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Summary: In spatial surveys for estimating the density of objects in a survey region, systematic

designs will generally yield lower variance than random designs. However, estimating the systematic

variance is well-known to be a difficult problem. Existing methods tend to overestimate the variance,

so although the variance is genuinely reduced, it is over-reported, and the gain from the more

efficient design is lost. The current approaches to estimating a systematic variance for spatial

surveys are to approximate the systematic design by a random design, or approximate it by a

stratified design. Previous work has shown that approximation by a random design can perform

very poorly, while approximation by a stratified design is an improvement but can still be severely

biased in some situations. We develop a new estimator based on modeling the encounter process

over space. The new ‘striplet’ estimator has negligible bias and excellent precision in a wide range

of simulation scenarios, including strip-sampling, distance-sampling, and quadrat-sampling surveys,

and including populations that are highly trended or have strong aggregation of objects. We apply

the new estimator to survey data for the spotted hyena (Crocuta crocuta) in the Serengeti National

Park, Tanzania, and find that the reported coefficient of variation for estimated density is 20% using

approximation by a random design, 17% using approximation by a stratified design, and 11% using

the new striplet estimator. This large reduction in reported variance is verified by simulation.

Key words: Distance sampling; Encounter rate; Line transect sampling; Plot sampling; Post-

stratification; Quadrat sampling; Strip sampling; Systematic sampling; Variance estimation.
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1. Introduction

Systematic survey designs are popular in spatial surveys such as strip sampling, quadrat

sampling, and distance sampling from lines or points. The aim of these surveys is to estimate

density of animals or plants (termed ‘objects’) in a defined region. Systematic designs use

a grid of equally spaced samplers — strips, lines, points, or quadrats — with a random

start-point. They are easy to plan and implement in the field, and they generally yield lower

variance than random designs in which samplers are placed randomly and independently in

the survey region. This is because random designs include realizations where several samplers

fall by chance into high density or low density parts of the region, whereas systematic designs

ensure even coverage of the region for all realizations. In many situations, systematic designs

are also more precise than stratified designs (Cochran, 1946).

The chief disadvantage of systematic designs is the difficulty of estimating the improved

variance. A systematic sample is based on only one random start-point, so the samplers are

not independent replicates. Wolter (1984; 1985) highlighted three common approaches to

systematic variance estimation for sampling a finite population in social statistics:

1. Random estimation, ignoring the problem of non-independent samplers and using esti-

mators derived for random designs;

2. Poststratification, approximating the systematic design by a stratified design by grouping

small sets of adjacent samplers into strata, and using stratified variance estimators;

3. Modeling the process producing the finite population, for example by proposing a model

for the correlation in response between adjacent members of the population.

Similar ideas are used for spatial surveys. Most analyses ignore the problem (approach

1), but there is increasing recognition that this can be misleading. Millar and Olsen (1995),

Simmonds and Fryer (1996), Kingsley (2000), and D’Orazio (2003) all used poststratification

(approach 2), and Fewster et al. (2009) extended this scheme to provide estimators for strip
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or line-transect sampling where line lengths are not equal. However, the poststratification

scheme is an approximation and does not yield unbiased estimates for the variance.

The aim of this paper is to develop a new variance estimator for systematic spatial surveys.

We create a model for the systematic variance, similar to approach 3 but exploiting the

continuous nature of space. We show how the new variance estimator is applied to strip-

sampling, line-transect distance-sampling, and quadrat or point-transect sampling surveys.

We assess the estimator through a wide range of simulations, reproducing those in two

recent studies in which correct variances were not always obtained (Fewster et al., 2009;

Johnson, Laake, and Ver Hoef, 2010). We then apply the estimator to distance-sampling

data for spotted hyenas in the Serengeti National Park, Tanzania (Durant et al., in review),

and show that the new estimator can make a dramatic impact on the standard error and

confidence interval width. This result is verified by further simulations. All computations are

coded in the R language (R Development Core Team, 2008), and code is available from the

author.

2. Strip sampling in a rectangular region

2.1 Strip-sampling surveys

We begin with the case of strip sampling in a rectangular region, to derive the new systematic

variance estimator in a simple context. We orient the rectangular survey region on a graph

with its horizontal base parallel to the x-axis, and consider systematic strip surveys consisting

of k equally-spaced vertical search-strips, as in the top panels of Figure 1. The grid of strips

has a random start-point. Each search-strip i has horizontal width 2w and vertical length

li = l. All objects inside the search-strips are assumed to be detected. The number of

objects detected in strip i is ni for i = 1, . . . , k, and the total number of detections is

n =
∑k

i=1 ni = kn. The total area surveyed is 2wL where L = kl is the total length surveyed.

The estimator for object density is D̂ = n/(2wL) = kn/(2wL), a multiple of n.
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[Figure 1 about here.]

2.2 Existing systematic variance estimators

Wolter (1984; 1985) lists eight variance estimators for estimating the variance of n in a

systematic survey. Wolter’s context is a finite population of rk units (e.g. households), where

the first or ‘base’ household b is randomly chosen from b ∈ {1, 2, . . . , r}, so the systematic

sample contains households b, b+r, b+2r, . . . , b+(k−1)r with observations n1, n2, . . . , nk. The

variance arises from the choice of b. Fewster et al. (2009) extended Wolter’s recommended

estimators to systematic spatial surveys with non-rectangular survey regions, accommodating

the influence of variable strip length, li, on the number of objects detected in the strip, ni.

Here we give the estimators v̂ar(D̂) for strip-sampling surveys on a rectangular region. We

leave the extended formulas for non-rectangular regions to Fewster et al. (2009).

1. Random-line estimators ignore the systematic design and treat the samplers as indepen-

dent replicates. For a rectangular region, estimator v1 of Wolter (1984; 1985) and estimators

R1, R2, and R3 of Fewster et al. (2009) all reduce to the simple random sampling estimator:

v̂arR(D̂) =
k

4w2L2(k − 1)

k∑

i=1

(ni − n)2.

2. Stratified estimators with non-overlapping strata approximate the systematic design by

a stratified design, such that pairs of adjacent strips from the systematic survey are treated

as if they were drawn from a stratified design with two units per stratum. Assuming k is

even, estimator v3 of Wolter (1984; 1985) and estimators S1 and S2 of Fewster et al. (2009)

become the following estimator for a rectangular region:

v̂arS(D̂) =
1

4w2L2

k/2∑

h=1

(n2h−1 − n2h)
2.

3. Stratified estimators with overlapping strata also rely on post-strata of paired strips, but

allow the post-strata to overlap to improve precision. For a rectangular region, estimator v2

of Wolter (1984; 1985) and estimators O1 and O2 of Fewster et al. (2009) become:

v̂arO(D̂) =
k

4w2L2 × 2(k − 1)

k−1∑

i=1

(ni − ni+1)
2.
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Fewster et al. (2009) found that the random-line estimators v̂arR can perform very poorly

for systematic surveys, especially when object density follows strong trends in the x-direction.

The stratified estimators v̂arS and v̂arO perform similarly to each other, much better than

v̂arR but still not capturing the systematic variance correctly. The boxplots in Figure 1 show

why improvement is still needed: estimator R vastly overestimates the systematic variances,

while estimators S and O are much better but are not reliably correct. The aim of this

paper is to create a new variance estimator specifically for systematic spatial surveys, to

yield further substantial improvement in both bias and precision for estimating var(D̂).

2.3 Repeated-survey variance and systematic sampling frame

In order to estimate var(D̂), we must specify a conceptual population of replicate surveys that

create the variance in D̂ that we seek to estimate. We imagine repeating surveys numerous

times according to some specified rules, and obtaining an estimate D̂ for each replicate

survey. The variance of these replicate D̂ estimates is the ‘true’ var(D̂). The set of rules

for generating conceptual replicates is called the inferential framework, because it creates

the distributions from which we evaluate bias, precision, and confidence interval coverage

of proposed estimators. The framework is entirely the choice of the investigator (Gregoire,

1998), but it must be clearly specified because it defines all expectations and variances. In our

case, the inferential framework defines the distribution of D̂, and thence the true estimator

variance var(D̂). It also defines the distribution of our estimator v̂ar(D̂), so that we can

evaluate bias and precision of v̂ar(D̂) as an estimator of var(D̂).

We use the inferential framework specified by Fewster et al. (2009), termed the repeated-

survey framework. In the repeated-survey framework, the total number of objects in the

region, N , is fixed for all replicate surveys. Every survey has k search-strips with fixed

systematic spacing and fixed orientation, but with a random start-point for the systematic

grid. Object positions change between replicate surveys, mimicking mobile animals. For each
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replicate, object positions are drawn from some spatial probability density function (p.d.f.)

or point process, which might include features such as clustering or trends. The same p.d.f.

is used for every replicate, but we wish to derive estimators that will work well for any choice

of p.d.f. Once the positions of the search-strips and the objects are determined, we obtain

the data of stripwise detections n1, . . . , nk, calculate D̂ = n/(2wL), and calculate our chosen

estimator for v̂ar(D̂). New draws of search-strip locations and object positions are made for

each replicate survey, to form the distributions of the estimators D̂ and v̂ar(D̂).

We now define the systematic sampling frame. We align the survey region such that its

base extends between x-coordinates 0 and 1. The k search-strips are parallel with the y-

axis. Each strip has width w on either side of its centerline. The spacing between centerlines

is r, and the first centerline has x-coordinate b, so the k centerlines have x-coordinates

b, b+r, . . . , b+(k−1)r. Our systematic sampling frame specifies that b ∼ Uniform[w, w+r),

so the leftmost systematic grid starts at w to accommodate the whole of the first search

strip. The first strip of the rightmost grid coincides with the second strip of the leftmost

grid. The kth centerline of the rightmost grid lies at x = 1−w to accommodate the whole of

the last search strip. The sampling frame and repeated-survey framework are shown in the

top two panels of Figure 1, highlighting the mobile objects and different grid positions.

The chosen sampling frame implies r = (1− 2w)/k. It is the investigator’s choice whether

r is determined given k, or vice versa, or the limits of the survey region are defined to

incorporate the sampling frame given r and k. This sampling frame undersamples the regions

x ∈ (0, w) and x ∈ (1 − w, 1). Consequences of this are likely to be minor, but if necessary

a wrap-around sampling frame can be used instead (Fewster and Buckland, 2004: 293).

2.4 Components of systematic variance

For strip-sampling on a rectangular region with D̂ = n/(2wL), finding v̂ar(D̂) is equivalent

to finding v̂ar(n) because L does not change between replicate surveys. The top row of Figure
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1 shows the components of var(n) in the repeated-survey framework. The first component

is the variance in n due to the grid base b ∈ [w, w + r). If there are trends in object density

across the region, as in Figure 1, the expected number n of objects encountered may change

with b. The line in panel 3 shows E(n | b) as b changes. If large-scale trends are present,

there is information about them contained in the systematic sample, because the stripwise

detections n1, . . . , nk span the width of the region.

The second component of var(n) is the variance for a given grid base b. This is shown

by the scatter about the line in panel 3 of Figure 1, which shows n from 100 draws from

the repeated-survey framework. The scatter about the line is caused by objects changing

location for each replicate survey.

The law of total variance summarizes the two components of repeated-survey variance:

var(n) = varb {E(n | b)} + Eb {var(n | b)} . (1)

The term varb {E(n | b)} is due to large-scale trends and describes how E(n | b) varies as

b changes, visible from the slope of the line E(n | b) in panel 3 of Figure 1. The term

Eb {var(n | b)} describes the mean scatter about the line E(n | b). We construct our estimator

for var(n) by modeling the distribution of [n | b].

2.5 Striplet partition of the survey area

Our approach to constructing a variance estimator for spatial systematic surveys is as follows.

First we approximate the continuous sampling-frame b ∼ Uniform[w, w + r) by a discrete

sampling frame b ∈ {b1, b2, . . . , bB} for some large B, where b1, . . . , bB are equally-spaced

x-coordinates such that b1 = w and bB 6 w + r: see Figure 2.

[Figure 2 about here.]

Secondly we plot the boundaries of all search-strips and centerlines in all B systematic grids

based at b1, . . . , bB. The boundaries partition the region 0 6 x 6 1 into J thin parallel strips,
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which we term ‘striplets’ to distinguish them from the search-strips in the survey. These

striplets will not generally be of equal width or area. They are introduced for convenience

so that every search half-strip in the grids based at b1, . . . , bB consists of an integer number

of striplets (e.g. three in Figure 2). The striplets remain invariant across survey replicates,

while the changing grid location renders any particular striplet ‘active’ or ‘inactive’ for that

replicate. We label the striplets 1, 2, . . . , J , and define the set S(bi) ⊂ {1, . . . , J} for any bi,

where S(bi) is the set of ‘active’ striplets contained in the systematic grid based at bi.

We next introduce a random variable X = (X1, X2, . . . , XJ), where X gives the number

of objects contained in striplets 1, 2, . . . , J for a particular replicate survey. X describes

object relocations in the repeated-survey framework. Its true distribution in the repeated-

survey framework is unknown, depending on the spatial p.d.f. or point process used to

generate object positions. The true repeated-survey distribution of n is created by survey

replicates such that each replicate involves a single draw from the true distribution of X and

a single grid base b ∼ Uniform[w, w + r), leading to a single value of n. The key idea of the

new ‘striplet’ variance estimator is to approximate the repeated-survey distribution of n by

modeling the distribution of X and approximating b ∼ Uniform[w, w+r) by b ∈ {b1, . . . , bB}.

A repeated-survey replicate is approximated by a single draw from the modeled distribution

of X, and a single value of b ∈ {b1, . . . , bB}, giving the observation n =
∑

j∈S(b) Xj . The

modeled distribution of X is used to derive estimates for var(n | b) and E(n | b). We then

sum over b1, . . . , bB using (1) to estimate var(n).

2.6 Model for X

In the repeated-survey framework, the total number of objects N is fixed, but objects are relo-

cated between replicate surveys. A reasonable model for X is X ∼ Multinomial(N ; p1, . . . , pJ)

where pj gives the probability of a relocated object falling in striplet j. The multinomial

model arises naturally if the original point process is a Poisson process such that the Poisson
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intensity in striplet j is proportional to pj. The distribution of Poisson random variables,

conditional on their sum being N , is multinomial.

Specifying a multinomial distribution for X means that (a) the trend function E(n | b) can

be estimated once the cell probabilities p1, . . . , pJ are estimated; and (b) the scatter function

var(n | b) is assumed to be that of the multinomial distribution. These assumptions are found

to be very robust by simulations, but there may be situations where alternative distributions

for X are preferred: see Section 3.4.

The problem of constructing v̂ar(D̂) reduces to estimating the cell probabilities p1, . . . , pJ .

Note that var(D̂) is not generated by the multinomial model for X: it is generated by the

repeated-survey replicates. We hope that the multinomial variance will be a good model for

the repeated-survey variance, and insensitive to the choice of spatial p.d.f. for the repeated-

survey replicates. However, for biological realism, we continue to evaluate our estimators

against their repeated-survey distributions, not against the multinomial distribution.

We use the information from the stripwise detections n1, . . . , nk to estimate the cell prob-

abilities p1, . . . , pJ . We favor a model that allows p1, . . . , pJ to change smoothly over space.

Let striplet j have area αj, and let the x-coordinate of the midpoint be tj . Let λ(·) be a one-

dimensional intensity function, such that λ(t) is the instantaneous intensity of objects per

unit area at x-coordinate t. The striplet cell probabilities are pj = αjλ(tj)/
∑J

m=1 αmλ(tm).

We wish to estimate λ(t) as a smooth function of t. Suppose that the search-strips 1, . . . , k

have centerlines at x = t∗1, . . . , t
∗
k, and areas a1, . . . , ak, then our model is E(ni) = aiλ(t∗i ).

We could use an ordinary scatterplot smoother to estimate λ(·) given n1, . . . , nk, but the

offset of strip areas ai makes it convenient to use the functionality of R package gam (Hastie

and Tibshirani, 1990) for fitting generalized additive models (GAMs). Using gam with log

link creates the formula log {E(ni)} = log(ai) + log {λ(t∗i )}, which allows a quick way of

generating a smooth estimate for λ(·) while allowing for possibly different strip areas ai. We
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fit the GAM with Poisson error, log link, offset term log(ai), and smooth term s(t, df=4)

from which λ̂(t) can be obtained for any t . The choice of Poisson error is consistent with

using a multinomial distribution for X, but the estimated mean curve is fairly insensitive

to the choice of error distribution. The multinomial parameter N is estimated by N̂ = AD̂,

where A =
∑J

j=1 αj is the total area of the survey region.

2.7 Striplet variance estimator

We assemble the striplet variance estimator for var(n) as follows. There are X1, . . . , XJ

objects in striplets 1, . . . , J , where we model X ∼ Multinomial(N ; p1, . . . , pJ). Given a

systematic grid based at b, define Q(b) =
∑

j∈S(b) pj. Using marginal properties of the

multinomial distribution, the distribution of [n | b] is Binomial (N, Q(b)), so E(n | b) = NQ(b)

and var(n | b) = NQ(b) {1 − Q(b)}. Thus from (1):

var(n) = varb {NQ(b)} + Eb

[
NQ(b) {1 − Q(b)}

]

= Eb

{
N2Q(b)2

}
− [Eb {NQ(b)}]2 + Eb

[
NQ(b) {1 − Q(b)}

]
.

We use sample means from the discrete set of values b1, . . . , bB to estimate the expectations:

v̂ar(n) =
1

B

bB∑

b=b1

[
N̂Q̂(b)

{
1 − Q̂(b)

}
+ N̂2Q̂(b)2

]
−





1

B

bB∑

b=b1

N̂Q̂(b)





2

, (2)

where Q̂(b) =
∑

j∈S(b) p̂j, p̂j = αjλ̂(tj)/
∑J

m=1 αmλ̂(tm), and N̂ = AD̂.

Equation (2) gives the striplet variance estimate for rectangular regions. Computation

takes only about a second on a laptop computer, to set up the grid b1, . . . , bB and striplets

1, . . . , J , and fit the GAM. The estimated density variance is v̂ar(D̂) = (2wL)−2 v̂ar(n).

2.8 Simulations for strip surveys

Figure 1 shows the striplet estimator in practice. The top row shows realizations of the

repeated survey framework creating the distribution of [n | b]. The lower rows show two

highly trended populations. In each case, a single population realization is shown, followed
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by the corresponding set of stripwise detections n1, . . . , nk for k = 20 and the smooth output

from the fitted GAM, which is proportional to λ(t) scaled by strip areas. This single GAM

fit constructs an estimated line for E(n | b), shown on the next panel. The line is an estimate

from the single survey shown, whereas the cloud of data points shows the true distribution

of [n | b] from 10,000 simulations. The line represents the trend component E(n | b) and of

importance is its slope, rather than its height, to accurately capture varb {E(n | b)} in (1).

The scatter about the line is modeled by the multinomial variance to give Eb {var(n | b)}.

The two components are added to give the striplet estimate. Results from 10,000 repeats of

this procedure are shown in the boxplots. The true repeated-survey var(D̂) is shown by the

bold horizontal line across the boxplots. In both cases the striplet estimator v̂ar(D̂) exhibits

negligible bias for var(D̂), and it is also much more precise than any of the other estimators.

To understand the relative importance of the two striplet variance components, we also

show results from a similar procedure that omits the GAM phase and replaces λ(t) by a

constant function, such that E(ni) = aiλconst = n. The constant function is shown as a

dashed line on the panels from the single survey replicates, and the resulting estimator is

called nogam. This estimator ignores the information on large-scale trends. It performs poorly

for Population A, because there the trend is monotonic and consequently the line E(n | b) has

large slope representing a large component of varb {E(n | b)}. However, the loss in Population

B is of little importance, despite the strong trend in Population B. This is because the trend

is not monotonic, so the number of detections even out over the systematic grid such that

the aggregate E(n | b) changes very little over b: it is barely distinguishable from the dashed

line representing a constant fit. For Population B, both the striplet and nogam estimators

are so precise that their boxplots are barely visible. However, the inaccuracy of the nogam

fit is sufficient to cause a slight loss in confidence interval coverage.

For simulations in Figures 1, 3 and 4, the striplet method uses a grid b1, . . . , bB with



Variance estimation for systematic designs 11

spacing 0.0005. The simulated data use the continuous sampling frame b ∼ Uniform[w, w+r).

Confidence intervals use a log-Normal approximation described in generality in Section 4.

3. Extension to other spatial surveys

3.1 Non-rectangular regions with perfect detection

If the sampling region is not rectangular, the total line length L in the survey changes

according to the position of the grid base b, so both n and L are random for each survey

replicate. We write L(b) for the line length associated with grid base b. The variance of D̂ is

now the variance of a ratio, var {n/(2wL)}. This is easily incorporated in (1) because of the

conditioning on b. We obtain v̂ar(D̂) = (2w)−2 v̂ar(n/L), where

v̂ar
(

n

L

)
=

1

B

bB∑

b=b1



N̂Q̂(b)

{
1 − Q̂(b)

}
+ N̂2Q̂(b)2

L(b)2


 −





1

B

bB∑

b=b1

N̂Q̂(b)

L(b)





2

. (3)

3.2 Line-transect distance sampling with imperfect detection

Line-transect distance sampling (Buckland et al., 2001) is a suite of methods for estimating

object density when there is imperfect detection of objects within the search-strips. The

estimator D̂ includes a detection function, g(x, θ), which is the probability that an object in

the search-strip is detected, given that it is distance x from the strip centerline. The detection

parameter θ is estimated using the observed object distances from the centerline. The average

detection probability for objects in the search-strip is Pa = w−1
∫ w
0 g(x, θ) dx. If individuals

occur in groups, for example family units of animals, then the ‘object’ is defined as the group

of individuals, and the mean group size in the population, E(S), must be estimated.

The density estimator for line-transect distance sampling is

D̂ =
n

P̂a

×
1

2wL
× Ê(S) =

1

2w
×

n

L
×

1

P̂a

× Ê(S) ,

where the second expression factorizes D̂ into components of encounter rate (n/L), detection

probability, and group size. The density variance is estimated using the delta method:
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{
ĉv(D̂)

}2
=

{
ĉv

(
n

L

)}2

+ ĉv
(
P̂a

)2
+ ĉv

{
Ê(S)

}2
, (4)

where ĉv(·) denotes the estimated percentage coefficient of variation (CV) of an estimator,

for example ĉv(D̂) =
√

v̂ar(D̂)/D̂ × 100.

Each set of survey data contains replicate information about distances and group sizes, so

estimating the variance of P̂a and Ê(S) is straightforward (Buckland et al., 2001). The striplet

estimator (3) is used for the encounter rate variance, v̂ar(n/L). However, the repeated-survey

replicates now include variance in which objects are detected, given the grid placement b and

the object locations X, so the striplet estimator must be adjusted for imperfect detection.

Given a grid base, b, and striplets 1, 2, . . . , J , the set S(b) gives the ‘active’ striplets in

the grid. For active striplets we know the distance of the striplet midpoint to the nearest

centerline in the grid. We can therefore estimate gj(b), the probability that an object located

in striplet j is detected in a grid with base b, using the estimated detection function g(·, θ̂).

Let gj(b) = 0 if j /∈ S(b). The former expression Q(b) =
∑

j∈S(b) pj is now replaced by

Q(b) =
∑J

j=1 gj(b)pj. The linewise detections n1, . . . , nk are thinned by the detection process,

so the GAM formulation becomes E(ni) = Pa × aiλ(t∗i ) and the former offset term of log(ai)

is replaced by log(P̂a) + log(ai). The estimated number of objects, N̂ , refers to groups

rather than individuals, so N̂ = n/(2wLP̂a). With these three changes, the striplet variance

estimator for line-transect distance sampling is given by (3) and (4).

3.3 Two-dimensional surveys

For two-dimensional surveys, such as quadrat or point-transect sampling, there are no

variable line lengths so we use (2). Instead of dividing the region into striplets, we divide

it into ‘boxlets’ such that the region is tesselated by a large number of tiny quadrats. This

is accomplished by applying the algorithm for striplet boundaries to both the x- and the

y-directions. The start-points b = 1, . . . , B now index a starting-grid in two dimensions.
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Detection less than perfect, or boxlets that do not fit wholly inside a systematic grid, can be

accommodated through gj(b) as in Section 3.2. We use a two-dimensional GAM with smooth

term of the form s(x, y), which demands adequate sampling coverage in both directions.

3.4 Alternative distributions for X

A multinomial distribution for X arises naturally from an inhomogeneous Poisson process,

so we expect it to cater for strong trends in object density. It is less clear how robust it will

be to aggregation of objects. This is tested by simulations in Sections 4 and 5. The Dirichlet

compound multinomial distribution might perform well if there is extreme aggregation.

If X is not modeled by a multinomial distribution, the alternative to (3) is derived using

n =
∑J

j=1 Yj where Yj is the number of objects detected in striplet j, and [Yj |Xj, b] ∼

Binomial(Xj, gj(b)). The model for X specifies cov(Xi, Xj) for all i, j, from which [cov(Yi, Yj) | b] =

gi(b)gj(b)cov(Xi, Xj). We then find E(n | b) and var(n | b) and combine as before.

If the chosen inferential framework requires N to change between survey replicates, this

can be accommodated in the model for X. Examples include Xj ∼ Poisson(αjλ(tj)) with

X1, . . . , XJ independent, or negative binomial distributions with dispersion estimated from

the data, or a multivariate distribution such as the negative multinomial.

4. Simulation studies

We evaluate the striplet estimator using extensive simulations with line-transect distance

sampling, intended to provide a stringent test of the estimator’s efficacy. The simulation

scenarios are sometimes extreme compared with likely scenarios for field surveys. However,

the distance-sampling software Distance (Thomas et al., 2010) has thousands of registered

users, whose field surveys are likely to include some extraordinary cases.

We compare the striplet method against the estimators detailed in Fewster et al. (2009) and

outlined in Section 2.2. Briefly, estimators R2 and R3 are random-line estimators. Estimator

R2 is preferred over R3, being more robust to spatial trends. Estimator R3 is the default in
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versions 5 and below of the Distance software, while estimator R2 is the default in versions

6 and above. Estimators S1 and S2, and O1 and O2, give different ways of implementing

poststratification with non-overlapping strata and overlapping strata respectively. They all

perform similarly in practice, although O1 and O2 tend to be a little more precise.

We focus on the following challenging survey characteristics for estimating var(n/L).

— Strong trends in object density in the x-direction across the survey region.

— High variability in line length L(b) as b changes, especially when low L(b) is associated

with high encounter rates and vice versa. This can happen in practice when line lengths are

dictated by some geographical feature that also impacts density, such as fiords in marine

surveys. Fewster et al. (2009) focused on this and the previous scenario.

— Object aggregation, in which objects tend to be attracted to other objects. Johnson

et al. (2010) treated this case from a model-based perspective. They used an overdispersion

correction factor, but this did not yield the correct variances when aggregation was strong.

— High coverage of the survey area. Systematic designs have large gains in efficiency

relative to the other designs when the covered area 2wL is a large fraction of the total

area, because inefficiencies caused by overlapping strips in the random and stratified designs

become substantial. Hence this scenario is challenging for estimators that approximate the

systematic design by random designs (R2 and R3) or stratified designs (S1 to O2).

— Small number of lines, k. Estimators R2 to O2 are based on the variance of linewise

encounter rates, so their performance is severely impeded if k is small. Buckland et al. (2001:

232) advise that a minimum of k = 10 lines should be used.

Confidence intervals for all simulations are calculated by assuming a log-Normal distri-

bution for D̂, justified asymptotically by Fewster and Jupp (2009). The 95% confidence

interval is (D̂/C, D̂ × C), where C = exp
[
zα

√
log

{
1 + v̂ar(D̂)/D̂2

}]
, and where zα is the

upper 0.025 point of the Normal(0, 1) distribution. We use this expression for the striplet
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estimator. For estimators R2 to O2, we replace zα by a Student tdf quantile as in Fewster et

al. (2009), with d.f. given by the Satterthwaite approximation in Buckland et al. (2001).

4.1 Distance sampling with strong trends and disparate line lengths

We redo the simulations of Fewster et al. (2009) on a triangle-shaped region with strong

trends in object density. The triangle shape creates considerable variability in total line

length, L(b), as b changes. Object positions are simulated using beta distributions on both

the x and the y coordinates. The simulations include scenarios where encounter rate is

highly correlated with line length. Distance sampling data are simulated using a half-normal

detection function, and the detection function is estimated from the data in each simulation.

Figure 3 shows simulation results for ŝe(D̂) from four spatial p.d.f.s corresponding to pop-

ulations 1, 2, 3, and 6 from Fewster et al. (2009). The boxplots show estimator performance

for two difficult scenarios: the first with a small number of lines (k = 10), and the second with

high coverage of the survey area (coverage = 80%). The striplet estimator is the only one to

exhibit negligible bias in all of the survey scenarios, and it is by far the most precise of the

estimators. The gain in precision is even more marked when examining ŝe(n/L) instead of

ŝe(D̂), because the overall ĉv(D̂) in (4) is roughly half composed of an invariant contribution

from estimating the detection function, ĉv(P̂a).

[Figure 3 about here.]

The results shown are characteristic of a large number of similar simulations. The per-

formance of the striplet estimator is always similar to that in Figure 3. Confidence interval

coverage is close to 95%, the estimator displays no discernible bias, and relative to the other

estimators the mean confidence interval width is reduced while the precision of ŝe(n/L)

is greatly improved. The other estimators rarely underestimate variance, but sometimes

have confidence interval coverage close to 100%, and are much less precise. A whimsical

observation is that the striplet variance estimator often outperforms the sample variance
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estimator constructed by literally repeating the survey 100 times and finding the sample

var(n/L). The striplet estimator is often more precise, and is obtained at 1% of the cost.

The striplet estimator (3) relies upon the estimated g(·, θ̂) to gain Q̂(b), which will induce

some dependence between components of ĉv(D̂) in (4). In these simulations, the maximum

correlation between components was 0.02, so the dependence appears to be minimal.

4.2 Distance sampling with overdispersed Poisson point process

Johnson et al. (2010) describe a model-based approach to distance sampling and implement

it in the R package DSpat, which includes functions for generating intensity maps and

simulating object locations using a Cox process. Points are generated as a log-Gaussian Cox

process, so points follow a Poisson process for which the log-intensity is itself a Gaussian

random field with possible spatial correlation. When there is no spatial correlation in the

Gaussian random field, the process is an inhomogeneous Poisson process. When there is

spatial correlation, the points are aggregated and the linewise detections are overdispersed

relative to the inhomogeneous Poisson process. Johnson et al. (2010) did not obtain the

correct variances in the overdispersed case. We reproduce their simulations with the striplet

estimator, but with the important difference that we keep N constant between survey

replicates in the repeated-survey framework, whereas Johnson et al. allowed N to vary in

accordance with the point process. This variance in N might explain their difficulty in

producing the correct variances, because the single sample contains little information about

var(N) when the point process is overdispersed. We also keep the covariate map fixed between

replicates, in accordance with a fixed habitat.

[Figure 4 about here.]

We reproduced all the simulations of Johnson et al. (2010) in the repeated-survey frame-

work. The survey region is rectangular, so S1 = S2, O1 = O2, and R2 = R3. Figure 4 shows

results from simulations modeled on the worst of the results in Figure 2 of Johnson et al.
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(2010). The other simulations all gave similar results. The striplet estimator has negligible

bias and good confidence interval coverage, is by far the most precise, and yields mean

reported %CVs lower than any other estimator. For the inhomogeneous Poisson process

without overdispersion (top row of Figure 4), the true variances from the repeated-survey

framework are very similar to those from Johnson et al.’s (2010) model-based framework

(J. L. Laake, pers. comm.), even though they were obtained from different conceptual

replicate schemes. Johnson et al. (2010) obtained the correct variances in this case. The

spatial aggregation in the overdispersed process can be seen in the second row of Figure 4.

Overdispersion has negligible impact on the true repeated-survey variances in these cases,

which can be seen by comparing the bold horizontal lines in the two rows of Figure 4.

However, overdispersion has a detrimental impact on all estimators except the striplet

estimator.

Because the striplet estimator is underpinned by a multinomial spatial relocation model,

it should be possible to observe poor performance by violating this model with highly

aggregated populations. The striplet estimator is robust to all scenarios examined by Johnson

et al. (2010), which they termed high overdispersion. However, it eventually underestimates

variance when subjected to a combination of extreme aggregation, high coverage, large

sample sizes, and small numbers of transect lines. For example, with overdispersed point

processes similar to those in Figure 5 (top row), confidence interval coverage fell to 80%

with k = 20, E(n) = 400, and coverage 50%. The same settings with k = 40 restored

confidence interval coverage to 94%. The non-striplet estimators each gave approximately

100% coverage in both cases. The array of influences is complex, and general guidelines for

robustness to aggregation are difficult to provide. We recommend that simulations are used

to check robustness to anticipated levels of aggregation for a particular survey region and

design. A different model for X might be needed in some applications.
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4.3 Quadrat sampling with overdispersed Poisson point process

We implemented the ‘boxlet’ method of Section 3.3 for estimating var(D̂) in quadrat-

sampling surveys, and applied it to the populations simulated in Section 4.2. Detection was

assumed perfect within a quadrat. The striplet estimator was compared against the following

estimators: (i) P1 from Fewster et al. (2009), which is gained from the sample variance of

quadrat counts and ignores the systematic design; (ii) P4 from Fewster et al. (2009), which

uses the scheme of D’Orazio (2003) to correct for a two-dimensional systematic design; and

(iii) the estimator of Millar and Olsen (1995), which is a quadrat sampling equivalent of O1

with four quadrats per post-stratum.

Results for quadrat sampling were generally similar to those shown in Figures 3 and 4,

with the striplet estimator outperforming all the other estimators in terms of bias and (to

a lesser extent) precision. However, if two-dimensional grids were used with only five lines

of quadrats in either direction, the striplet estimator tended to underestimate variance for

overdispersed point processes. The non-striplet estimators also trended downwards in this

situation. The number of lines or rows appears to be more important than the sampling

coverage: for example, switching from grid dimensions 5 × 10 to 10 × 10 while maintaining

the same coverage restored the good performance of the striplet estimator in every case

examined, while switching from 5 × 10 to 5 × 20, 5 × 40, or 5 × 80 did not bring any

improvement. Simulations were conducted with coverage of 4% and 25%, with N ranging

from 300 to 10 000, and using the overdispersion settings in Johnson et al. (2010).

5. Spotted hyena survey, Serengeti plains, Tanzania

We apply the striplet method to line-transect distance-sampling surveys of spotted hyena

(Crocuta crocuta) on a 2428 km2 region in the Serengeti plains of Tanzania (Durant et al., in

review). The survey area is shown in Figure 5. The data were collected as part of two surveys

of carnivores, the first during the wet season in May 2005, and the second during the dry
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season in October 2005. For each survey, k = 29 parallel north-south transects were placed

at 2 km intervals. Sightings correspond to detected hyena groups which ranged in size from

1 to 10 individuals (mean 1.9). Hyena groups were observed to a distance of w = 0.5 km.

[Figure 5 about here.]

The spotted hyena data are interesting because the behavior of the animals changes

between seasons. In the wet season, hyenas move from throughout the Serengeti to congregate

in the short-grass plains in the east of the study area, where there is abundant food (Hofer

and East, 1993). The study area holds large numbers of these non-territorial ‘commuters’.

In the dry season, the animals commute away from the study area, density is much lower,

and the animals remaining in the study area are largely territorial residents.

These behavioral characteristics are reflected in the transect data shown in the top panels

of Figure 6. The plots show the number of sightings on each transect, together with their

fitted values from the GAM with 4 d.f. described in Section 2.6. In the wet season, the

encounter rate is high and the data are clearly overdispersed relative to the Poisson GAM.

The dispersion parameter from the fitted GAM is 3.8. This suggests there is aggregation or

clustering of groups, perhaps due to the clustering of prey herds (Hofer and East, 1993). In

the dry season the data do not appear overdispersed, and the dispersion parameter is 0.7.

This is consistent with territorial behavior at low density.

Hyena density is estimated using Distance 5.0 (Thomas et al., 2010). The wet and dry

season surveys had respectively nwet = 186 and ndry = 53 detected groups, each over L =

1199 km of transects. The estimated densities of individuals are D̂wet = 1.00 and D̂dry =

0.25 km−2. The detection functions are selected by AIC to be half-normal with two cosine

adjustments in each case, yielding average within-strip detection probabilities of P̂a,wet = 0.26

(CV=7.04%) and P̂a,dry = 0.27 (CV=14.3%). The estimated mean hyena group sizes using

size-bias regression are Ê(S)wet = 1.7 (CV=5.04%) and Ê(S)dry = 1.5 (CV=7.73%). The
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overall CV of D̂ for either survey is given by (4), with ĉv(n/L) gained from the striplet

estimator or estimators R2 to O2. This reduces to ĉv(D̂)wet ≃
√
{ĉv(n/L)2

wet
+ 75} and

ĉv(D̂)dry ≃

√{
ĉv(n/L)2

dry
+ 264

}
.

For the wet season, the choice of estimator for ĉv(n/L) has a dramatic effect on the

estimate. The random-line estimators R2 and R3 yield 17.0% and 17.6% for ĉv(n/L). Each

of the stratified estimators S1, S2, O1, and O2 give estimated CVs of about 14.5%. The

striplet estimator gives an estimated CV of only 6.9%. The standard error estimated by the

striplet method is therefore less than half of that estimated by any other method. We verify

this surprising result by simulation below. The overall ĉv(D̂)wet is 20% using R3, as reported

by Distance 5.0; 17% using each of the stratified estimators S1 to O2, and 11% using

the striplet estimator. The estimated number of individuals, N̂ind, is 2430, with confidence

interval width over 1900 for R2 and R3, about 1700 using each of S1 to O2, and 1060 for the

striplet estimator. The choice of encounter rate variance estimator therefore has a profound

impact on all reported measures of uncertainty.

For the dry season, the choice of estimator is less important. The random-line estimators

R2 and R3 give a ĉv(n/L) of 16% and 15%, the stratified estimators S1 and S2 give 10%,

and O1 and O2 give 13%. The striplet estimator also gives 13%. Estimates of ĉv(D̂)dry range

from 19.3% (O1 and O2) to 22.7% (R2), with the striplet estimator in the middle with

20.7%. Finally, N̂ind = 619 with confidence interval width ranging from about 480 (S1 and

S2), through 510 (striplet), to 570 (R2).

The striplet estimator is not sensitive to the degrees of freedom used in the underlying

GAM. As the d.f. is changed from 1 to 26, the estimated encounter rate CV varies only

between 6.8% and 7.1% for the wet season, and between 12.8% and 12.9% for the dry

season. The striplet method was implemented using B = 69 grid start-points and J = 2006

striplets, so that adjacent systematic grids were displaced from each other by about 30m.
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To verify that these results are credible, we use the DSpat package to simulate populations

on the Serengeti region with characteristics as close as possible to those in the observed data.

Example simulations are shown in Figure 5. Each simulated point corresponds to a group

of hyenas. Points are generated by the log-Gaussian Cox process described by Johnson et

al. (2010). The study area is divided into two habitats: long-grass plains and short-grass

plains. The total number of points is fixed at the estimated number of groups in the real

data, namely 1428 for the wet season and 400 for the dry season. The relative intensities of

the point process in the two habitats are chosen such that the mean numbers of detections

per habitat are approximately the same as the observed numbers in the real data.

For the wet season, spatial correlation in the Gaussian random field underlying the Cox

process is chosen so that the mean dispersion parameter from GAMs fitted to the simulated

data is 3.8, equal to that in the real data. The resulting strong level of aggregation is seen

in the two realizations in Figure 5. The aggregations change location between simulations,

which could mimic hyenas following herds of prey which aggregate and disperse. For the dry

season, the dispersion parameter of 0.7 is well within the distribution of dispersion parameters

generated when the Gaussian random field is uncorrelated. Therefore no correlation is

used, and the dry-season simulations reproduce an inhomogeneous Poisson process without

aggregation. Distance-sampling data are simulated for both surveys with mean detection

probability matching the estimated values from the real surveys. The detection function is

estimated from the simulated detections in each simulation.

[Figure 6 about here.]

The simulation results for ĉv(n/L) are shown in the bottom panels of Figure 6. All results

from the real surveys, shown as horizontal lines marked with arrows on the plots, fall within

the distributions expected from the simulations. In particular, the simulations validate the

surprisingly large gain in CV by using the striplet method with the wet-season data. For both
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seasons, both the real-data striplet result and the mean of the striplet results for simulated

data are very close to the correct cv(n/L) gained from the simulated sample of n/L values.

The striplet estimator is by far the best in terms of both bias and precision, especially for

the wet season, for which the real-data gains over the stratified estimators are close to the

scenario average. The differences between estimators for the real dry-season data are within

sampling variability. Simulation results for ŝe(n/L), ŝe(D̂), and ĉv(D̂) closely mirror those

for ĉv(n/L) shown in Figure 6.

Repeating the wet-season simulations with different levels of spatial correlation in the

Gaussian random field gives results similar to those in Section 4.2. As the aggregation

level is varied from none, through moderate, to the high level shown in Figure 6, the

correct encounter rate CV calculated from the simulations changes only from 6.9% to 7.5%.

The striplet mean CV mirrors these slight changes. However, the performance of all other

estimators from R2 to O2 changes substantially. The four stratified estimators S1 to O2 are

almost unbiased when there is no aggregation. As aggregation gets stronger, the estimator

performance deteriorates, with most of the estimates being too high.

6. Discussion

We have assessed the striplet variance estimator for systematic designs in a wide range of

standard and extreme spatial situations, and its performance has been uniformly good except

for some cases of extreme aggregation and small numbers of lines. In bias and precision it

consistently outperforms all other estimators from Fewster et al. (2009). The estimator is

very robust to overdispersion for one-dimensional transect designs, although it is less robust

for two-dimensional quadrat sampling. Extension to other spatial designs such as zigzag

schemes (Strindberg and Buckland, 2004) is the topic of future work.

In this paper we have used the repeated-survey framework with constant N . Changing the

framework to incorporate variable N might be desirable if the survey area has a permeable
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boundary so that N changes as animals move in and out of the area, but it introduces

problems of model misspecification. The overdispersed process considered by Johnson et al.

(2010) yields very high variance in N : e.g. var(N) ≃ 10E(N) when E(N) = 1000. Such a

situation might occur if the survey area is a subregion of a larger region, with free movement

across the boundary and heavy clustering. However, in this situation it would be unwise to

restrict surveys to the subregion, unless it is believed that the survey data from the subregion

somehow contain information about the variance of N . The repeated-survey framework with

constant N restricts variance estimation to a simpler scenario, but one that is well-defined

and for which we now have a robust estimator. It extends the traditional design framework

by incorporating variance due to animal movement between survey replicates.

In accordance with the simulation results in Section 4.2, the wet-season spotted hyena

survey did not present difficulties for the striplet estimator, despite being strongly overdis-

persed. It did, however, create substantial difficulties for all other estimators, resulting in an

important gain in reported precision when using the striplet estimator. In fact, performance

of the striplet estimator is quite similar to performance of a naive Poisson-based estimator

v̂ar(n/L) = n/L2 for the Serengeti region. However, the naive estimator performs very poorly

for the triangle-based simulations, so it cannot be recommended in practice. Variability

in L(b) and highly trended populations present problems for the naive Poisson estimator,

whereas aggregated populations present problems for estimators R2 to O2 and the model-

based procedure of Johnson et al. (2010). The striplet estimator performs well in all of these

situations, unless it is subjected to extreme aggregation coupled with few transect lines.
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Figure 1. Illustration of the repeated-survey framework and striplet variance estimator.
The top row shows two realizations of the repeated-survey framework with k = 5 lines,
w = 0.02 and N = 100. Object positions and grid location change for each realization.
Detection is perfect within the shaded strips. Arrows mark the allowable values for the grid
base, b, from 0.02 to 0.212. The distribution of total detections, n, is shown as a function
of grid base b ∈ [0.02, 0.212] in the third panel, with the two featured realizations marked
by crosses and the true mean for this population shown by the line. The lower two rows
show the components of the striplet estimator for two highly trended populations, using
k = 20, w = 0.01, and D = N = 1000. Panel 2 on each row shows the GAM fit to stripwise
detections ni from a single survey. This GAM is used to construct the estimated E(n | b) as
shown in the bold lines on panel 3. Dashed lines across panels 2 and 3 show a constant-mean
fit, termed nogam. Also shown as clouds on panel 3 are the true distributions of [n | b] from
10,000 simulations. Panel 4 shows estimator performance for ŝe(D̂), with the true se(D̂)
from 10,000 simulations given as a bold line across the plot. Numbers above and below the
boxplots show respectively mean width and coverage of nominal 95% confidence intervals.
For Population A, varb {E(n | b)} is high (seen by the sharp slope in panel 3) and the nogam

estimator is poor. For Population B, varb {E(n | b)} is negligible (flat in panel 3) and both
striplet and nogam are extremely close to the true se(D̂).
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Figure 2. Striplet concept. Search strips in the systematic design are marked by shading.
Each search strip is covered by many striplets, with striplet boundaries marked by dashed
lines. Transect lines are marked in bold and have spacing r. The uniform sampling frame
b ∼ Uniform[w, w + r) is approximated by a discrete sampling frame in which the possible
start values for the systematic grids are b1 = w, b2, . . . , bB, where bB 6 w + r. The two rows
show the first and second grids, with b = b1 and b = b2 respectively. The random variables
X1, X2, . . . , XJ denote the number of objects available for detection in each striplet for a
particular replicate of the repeated-survey framework.
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Figure 3. Triangle populations 1, 2, 3, and 6 from Fewster et al. (2009), and distributions
of ŝe(D̂). Each boxplot shows ŝe(D̂) from 1000 simulations. Thin horizontal lines on the boxes
show the estimator means; numbers above and below the boxplots show mean confidence
interval width and coverage respectively. The bold line across the plot shows the correct
se(D̂), each from 10 000 simulations. Boxes are drawn between the upper and lower quartiles,
and whiskers extend to the last observation within 1.5 times the interquartile range from
the quartiles. The two simulation scenarios are: (i) k = 10, coverage = 4%, E(n)=120, D =
10 000, w = 0.002, Pa = 0.6; (ii) coverage = 80%, k = 20, E(n) = 480, D = 2000, w = 0.02,
Pa = 0.6. The first column shows population realizations with true density D = 2000.
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Figure 4. Simulated populations similar to those in Johnson et al. (2010), and the resulting
distributions of ŝe(D̂) using 3000 simulations for each scenario. The numbers above the
boxplots are the mean %CVs reported from each estimator. The numbers below the boxplots
are confidence interval coverages for nominal 95% confidence intervals. The first row shows an
inhomogeneous Poisson process without overdispersion and associated results, and the second
row shows results with high overdispersion. The first column shows example point processes
using N = 2000 points. Shading indicates habitat type, with darker shading associated with
higher object density. The two simulation scenarios are: (i) coverage = 50%, E(n) = 75,
k = 10, D = N = 600, w = 0.025, Pa = 0.25; (ii) coverage = 4%, E(n) = 400, k = 10,
D = N = 40 000, w = 0.002, Pa = 0.25.
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Figure 5. Serengeti survey region. Light shading in the west denotes long-grass plains, and
dark shading in the east denotes short-grass plains. The rows denote wet and dry seasons. The
first panels show locations of transects and observed hyena groups. East-west coordinates are
observed, while north-south coordinates are generated at random from the selected clustering
model. The second and third panels show two random realizations of groups as used in the
simulation study. The wet-season simulations are heavily clustered, while the dry-season
simulations are not clustered.
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Figure 6. Model fit and simulations for the Serengeti data. The top panels show the
observed number of detections on each transect, ni for i = 1, . . . , 29. The solid lines show
the fitted values E {n(t)} from a GAM with 4 d.f. They are not completely smooth because
the area of the surveyed strips changes non-smoothly between transects. The bottom panels
show the distributions of 1000 estimated %CVs for encounter rate based on the simulations
described in the text. Boxplot details are the same as before. The thin lines marked with
arrows across each boxplot give the estimated %CV from the real data. The bold horizontal
lines crossing the whole plot give the correct %CV as obtained from the 1000 simulations.


