t + r) — 30I(p)

12r2

+ 161(t — r) — I1(t — 2r)] (10)
and to the sixth difference they are
1

") = {21(t + 3r) — 271(t + 2r) + 2701(¢ + 1)

180r?

—4901(¢) + 2701(t — r) — 271(t — 2r)
+ 21(t — 3r)). an

By placing r = 1 in Egs. 9-11, estimates of the second
derivatives are obtained at maximum resolution. In this
paper, we use the estimates from the sixth difference,
given by Eq. 11, although these must be replaced by
the fourth and, finally, the second difference estimates
for those years ¢ at which ¢ *+ 3r and ¢ * 2r lie beyond
the ends of the time series.

Change points, or years in which the second deriv-
ative was significantly different from zero, are iden-
tified by calculating approximate confidence intervals
for the second derivative curve, using the B bootstrap
replicates obtained for the abundance indices. The
curve of second derivative estimates is calculated for
each of the B sets of indices, and the confidence limits
are determined by ordering the second derivative point
estimates for each year and selecting the appropriate
lower and upper percentiles as described previously.
The hypothesis that the second derivative estimate for
any year derives from a distribution with mean zero is
rejected if the confidence interval for the second de-
rivative estimate in that year does not contain the point
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zero. From a 95% confidence interval, the two-tailed
hypothesis may be rejected at the 5% level.

In years when the second derivative was significantly
greater than zero, the population might have undergone
either an increase in the rate of growth, or a fall in the
rate of decline. Similarly, a second derivative that is
significantly negative suggests either a fall in the rate
of growth, or an increase in the rate of decline. A sig-
nificantly positive second derivative therefore indicates
a good change for the species, whereas a significantly
negative result signifies an adverse change. Occasion-
ally, curvature in the index curve will be nonsignifi-
cant, despite appearing to be substantial in magnitude.
It is likely that this is caused by uncertainty in the
precise timing of the curvature, rather than uncertainty
about whether or not substantial curvature has actually
occurred.

Covariate models

Extra terms, or covariates, may be added to the trend
model by including them in the additive predictor of
the GAM (Eq. 5). Quantities that can be described by
covariates include habitat information such as: per-
centage crop cover or site area, geographical infor-
mation such as latitude or region, and climatic variables
such as average daily minimum temperatures for each
year. When sufficient habitat data are available, it might
be possible to dispense entirely with the site effect
parameters a,, and replace them with habitat covariates.
This has a number of advantages, because separate
trends can be formed in every site while the total pa-
rametrization is reduced. A low parametrization is par-
ticularly important when site abundance records are
sparse. In addition, covariate models help to identify
which habitat types are beneficial and detrimental to
the species.

Each variable in the additive predictor may be either
categorical, continuous and parametric, or continuous
and nonparametric. For example, in Eq. 5 the site num-
ber i is a categorical quantity, whereas ¢ is a continuous
variable treated nonparametrically via the expression
s(t). When many covariates are included, criteria such
as AIC may be used for stepwise model selection
(Chambers and Hastie 1993). It is always important to
record as many covariates of potential relevance as
possible, because serious bias could result if a major
source of variation is omitted.

We illustrate covariate models here with a categor-
ical variable representing the geographical region in
which each site is located: northeast, northwest, south-
east, or southwest. These four regions divide the CBC
plots into approximately equal samples around easting
45 and northing 21 of the U.K. national grid (Marchant
and Gregory 1994). The regions differ in dominant
habitat cover, with the northeast region containing the
low-lying, intensively arable land of East Anglia and
Lincolnshire, whereas the other regions comprise main-
ly grazing and mixed farms. Topography, temperatures,



1978

and rainfall patterns also vary between regions. Al-
though the regional model is a simple example of a
covariate model, it illustrates how extra terms may be
included in the GAM and how their significance may
be tested.

We include the region variable through an interaction
with the smooth term s(#), with the effect that a separate
smooth trend is fitted in each of the four regions. The
additive predictor becomes

log(p;) = o; + s$(1) 12)

where ., is the mean count in site i at time ¢, and k
denotes the region in which site i is located (k = 1, 2,
3, or 4). The four smooth regional trends are denoted
by sP(0), s (), sP(?), and s{(f), and each have d df.
The total parameterization on the smooth terms is there-
fore increased from d to 4d. The index curve I(?) is
once again the ratio of total predicted abundance
(across all regions) in year ¢ to that in year 1.

At present, the fitting of an interaction between a
categorical variable and a smooth term is not fully sup-
ported in S-PLUS. It is accomplished by inserting four
artificial time variables, each with missing values ev-
erywhere except on one level of the region variable.
An easier alternative for the simple model here is to
fit a separate GAM for each region. This would not be
possible, however, if the model were to include co-
variates that were common to all regions.

The significance of the region-by-time interaction
may be tested using analysis of deviance techniques
(Hastie and Tibshirani 1990). Let Dy be the residual
deviance from the regional model, and D, be the re-
sidual deviance from the original model. The statistical
distribution of Dy — Dy is approximated by a x? dis-
tribution, with degrees of freedom equal to the differ-
ence in degrees of freedom between the two models,
i.e.,, 4d — d = 3d. The region-by-time interaction is
considered significant if the observed decrease in de-
viance due to its inclusion is extreme for the x3, dis-
tribution. Although it is known that the difference in
residual deviance between two nested GAMs does not
have a x? distribution, even asymptotically, the ap-
proximation has been shown to provide a useful means
of model selection (Hastie and Tibshirani 1990).

The usual Poisson GAM involves a dispersion pa-
rameter that is assumed to be unity (Chambers and
Hastie 1993). If there is unusually high variance in the
data, however, it is common instead to estimate the
dispersion parameter within the model. In that case, the
test for significant region interaction must be replaced
by an F test. Writing v for the residual degrees of free-
dom in the regional model (i.e., the number of obser-
vations minus the number of parameters), the test sta-
tistic is given by [(Do — Dg)/3d1/(Dg/v) and is tested
against the F;,, distribution.

RESULTS

The analyses just described are now illustrated using
CBC data for 13 British farmland species. The gen-
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eralized additive model of Eq. 5 was fitted to the data
for each species, using a smoothing spline with 10 df
on the year variable. Data records for all species existed
for each year between 1962 and 1995. The total number
of sites containing records ranged from 185 for the
Corn Bunting to 519 for the Chaffinch, whereas the
mean number of records per year varied from 35.0 for
the Corn Bunting to 93.1 for the Skylark.

For each species, the index curve I(f) was calculated
and bootstrapped 95% confidence intervals were de-
termined. Fig. 4 shows the index curves for 12 of the
species; results for the Skylark are shown separately
in Fig. 5. Diagnostic plots for the 13 GAMs are omitted
for brevity, but all were indicative of good fits. Atevery
bootstrap replicate, the second derivative of the index
curve was estimated using r = 1 in Eq. 11. Significant
change points were then identified at the 5% level, and
these are also marked on Figs. 4 and 5.

Table 1 shows estimates of percentage population
change between selected years for all species. The per-
centage change between year ¢, and year ¢, is calculated
as (I(t) — I(t))1(t) X 100%, and approximate 95%
confidence limits obtained through bootstrapping are
also provided. The change is deemed significant at the
5% level if the confidence interval does not encompass
the point 0. Three years were selected for comparison:
1965, 1975, and 1992. Because the GAM fit is less
reliable at the end points of the time period, we avoided
using the results from 1962 to 1964 at one end and
from 1993 to 1995 at the other to ensure that end effects
did not bias our inference. The year 1975 was selected
as a good intermediate point of comparison because it
coincided with a peak in abundance for many of the
13 species.

The results in Table 1 suggest that populations of
Bullfinch, Corn Bunting, Grey Partridge, Linnet, Sky-
lark, Tree Sparrow, and Turtle Dove all experienced
significant declines on CBC plots between 1965 and
1992. Little overall change was recorded for the Gold-
finch, Greenfinch, Reed Bunting, and Yellowhammer,
and only the Chaffinch and the Stock Dove saw sig-
nificant increase between 1965 and 1992. The Yellow-
hammer is unusual in that its decline began in the mid-
1980s rather than in the 1970s. The Stock Dove pop-
ulation underwent a dramatic increase, although ex-
ceptionally high variance in the fit reduces the
associated significance level. The high variance arises
because the observed increase was largely due to sub-
stantial changes in only a small number of sites.

The interpretation of the percentage changes in Table

‘1 must be limited strictly to the sites over which the

survey was conducted. To draw conclusions about
changes in national abundance, we would have to make
the additional assumption that the surveyed plots were
representative of the country as a whole. Although land
use and cropping patterns on CBC plots have been
shown to be representative of those in the lowlands of
southern and eastern Britain, they are not typical of the
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marked on the index curves: a solid circle denotes a point at which the second derivative is significantly negative (a downturn
in the index curve), and an open circle denotes a point at which the second derivative is significantly positive (an upturn in

the index curve).

landscape in the rest of the country (Fuller et al. 1985).
Analysis of CBC data still remains valuable, however,
particularly because the southern and eastern regions
contain the greater part of the populations of many of
the 13 species that we have examined (Gibbons et al.
1993).

Other factors can also complicate the interpretation
of estimates of percentage change. One potential prob-
lem is the relationship between the number of territory-
holding males that were detected in a site and the true
number of individuals present in that site. For example,
the abundance indices will not reflect the true per-
centage changes if the probability that a territory is
detected varies according to a curvilinear function of
local population density (Droege 1990). Another factor
affecting the percentage change estimates is the choice
of df used in obtaining the GAM fit. In selecting a
value for df, we essentially make an assumption about
the form of the trend curve. However, the range of
choice for df means that the assumptions behind dif-
ferent GAMs are not as clear as those behind less flex-
ible models. Because these assumptions lead to differ-
ent criteria in the partitioning of “‘noise” from ‘‘trend,”’
and because the final abundance estimates are based
on trend with noise removed, it is essential to bear in

mind the chosen model when interpreting the estimates
of percentage change.

The significant change points marked on the index
curves in Fig. 4 reveal some striking patterns, which
are more easily visualized in Table 2. From Table 2, it
is evident that all species except the Corn Bunting,
Stock Dove, and Yellowhammer experienced a signif-
icant downturn in population trajectory between 1972
and 1978. In all cases except the Chaffinch, the down-
turns marked the beginning of a period of decline. Be-
tween 1980 and 1989, however, significant upturns in
population trajectory occurred for most species. In
some cases, these corresponded to the beginning of a
period of increase (Chaffinch, Goldfinch, Greenfinch,
Linnet, and Reed Bunting), and in others, to a decrease
in the rate of decline (Bullfinch, Corn Bunting, Grey
Partridge, Skylark, and Tree Sparrow).

The regional covariate model is illustrated using the
Skylark data. Independent smooth trend functions were
fitted for the four separate regions, each one with 10
degrees of freedom. The results are shown in Fig. 5,
with bootstrapped 95% confidence intervals and sig-
nificant change points also included for each region.
The model exposes some noticeable differences be-
tween the four regional trends, shown in Fig. 5a—d. In
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yield overall abundance estimates for the regional model, and
in (f), the results of the original (nonregional) model are
shown.

particular, the Skylark population appears to have re-
mained almost stable in the southwest, whereas it has
undergone clear oscillation in the eastern regions. In
all regions, however, a period of stability or increase
lasting until the late 1970s has been followed by a
period of decline.

The overall abundance indices from the regional
model are shown in Fig. 5e. The index for year ¢ is
given by the ratio of total predicted count over all re-

TABLE 1.
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gions in year ¢ to that in year 1. One striking feature
is the width of the confidence intervals in comparison
with those from the regional curves. The narrower con-
fidence intervals arise because the overall indices are
based on approximately four times as much information
as those from any of the individual regions. The indices
from the original model of Eq. 5, without the region-
by-time interaction, are shown in Fig. 5f. Because these
are almost identical to those from the regional model
in Fig. Se, we deduce that the regional term makes
negligible difference to overall inference for the Sky-
lark.

Analysis of deviance tests suggest, however, that the
regional model does provide a significant improvement
in fit for the Skylark. The observed drop in residual
deviance was 180.4 for an increase of 30 equivalent
parameters, which is highly significant for the x3, dis-
tribution. (For significance at the 5% level, a decrease
in residual deviance of 43.8 or more is required.) The
decision as to whether to use the regional model or the
original model therefore hinges on the purpose of the
analysis. The regional model highlights discrepant re-
gional trends and gives more accurate predictions at
the level of individual sites, but has little bearing on
inference about overall trend.

The regional model was also fitted to CBC data for
the Chaffinch and Bullfinch. For these species, the re-
gional effect was found to be significant at the 5% level
for the Chaffinch (drop in deviance = 178.2), but not
for the Bullfinch (drop in deviance = 39.9). In the case
of the Chaffinch, although an overall increase occurred
in all regions, the increase was steady in the west,
whereas the eastern regions saw a fall in abundance
between 1972 and 1980. The pattern of change for the
Bullfinch was broadly similar across all regions.

DiscussioN
Comparison of the GAM approach with
other methods
The GAMs described in this paper belong to the class
of sites-by-years models for survey data, of which log-

Estimated percentage population changes for 13 farmland bird species using output from GAMs with 10 df fitted

to CBC data, together with bootstrapped 95% confidence intervals (in parentheses).

Percentage population change (95% cr)

Species 1965-1975 1975-1992 1965-1992
Bullfinch 17 (-1, 38) —68* (=78, —58) —63*% (=76, —49)
Chaffinch 6 (—4,16) 19% (11, 28) 25% (11, 41)
Corn Bunting 47 (—13, 82) —78* (=90, —57) —67* (=87, —31)
Goldfinch 63% (25, 112) —33*% (47, —14) 9 (—23,57)
Greenfinch 31* (5, 63) —13 (—34,15) 14 (—19, 58)
Grey Partridge —21*% (=35, - 1) =71% (=179, —59) =77* (-85, —66)
Linnet -5 (—18,9) —52% (=65, —37) —55*% (—68, —40)
Reed Bunting 111* (56, 192) —50* (—66, —25) 6 (—34,73)
Skylark 16* (2, 31) —46* (—52, —38) —37* (—46, —25)
Stock Dove 169* (57, 363) 53% (16, 114) 311% (115, 704)
Tree Sparrow —-18 (=37, 13) —87* (—94, —178) —90* (—95, —80)
Turtle Dove 21 (—18, 84) —73*% (—86, —37) —67* (=83, —16)
Yellowhammer 11 (-9, 29) —26* (=37, —14) —-18 (—36,4)

Notes: The percentage change is obtained as 100(1, — I,)/I,, where I, is the index for the earlier year and I, is that for the
later year. Changes that are significant at the 5% level are marked with an asterisk.
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Significant change points for the 13 farmland species from 1963 to 1994. Solid circles denote significant downturns

in the population trajectory; open circles denote significant upturns.
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linear Poisson regression (ter Braak et al. 1994, Pan-
nekoek and van Strien 1996) and the Mountford method
(Mountford 1982, 1985, Peach and Baillie 1994, ter
Braak et al. 1994) are also members. Of these alter-
natives, the GAM approach is that best suited to the
modeling of long-term nonlinear trends; once the com-
plexity of trend has been specified, the GAM will pro-
vide the optimal fit to the data. Secondary smoothing
of the output obtained from log-linear Poisson regres-
sion and the Mountford method does not provide op-
timal fit, and produces abundance estimates with lower
precision.

The software package TRIM (Pannekoek and van
Strien 1996), which is especially designed to fit log-
linear Poisson regression models to wildlife census
data, also incorporates an additional feature to model
the within-site correlation structure between counts in
different years. This autocorrelation correction is de-
signed to improve estimates of the standard errors of
the model indices, while usually having a negligible
effect on the estimates of the model indices themselves
(Pannekoek and van Strien 1996). An alternative so-
lution to the problem of variance estimation when there
is serial correlation in the counts is provided by the
bootstrap methods used in this paper, which also re-
move the need to assume a parametric model for the
correlation structure. The drawback is that bootstrap-
ping can be very computer intensive.

The route regression approaches used for the North
American Breeding Birds Survey (Droege 1990) have
recently been enhanced to allow both nonlinear route-
specific trends and inclusion of covariates (James et al.
1990, 1996). Scatterplot smoothers are used to provide
smooth temporal abundance trends in each route. The
models are not formulated as GAMs because the struc-
ture of error distribution and link function is missing.
Recasting them into a GAM framework, however,
would be very straightforward.

The principal difference between the enhanced route
regression method and the GAM approach lies in the

calculation of overall trend at the national or regional
scale. In route regression, the disparate route-specific
trends are aggregated into an overall trend using var-
ious weighting procedures. The weight allotted to a
particular route is subjectively chosen, often based on
area covered or precision of trend estimate along the
route. The choice of weighting scheme can have a
marked effect on the final trend estimate (James et al.
1990). By contrast, the overall index from the GAM
approach at any time is proportional to the total pre-
dicted abundance at that time, over all sites surveyed.
This index has intuitive appeal, especially if the sur-
veyed sites are representative of the whole country or
region.

Other recent developments in route regression in-
clude the models of Link and Sauer (19974, b). In these,
temporal trend is represented as a polynomial function
of time, and the models are formulated as GLMs with
logarithmic link function and Poisson or negative bi-
nomial distributions for the counts. The smooth trend
curve s(#) of Eq. 5 is therefore constrained to a poly-
nomial shape. In concept, the models are similar to the
GAM formulation of this paper, although the para-
metric trend curve is badly behaved when extrapolated
beyond the limits of the time series. Application of the
polynomial model with Poisson error distribution to
the CBC data suggested that the indices from a poly-
nomial fit of order 10 were very close to those obtained
from a GAM with 10 df. The two models have equiv-
alent parameterization, and both gave similar results
for residual deviance. In our view, it is preferable to
avoid placing parametric constraints on the shape of
the trend curve, although the similarity of the results
obtained from the two methods is encouraging.

The basic GAM detailed in Eq. 5 is simplistic in
assuming that expected abundance follows the same
trend across all sites. Within the GAM framework,
however, there is much potential to go beyond the basic
model. With site effects replaced by covariates such as
habitat, geographical, and climate variables, it would
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be possible to obtain a separate trend in each site while
using far fewer parameters in the model. If required,
weighting of the contributions from different sites
could also be incorporated. Given sufficient environ-
mental data, therefore, the GAM approach can embody
all the advantages of route regression, and can also be
fitted to data that are too sparse for route regression
techniques. In the CBC, for example, many sites were
not surveyed for a sufficiently long time period to en-
able site-specific regressions to be performed.

The final decision as to the most appropriate analysis
method rests on the particular data available and the
geographical scale involved. It is worth noting that the
methods presented in this paper for inference from the
GAM index curve may be applied equally well to the
output from other models. These enable estimation of
the significance of changes in abundance to be per-
formed without using tests that are based on linear
trends (e.g., James et al. 1996), and power analyses
(Gerrodette 1987, 1991).

Extensions

The GAM formulation presented in this paper in-
volves a Poisson error distribution and a logarithmic
link function. Other choices for both error distribution
and link function are available (Hastie and Tibshirani
1990). In particular, there has been recent interest in
using the negative binomial distribution in place of the
Poisson for environmental data, as it is thought to cope
better with overdispersion (Gotway and Stroup 1997,
Link and Sauer 1997a). The logarithmic link function
is a popular choice to use with this error distribution.

We have indicated in several places the advantages
of adding covariates to the basic GAM: these may enter
the additive predictor as linear, nonlinear, or categorical
variables, and allow environmental effects such as rain-
fall or habitat to be included in abundance modeling.
This might be one of the most promising lines of future
enquiry. In order for full covariate models to be suc-
cessful, all variables of potential importance must be
identified at the outset of a monitoring scheme and
recorded throughout the survey period.

Monitoring schemes should be designed to cover a
representative sample of sites: otherwise, the trends
obtained must be interpreted strictly as trends over se-
lected habitat rather than true national trends. Conti-
nuity of survey cover is also important; continuous
coverage of a small sample of sites is more valuable
for trend analysis than patchy coverage of a larger sam-
ple. These issues have been addressed in the U.K.
Breeding Bird Survey (Gregory et al., in press), which
is in the process of replacing the CBC.

When the survey covers a random sample of sites,
generalized additive mixed models (GAMMSs) might
be worth considering. Site effects in a GAMM are no
longer regarded as fixed unknowns, as in Eq. 5, but as
realizations from a parametric distribution whose pa-
rameters are to be estimated. Without a random sample
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of sites, the data could lie predominantly in the tail of
this distribution, causing bias in prediction. The mixed
model would be more parsimonious than the fixed-ef-
fects model, although some investigation of a suitable
trend index would be required. Although there has been
much recent interest in methodology for generalized
linear mixed models (e.g., Schall 1991, Engel and Keen
1994), we are not aware of any work to date on gen-
eralized additive mixed models. Development of such
models might prove a valuable tool for estimating
trends in wildlife populations from annual surveys of
randomly selected sites.

Results for British seed eaters

The GAM index curves in Fig. 4 show various pe-
riods of decline, increase, and stability for the farmland
species. Together with further data giving demographic
rates over the contrasting time periods, the results help
to suggest mechanisms underlying the population
change (e.g., Siriwardena et al. 1998b). Additional
clues about the causes of change are provided by dif-
ferent species whose trend curves share common char-
acteristics. Examination of ecological similarities and
differences between the species highlight environmen-
tal factors that could be responsible.

The regional model (Eq. 12) applied to the Skylark
data reveals interesting differences in regional trend
(Fig. 5). The steeper declines in the east might reflect
the arable farmland that is characteristic of these re-
gions. Arable areas have been more dramatically af-
fected than grazing lands by some aspects of agricul-
tural change over the last 30 years, and also the baseline
population density in the early 1960s was lower in
arable regions. In the mid-1960s, populations increased
in all regions except the southwest. These increases
probably represent population recoveries following the
harsh winter weather of 1962-1963, which was less
severe in the southwest region. Use of the regional
model is encouraged for all species, at least for ex-
ploratory data analysis.

The change points shown in Table 2 reveal conspic-
uous patterns across species. The mixed fortunes of
species in the mid-1960s probably reflect differing re-
sponses to the harsh winter weather of 1962-1963. De-
pending on ecology and demography, by 1965-1966,
most affected species were either reaching the end of
a period of steep decline or arriving at a plateau after
a steep recovery (Baillie 1990, Marchant et al. 1990,
Greenwood and Baillie 1991). The 1970s saw a range
of changes in agriculture that are thought to have been
detrimental to farmland bird populations (O’Connor
and Shrubb 1986, Fuller et al. 1995, Baillie et al. 1997,
Siriwardena et al. 1998a). This is borne out by the
collection of negative change points observed at that
time.

Some variation between species in the precise timing
of change points is to be expected, due to differences
in life-span and reproductive strategy. For example,
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coincident depressions in breeding success for a short-
lived and a long-lived species tend to be manifested in
the abundance of the short-lived species much earlier,
whereas concurrent depressions in adult survival are
apparent first in the abundance of the long-lived spe-
cies. This is especially true if individuals of the short-
lived species mature earlier and produce more offspring
than those of the long-lived species.

Although downturns dominated the 1970s, the re-
verse is true of the 1980s. For the most part, the upturns
of the 1980s have been followed by a period of relative
stability, albeit at a lower level than prior to the mid-
1970s. The farmland populations of the 13 seed-eating
species have therefore failed to recover from their se-
vere declines.

The significant change points identified from the
GAM index curves in Fig. 4 may be compared against
those obtained from secondarily smoothed Mountford
indices by Siriwardena et al. (1998a). The change
points found by the two methods correspond fairly
closely, as do the smoothed abundance curves. The
GAM approach is to be favored because of its better
precision, but the close correspondence with the results
from the Mountford method indicates that earlier anal-
yses need not be discarded.

Prospects

In conclusion, we believe that the GAM approach
provides the most general and flexible framework cur-
rently available for the analysis of trends in census data.
With the CBC data, there are encouraging similarities
between GAM indices and those obtained from log-
linear Poisson regression and the Mountford method,
although inference based on more primitive techniques
such as the chain method should be reassessed. The
GAM framework may also be adapted to provide im-
proved analyses for other national bird censuses and
wildlife monitoring schemes, which are currently in-
dexed using alternative methods (ter Braak et al. 1994,
Thomas 1996).

Recent improvements in the design of monitoring
surveys will enable more comprehensive analyses to
be carried out in the future. The new U.K. Breeding
Bird Survey, for example, has been designed to cover
a stratified random sample of survey grid squares
(Gregory et al., in press). A further U.K. bird moni-
toring scheme uses mark—recapture data to index abun-
dance, and is currently analyzed using generalized lin-
ear models (Peach et al. 1998). This may easily be
extended into a GAM framework. There is also con-
siderable potential for the application of GAMs in mod-
els for survival and breeding success, and work is cur-
rently underway to analyze daily nest failure rates in
this manner.
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