
Stats 20x Handout 1: The Linear Model

1.1 Finding relationships between variables

This course is about statistical modelling. What does that mean? In a nutshell,
statistical modelling is about finding relationships between variables.

Variables are things that we measure or observe. A vast portion of human
enterprise is focused on discovering which variables are related to which. This
is true in science, business, and any other area in which we aim to understand
the world by making observations. The following statements are all examples
of relationships between two variables.

• Smoking causes lung cancer.
Subjects: people.
Variables: smoke yes/no: the predictor variable;

lung cancer yes/no: the response variable.

• Heart disease is associated with high cholesterol levels.
Subjects: people.
Variables: cholesterol level (numeric): predictor variable;

heart disease yes/no: response variable.

• Having a university degree is associated with higher lifetime income.

• Users of Apple smartphones do more online shopping than Android users.

• The chance of a baby being a boy decreases with the father’s age.

• Cows that are given names (e.g. Daisy or Ermintrude) produce more milk.

Relationships between variables are everywhere around us. Some relationships
are so well-known that it is surprising to think they once had to be ‘discovered’.
For example, as recently as 1960, only 30% of US doctors believed in the link
between smoking and lung cancer.

This brings us to our key role as statistical modellers. How do we establish
that a relationship exists? We can’t observe all possible smokers that might
ever exist, and compare their lung cancer outcomes to those of all possible
non-smokers. Instead, we have to learn about the world through samples.

Population Sample

We can only work with samples, but we want to know about the population:
e.g. all smokers and non-smokers that can ever exist. The process of drawing
conclusions about a population, based on data from a sample, is called in-
ference. We can’t observe the whole population, so instead we must focus on
what we can legitimately infer about the population, based on our sample data.

1

Key questions

Here are the key questions we will be addressing as we explore ideas in statistical
modelling.

• How can we be sure a relationship exists?
— We might need to convince a sceptical or resistant audience: e.g. the
smoking / lung cancer link was suppressed by the powerful tobacco industry.

• If it does exist, how can we describe it? What shape is the relationship,
and how can we quantify it numerically?

• How can we assess the quality of a relationship: e.g. how tightly connected
two variables are?

• When there are multiple variables, how can we decide which suite of pre-
dictor variables best explains the response variable?
— E.g. if Apple users do more online shopping than Android users, could
it just be that Apple is more popular in richer countries and Android in
poorer countries?

1.2 The Simple Linear Model

We’ll start with a classic relationship scenario: the simple linear model.
We have n subjects, e.g. people, whom we’ll label i = 1, 2, . . . , n.

We have two numeric variables of interest: X and Y . Because they are numeric
variables, and not labels like ‘yes/no’, they can be plotted on a scatterplot. Each
of our subjects has a pair of observations, which we can write as xi and yi. An
easy example to think of is where xi is the height of person i, and yi is their
weight. y

x

Person i has a pair of observations,
(xi, yi), which we plot on a scatterplot.

We are interested in the relationship between the variables X and Y , and
particularly in whether X can be said to ‘predict’ or ‘explain’ Y .

For this reason we call X the predictor or explanatory variable, and Y the
response variable.
(You might have heard X called the ‘independent’ variable, and Y called the ‘dependent’ variable,

but this terminology is confusing and best avoided.)

2

We use CAPITAL LETTERS when we refer to X and Y as variables. Think
of capital letters as denoting an unspecified or random quantity.

We use lower-case letters when referring to observations of these variables. For
example, if X is height and Y is weight, then we use (xi, yi) to describe the
height and weight of person i, after they have been observed.

When thinking about how X predicts Y , we often treat X as if it is already
decided, and treat Y as random. For example, if I have selected a person of
height X = 175cm, I might want to know their range of likely weights, Y . In
this case, we often use the notation of conditioning: we are interested in the
distribution of weight, Y , given a height of X = 175cm. We then write Yi with
a capital letter, but xi with a lower-case letter, because we are thinking of Yi
as a random response to the fixed choice of xi.

We are now ready to formulate what we mean by a linear model. A simple linear
model is a straight-line relationship between X and Y , with scatter.

We write:
Yi = α + βxi + εi .

Here, α + βxi is the explained part of the relationship.

The values α and β are parameters that we want to estimate. Estimating
these parameters is equivalent to finding the best-fit line through the
scatterplot.

y

x

α

0 1

1

β

The value α is the intercept:
the intersection of the line
with the y-axis when x = 0.

The value β is the slope:
β specifies the increase in y

for each unit increase in x.
E.g. if β = 1.2, then we
expect a person’s weight, y,
to increase by 1.2kg for every
1cm increase in their height,
x, on average.

The explained, or systematic, part of the model is α + βxi. This describes the
average relationship between Y and X. To be precise, it specifies the average
value of Y , when X is fixed at xi.

3

There are various notations for the α + βxi portion. We often write

µi = α + βxi,

where it is implicitly understood that µi is the average of Yi, when we
know that our X-observation is xi.

Another notation is:
E(Yi |X = xi) = α + βxi.

This is the precise statistical formulation: we are looking at the mean, or
expected value, of the distribution of Y , given our knowledge that X = xi.

In the height-weight example, E(Yi |X = xi) describes the average weight for
height xi. For example E(Yi |X = 175cm) is the average weight for people of
height 175cm.

Sometimes this is abstracted further and written as E(Y |X) = α + βX.

Scatter model, or ‘Error model’

The second part of our model formula is εi, the ‘scatter term’ or ‘error
term’.
Remember

Yi = α + βxi + εi.

We know that variable Y cannot be completely explained by variable X: there
will always be some scatter, or what we call ‘residual variation’. The word
‘residual’ is important: it means what’s left over after we have described the
systematic relationship between Y and X as best we can — i.e. by selecting the
best possible α and β to give the best-fit line.

Selecting an appropriate scatter model is an important part of statistical mod-
elling. To begin with, we will focus on one type of scatter model:

εi ∼ Normal(0, σ2).

This means that all observations Yi are assumed to have the same scatter
about the line, regardless of where on the line they are. You can see this
because σ2 does not depend upon i or on xi: it is constant.

The parameter σ2 describes the amount of scatter. The precise definition of
σ2 is the mean squared deviation of a point from the best-fit line.

Although σ2 is another parameter we will have to estimate, it is typically not
of very much interest in its own right. We call it a nuisance parameter.

4

We also assume that all errors εi are independent of each other. This means
that none of the observations in the study are influenced by other
observations.

This typically makes sense: my weight is not influenced by yours.

The two assumptions of independence and constant scatter are encapsulated in
the statement:

εi ∼ iid Normal(0, σ2),

where iid stands for independent and identically distributed.

We will use this scatter model a lot during the course, but we will also see other
scatter models where the amount of scatter does not stay constant along the
line.

Best-fit line

Our model is Yi = α+βxi+ εi. When we write down a model, we are imagining
that this is what really happened to generate the response Yi given the predictor
xi. Our task now is to select the ‘best’ values of α and β: the intercept and
slope that give the best-fit line through our scatterplot.

Our selected values of α and β are called our estimates. We write estimates
with a hat, i.e. α̂ and β̂.

Thus:

• α and β are true, unknown parameter values.
They are the slope and intercept that we believe generated the data in the first
place. We believe that they have these true but unknown values in the wider
population of interest. In real life we will never know what they are exactly,
but we will use our sample data to draw inference on them.

• α̂ and β̂ are our estimates of α and β based on our sample data.
These are known numbers computed from our sample to give the ‘best’ line
possible. We need to specify some criterion for what we mean by ‘best’ line.

Once we have our estimates α̂ and β̂, we can specify the mean relationship we
have estimated between Y and X:

µ̂i = α̂ + β̂xi

Or: Ê(Yi |X = xi) = α̂ + β̂xi

The values µ̂i = α̂ + β̂xi are called the fitted values or predicted values.
They trace the path of the best-fit line.

5

The fitted values µ̂i = α̂+ β̂xi are often used as predictions: they specify the
‘expected’ value of Y for a given value of X.

For example, if we fitted the linear model Weight= α+β×Height and obtained
α̂ = −115 and β̂ = 1.1, then we would make the following predictions:

• Predicted weight at height 170cm: −115 + 1.1× 170 = 72kg.

• Predicted weight at height 180cm: −115 + 1.1× 180 = 83kg.

The ‘prediction’ is our estimated mean: we estimate that a person of height
170cm will weigh 72kg on average.
The value 72kg is our fitted value when X = 170cm.

Question: Suppose our model Yi = α+βxi + εi is really true in the population
at large. We draw two different samples from this population. Which of the
following statements is true?

A. α and β are the same for both samples, but α̂ and β̂ will be different.

B. α̂ and β̂ are the same for both samples, but α and β will be different.

C. All of α, β, α̂, and β̂ will be the same for the two samples.

Best-fit line in the simple linear model

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

5 10 15 20

0

10

20

30

40

50

y

x

For the simple linear model, we select α̂ and β̂ using least-squares:

α̂ and β̂ minimize
n∑

i=1

{
yi − (α̂ + β̂xi)

}2

.

Equivalently: α̂ and β̂ minimize
n∑

i=1

(yi−µ̂i)2 : the sum of the squared residuals.

6

Why do we use the least-squares criterion?

The least-squares criterion seems like a sensible way of selecting α̂ and β̂, but
you might think there are other sensible ways too. For example, why do we
minimize the sum of squared distances from the points to the line,

∑
i(yi− µ̂i)2,

instead of the sum of absolute distances,
∑

i | yi − µ̂i | ?

It is important to know the reason behind this, although we will not go into it
in detail in Stats 20x.

The least-squares criterion is appropriate for the simple linear model
BECAUSE of the constant-scatter model, εi ∼ Normal(0, σ2).

In fact, least-squares is a special case of a general method for estimation called
maximum likelihood estimation. Under our model Yi = α+βxi+εi, where
εi ∼ iid Normal(0, σ2), we can compute how likely our observed data yi are for
any value of α and β. We pick α̂ and β̂ to maximize this likelihood: so α̂ and
β̂ are the values under which our data would have the ‘best chance’ of arising.
It so happens that the maximum likelihood estimates (MLEs) for this linear
model are the same as the least-squares estimates. We also obtain a MLE for σ,
but it is not part of the least-squares sum. These ideas are covered in Stats 210.

We use maximum likelihood estimates because they have superb properties:
for example, they are correct-on-average (unbiased), and have the narrowest
possible confidence intervals (most precise). However, the method relies upon
specifying our model correctly, and things will go wrong if our model is mis-
specified. The most likely thing to go wrong is confidence interval coverage:
you might think you have a 95% confidence interval, but if your model is mis-
specified then your CIs might contain the true value less than 95% of the time.

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

20 40 60 80 100

0
20

0
40

0
60

0

x

y ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

20 40 60 80 100

0
20

0
40

0
60

0

x

y

Fitted line
True line

This example shows
non-constant scatter.
The fitted line is pulled
down on the right to
fit the high-scatter
points. With another
dataset it might be
pulled up too high.
The variability of the
fitted line is too high.

7

Fitting the simple linear model in R

Here we will see how to simulate data that exactly satisfies the linear model,
and then fit the model in R.

First create your simulated data frame. The command below creates a data
frame with column x = 1, 2, . . . , 20, and column y such that yi = 5 + 2xi + εi,
where εi ∼ iid Normal(0, 32). Thus, we are simulating data y from the model
with α = 5, β = 2, σ2 = 9.

mydat <- data.frame(x=1:20, y=5+2*(1:20)+rnorm(20, 0, 3))

Note how we have used the R command for generating random numbers from
the Normal distribution: rnorm(n, mean, sd).
Be careful to specify sd, the standard deviation: sd = σ =

√
σ2. If you enter

sd=3, then you are specifying a standard deviation of σ = 3, and a variance of
σ2 = 9.

Have a look at the whole data-frame you have just generated. Type:

mydat

You should see output like this. Your values for y will differ, but they will show
an increasing trend with x.

x y

1 1 4.574243

2 2 3.290030

3 3 5.926182

4 4 16.052606

: : :

20 20 40.847702

To look at just the first few rows of a large dataframe, use the command head:

head(mydat)

Now:

Plot the data:

plot(y~x, data=mydat)

8

Fit the linear model, and assign the output to R object ‘myfit’.

Command ‘lm’ stands for ‘linear model’.

myfit <- lm(y~x, data=mydat)

Look at the estimated values, alpha-hat and beta-hat.

These are called ‘coefficients’ in R, and are extracted by

command ‘coef’:

coef(myfit)

I get the following output:

(Intercept) x

7.000682 1.929860

Are these good estimates? What values would you expect or hope to see?
Not bad, but not great: true values are 5 and 2; we’ve got estimates
of 7.0 and 1.9.

Draw the fitted line in red.

Command ‘abline’ draws a straight line y = a + bx,

where a is the first element of the vector provided,

and b is the second.

Here, the vector provided is coef(myfit).

abline(coef(myfit), col="red")

Because we are working with simulated data, we know the true relationship
between x and y in this case. Draw the true line onto the graph with a blue
dashed line.

abline(5, 2, col="blue", lty=2)

Using ‘lty=2’ makes it dashed. It stands for ‘line-type 2.’

You can alternatively specify the arguments as a vector

c(5, 2), like this:

abline(c(5, 2), col="blue", lty=2)

●

●

●
● ●

●
●

●

●

●
●

●
● ● ●

●

●

●
●

●

5 10 15 20

10
20

30
40

50

x

y

I get the output at the right. Not too bad!

9

Here is another go for you to copy-and-paste into R. This time we’ll use a larger
sample size of 40 instead of 20:

Generate new data and call it ‘mydat’:

mydat <- data.frame(x=1:40, y=5+2*(1:40)+rnorm(40, 0, 3))

Plot:

plot(y~x, data=mydat)

Fit the linear model:

myfit <- lm(y~x, data=mydat)

Plot the fitted line in red:

abline(coef(myfit), col="red")

Plot the true line in blue dashed:

abline(5, 2, col="blue", lty=2)

Look at the coefficients:

coef(myfit)

I get the following:

(Intercept) x

5.417994 1.953421

Better this time — as we’d expect with a larger sample size.
Your estimates:

Checking assumptions using residual plots

Under our model,
Yi = µi + εi , where εi ∼ iid Normal(0, σ2) .

So Yi − µi = εi ∼ iid Normal(0, σ2) .

We can use this to check the assumptions of our model. We don’t know the
true values of µi = α+βxi, but we can replace them with our estimated values
µ̂i = α̂ + β̂xi. Under the fitted model, if our assumptions are valid, we should
have

Yi − µ̂i ∼ approx iid Normal(0, σ2).

In other words, the RESIDUALS, Yi − µ̂i, should be approximately
Normally distributed, with constant scatter and no trend.

We can check whether this is the case by looking at plots of residuals. We should
always do this before interpreting the results from our model fit, because if our
assumptions aren’t valid then our results will not be valid either!

10

First look to see whether the residuals seem to be approximately trendless
with constant scatter. Because the fitted values represent the mean of the
distribution of Y , it makes sense to plot the fitted values on the x-axis, so
we can check that the residuals are Normally distributed at each point on the
fitted line. This corresponds to checking that Yi is Normally distributed about
its mean, regardless of what the mean is.

Here is the command to check the residual plot in R for model myfit:

10 20 30 40

−
10

−
5

0
5

10

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

lm(y ~ x)

Residuals vs Fitted

86

99

92

Generate 100 random values of x:

mydat <- data.frame(x=runif(100, 1, 20))

Generate y = 5 + 2x + epsilon:

mydat$y <- 5 + 2*mydat$x + rnorm(100, 0, 5)

Plot the data:

plot(y~x, data=mydat)

Fit the model:

myfit <- lm(y~x, data=mydat)

Plot residuals versus fitted values:

plot(myfit, which=1)

Using plot(myfit, which=1) is equivalent to

plot(fitted(myfit), residuals(myfit)).

Check this by overplotting the latter on top of the current plot using the points
command with blue crosses:

points(fitted(myfit), residuals(myfit), col="blue", pch=4)

These residuals look fine. There is no systematic trend or obvious change in
scatter. By default, R labels the three most extreme points. They do not
appear to be outliers in this case.

Having checked for patternless residuals, we should now do a couple of checks
for normality of residuals. The Stats 20x team have written a library of useful
functions which includes normcheck for this purpose.

library(s20x)

normcheck(myfit, shapiro.wilk=T)

You only need to type library(s20x) once in every R session: once the library
is loaded it is available for the rest of the session.

Using shapiro.wilk=TRUE includes a p-value from the Shapiro-Wilk test for
normality on the plot.

11

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s
Shapiro−Wilk normality test
W = 0.9883
P−value = 0.53

Residuals from lm(y ~ x)

The first plot from normcheck is called a QQ-plot (Quantile-Quantile). It plots
the quantiles of our model residuals against the quantiles of a Normal distribu-
tion. Roughly speaking, this means that the smallest of our 100 observations
should be plotted at the 1% quantile of the Normal distribution; the second
smallest at the 2% quantile, and so on. (There is a slight adjustment so the 1st
is actually plotted at the 0.5% quantile and the 100th at the 99.5% quantile.)

If the Normal distribution is a good fit, the QQ-plot should be approximately
a straight line.

You can check where this plot comes from as follows:

Use the R function qqnorm to find the QQ-plot:

qq.res <- qqnorm(residuals(myfit))

Plot just the first of the two plots in normcheck:

normcheck(myfit, shapiro.wilk=T, whichPlot=1)

Overplot the QQ-plot results with blue crosses: they should be identical.

points(y~x, data=qq.res, col="blue", pch=4)

Check the Shapiro-Wilk p-value supplied against qq.res$y:

shapiro.test(qq.res$y)

The p-value of 0.53 is large.

This means there is no evidence against the Normal assumption for
this data set.

The second plot in normcheck is just a histogram of the residuals, with a Normal
density curve plotted over the top. It can be reproduced as follows:

hist(residuals(myfit), col="lightblue")

Ideally, the histogram should follow the curve quite well. However, the most
important thing is that the histogram is reasonably symmetric. It is not of
great concern if it is short-tailed relative to the curve, as long as it is symmetric.

12

Here is the code to scale the histogram so the Normal density can be overplotted:
hist(residuals(myfit), col="lightblue", probability=T)

Extract the estimated sigma-hat using summary(myfit)$sigma:

sigmahat <- summary(myfit)$sigma

Overplot the Normal density curve using dnorm:

lines(seq(-15, 15, by=0.5), dnorm(seq(-15, 15, by=0.5), 0, sigmahat))

Check for outliers and points of influence

observation number
0 20 40 60 80 1000.

00
0.

02
0.

04
0.

06
0.

08

Cook's Distance plot

C
oo

k'
s

di
st

an
ce

86

84

99

Another useful s20x function is cooks20x.
This checks for data points of high influence,
such that removing the point would change
the fitted values substantially. Use:

cooks20x(myfit)

R labels the three most influential points.
A rule of thumb is to inspect any points
with a Cook’s distance greater than 0.4.
It’s possible that these points are errors,
e.g. due to false data entry, or that they
should be removed for some other reason.

1.3 Is there a real relationship between X and Y ?

One of our primary goals is to decide whether the evidence in our sample points
to a real relationship between X and Y . Is lung cancer really associated with
smoking, or is it possible that we just had some lucky nonsmokers and unlucky
smokers in our sample? At what point can we say that our sample result is so
conclusive that it points to a real effect in the population at large?

We can cast this question in terms of probabilities. If we draw our sample
sensibly from the population — e.g. by drawing all subjects randomly and
independently — then there are limits to how convincing a fluke trend can
look, if there really is no relationship between X and Y . We can compare the
trend in our real data to these ‘believability limits’, and if our trend looks more
convincing than any fluke trend born of lucky sampling, then we can conclude
we have evidence of a real relationship between X and Y .

The way we do this is to first set up a model in which there is no relationship
between X and Y :

Yi = α + εi where εi ∼ iid Normal(0, σ2).

13

This indicates that Yi does not depend upon xi: it says that E(Yi |xi) = α,
which is the same for all xi. We call this model the null model. The word ‘null’
means ‘neutral’ or ‘noncomittal’: the model in which nothing is happening.

Compare the null model with our previous model:

Yi = α + εi : null model : X and Y have no relationship.

Yi = α + βxi + εi : proposed model: X and Y do have a relationship.

Clearly, the difference between these two models is that the null model spec-
ifies that β = 0.

So our job is to conduct the following hypothesis test:

Let Yi = α + βxi + εi where εi ∼ iid Normal(0, σ2)

H0 : β = 0

H1 : β 6= 0

We can compare the data we observe in our sample against the sort of data
we would obtain if β = 0.

If our data are too improbable for a sample drawn from a population with
β = 0, then we have evidence that β 6= 0.

We measure evidence using the p-value. The p-value measures how likely
it is for a trend as clear as the one seen in our sample to arise by
chance, if there is really no relationship between X and Y in the
population at large.

Do the examples below look as if they could have arisen just by chance from
the null model? What sort of p-values would you expect?
The null model is plotted by the green horizontal line.

p = 0.00(1.7× 10−14) p = 0.02 p = 0.56

●

●

●
●

●
●

●

●

●

●

● ●

●

●
● ● ●

●

●
●

0 5 10 15 20

−
40

−
20

0
20

40

x

y

−

−

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

0 5 10 15 20

−
40

−
20

0
20

40

x

y

−

−

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20

−
40

−
20

0
20

40

x

y

−
−

14

The following graphics show sixteen (x, y) scatterplots.

• Fourteen of them were drawn from the null model, Yi = α + εi.

• One was drawn from the trend model Yi = α + βxi + εi with β = 2.

• One was drawn from the trend model Yi = α + βxi + εi with β = 0.2.

The values of α vary a little to make all plots fit neatly within the same range.

Which one is the odd one out? Can you see why we say that the trend is
significant, to indicate that it is not the sort of data we would expect to see
by chance from the null model?

Can you pick out the plot for β = 2? What about for β = 0.2?

●
●

●

●
● ●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

5 10 15 20

10
20

30
40

● ●
●

●

● ●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

5 10 15 20

10
20

30
40

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

5 10 15 20

10
20

30
40

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●
●

5 10 15 20

10
20

30
40

●

●

●
● ●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

5 10 15 20

10
20

30
40

●
●

●

●

●

●

●
●

●

●

● ● ● ●

●

●

●

● ●

●

5 10 15 20

10
20

30
40

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
● ●

5 10 15 20

10
20

30
40

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●

5 10 15 20

10
20

30
40

●

●
● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

5 10 15 20

10
20

30
40

●

●

● ●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

5 10 15 20

10
20

30
40

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

5 10 15 20

10
20

30
40

●

●

●

●

●

● ●

●

● ●
● ●

●

●

●

●

● ●

●

●

5 10 15 20

10
20

30
40

● ●

● ● ● ●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

5 10 15 20

10
20

30
40

● ●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

5 10 15 20

10
20

30
40

●

●

● ●

●

●

●

●
● ●

●

●
● ●

● ● ● ●
●

●

5 10 15 20

10
20

30
40

●

●

●

● ●

●

● ●

●

●

●

●
●

●
●

●

●

●

● ●

5 10 15 20

10
20

30
40

15

Here are the same plots again, marking the two β-models and the p-values.

●
●

●

●
● ●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

5 10 15 20

10
20

30
40

Null model: pval = 0.01

● ●
●

●

● ●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

5 10 15 20

10
20

30
40

Null model: pval = 0.13

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

5 10 15 20

10
20

30
40

Null model: pval = 0.78

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●
●

5 10 15 20

10
20

30
40

Null model: pval = 0.31

●

●

●
● ●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

5 10 15 20

10
20

30
40

Null model: pval = 0.07

●
●

●

●

●

●

●
●

●

●

● ● ● ●

●

●

●

● ●

●

5 10 15 20

10
20

30
40

Null model: pval = 0.18

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
● ●

5 10 15 20

10
20

30
40

β = 2 ; pval = 0.00

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●

5 10 15 20

10
20

30
40

Null model: pval = 0.94

●

●
● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

5 10 15 20

10
20

30
40

β = 0.2 ; pval = 0.18

●

●

● ●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

5 10 15 20

10
20

30
40

Null model: pval = 0.71

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

5 10 15 20

10
20

30
40

Null model: pval = 0.29

●

●

●

●

●

● ●

●

● ●
● ●

●

●

●

●

● ●

●

●

5 10 15 20

10
20

30
40

Null model: pval = 0.16

● ●

● ● ● ●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

5 10 15 20

10
20

30
40

Null model: pval = 0.79

● ●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

5 10 15 20

10
20

30
40

Null model: pval = 0.36

●

●

● ●

●

●

●

●
● ●

●

●
● ●

● ● ● ●
●

●

5 10 15 20

10
20

30
40

Null model: pval = 0.43

●

●

●

● ●

●

● ●

●

●

●

●
●

●
●

●

●

●

● ●

5 10 15 20

10
20

30
40

Null model: pval = 0.10

How do we get the p-value output for the β = 2 data in R?

mydat <- data.frame(x=1:20, y=5+2*(1:20)+rnorm(20, 0, 3))

myfit <- lm(y~x, data=mydat)

Generate the table of estimates and p-values:

summary(myfit)

This gives:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.71190 1.19621 3.939 0.000962 ***

x 2.04667 0.09986 20.496 6.31e-14 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

16

Run the same thing again using data simulated from the null model:

nulldat <- data.frame(x=1:20, y=)

nulldat.fit <- lm(y~x, data=nulldat)

summary(nulldat.fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.15181 1.67183 3.082 0.00643 **

x -0.03885 0.13956 -0.278 0.78388

Which panel on the previous page does this simulation correspond to? Notice
that the estimated trend is negative (β̂ =−0.03885), but of small magnitude.

The p-value for the hypotheses H0 : β = 0 against H1 : β 6= 0 is p = 0.78.
This p-value is large and is non-significant.
The non-significance is indicated by the fact there are no **s beside it on the
R output.

The interpretation of this p-value is: we have no evidence against H0 for
our dataset ‘nulldat’. If the assumptions of the linear model are satisfied,
there is a high probability (0.78) of seeing a fitted trend as strong as ours, just
by chance, if H0 is true and β = 0. Our sample data are consistent with
the null model. There is no evidence in this sample of a relationship
between X and Y .

What about the example in the first panel overleaf? This was genuinely drawn
from the null model, and yet it gave a p-value of 0.01.

nulldat2 <- data.frame(x=1:20, y=5+rnorm(20, 0, 3))

nulldat2.fit <- lm(y~x, data=nulldat2)

summary(nulldat2.fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.09763 1.14338 6.208 7.39e-06 ***

x -0.26082 0.09545 -2.733 0.0137 *

The conclusion from this p-value of 0.01 is that we DO have evidence
against H0 — even though we know in this case that H0 is true!

Unfortunately, this will happen from time to time: it is a false positive or
‘Type I Error’.

17

The interpretation of the p-value of 0.01 is that an apparent trend as strong as
the one seen in nulldat2 will arise from the null model, just by chance, with a
probability of 0.01. This is about one time in a hundred.

It is quite unusual — but not staggeringly unusual. Things that happen 0.01
of the time do happen in everyday life. Lots of events with that level of rarity
will happen around you today. (For example — the probability that today is
the 9th January is a lot less than 0.01, but you are not so very surprised when
it happens!)

In fact, we can be even more precise. You will get a ‘false-positive’ p-value of
0.01 or less exactly 1% of the time. That is, 1% of datasets drawn from
the null model will appear to provide evidence against H0 with a
p-value ≤ 0.01.

Similarly, 5% of datasets drawn from the null model will appear to provide
evidence against H0 with a p-value ≤ 0.05. This is the definition of a p-value.

We say we have evidence against H0 : β = 0 at the 5% level if p ≤ 0.05.

This has a false-positive rate of 5%, by definition.

5% of samples GENUINELY drawn from H0 will give p ≤ 0.05.

1% of samples GENUINELY drawn from H0 will give p ≤ 0.01.

Saying ‘we have evidence against H0’ is NOT the same
as saying H0 must be false.

In fact, the phrase ‘we have evidence against H0’, is statistical code for:
EITHER H0 is true and we have observed something quite unusual,
OR H0 is false.

As the p-value gets smaller (0.05 down to 0.01, down to 0.001, 0.0001, etc),
the interpretation shifts: we are progressively less likely to believe in the first
option (H0 is true and we saw something unusual), and more likely to believe
in the second (H0 is false). However, it is only for VERY small p-values that
we can exclude H0 entirely.

Finally, what went wrong for the β = 0.2 example? In this case, there was a
genuine trend, but the p-value was non-significant:

missed.dat <- data.frame(x=1:20, y=5+0.2*(1:20)+rnorm(20, 0, 3))

missed.fit <- lm(y~x, data=missed.dat)

summary(missed.fit)

18

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.1181 1.2587 4.861 0.000126 ***

x 0.1462 0.1051 1.392 0.180986

This time, the trend is real, but undetected.
This is a ‘false negative’, or ‘Type II Error’.

The slope coefficient, β = 0.2, is too weak compared with the amount of scatter,
σ2 = 32, and the sample data don’t look sufficiently different from the sort of
data that would be generated under the null model.

We can only remedy this case by increasing our sample size.

The following commands generate a second data frame from the same model as
the original missed.dat, using β = 0.2, and join it to the first using the rbind

command, where rbind stands for ‘row-bind’.

better.dat <- rbind(missed.dat,

data.frame(x=1:20, y=5+0.2*(1:20)+rnorm(20, 0, 3)))

better.fit <- lm(y~x, data=better.dat)

plot(y~x, data=better.dat)

abline(coef(better.fit), col="red")

summary(better.fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.03996 0.84228 5.984 5.99e-07 ***

x 0.19867 0.07031 2.826 0.00748 **

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

5 10 15 20

2
4

6
8

10
12

x

y

There is now strong evidence against H0:
the p-value is 0.0075.

Even though the trend is still weak
(β = 0.2), the combined force of
40 data-points creates a sample that
would hardly ever be seen under the
null model — only about 0.0075 = 3/400
null data sets would exhibit a trend
this convincing, just by chance.

With our larger sample size, we have now generated strong evidence that there
is a relationship between X and Y .

19

Where does the p-value come from?

The theory underlying the p-value for H0 : β = 0 versus H1 : β 6= 0 is
covered in Stats 210 and Stats 310. However, you should recognise the general
formulation:

Estimate− Hypothesized value

Standard error of estimate
∼ tdf .

The standard error of an estimate is an estimate of how uncertain we are
when we estimate the parameter from our sample data. One of the marvellous
things about statistics is that we can use the same data both to estimate a
parameter, and to say how reliable our estimate is for that parameter. The
theory is grounded in the Central Limit Theorem and also some of the excellent
properties of maximum likelihood estimation.

Let’s have another look at the two datasets just above. They were both drawn
from a model with a weak trend (β = 0.2), but missed.fit was based on a
sample with only 20 data points, whereas better.fit was based on 40.

summary(missed.fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.1181 1.2587 4.861 0.000126 ***

x 0.1462 0.1051 1.392 0.180986

summary(better.fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.03996 0.84228 5.984 5.99e-07 ***

x 0.19867 0.07031 2.826 0.00748 **

In the first case, missed.fit had an estimate of β̂ = 0.1462 with standard error
0.1051. This is very poor. The standard error is almost as big as the
estimate!

If we use the rule of thumb that a 95% confidence interval is approximately
estimate ± two standard errors, then our confidence interval would extend
from 0.1462− 2× 0.1051 = −0.064, to 0.1462 + 2× 0.1051 = 0.3564.

So we don’t even know if β is positive or negative!

(This is actually equivalent to a non-significant p-value against H0 : β = 0 at
the 5% level. The p-value is > 0.05 if and only if the 95% confidence interval
contains 0.)

20

0The t-statistic for testing H0 : β = 0 is:

Estimate− Hypothesized value

Standard error of estimate
=

0.1462− 0

0.1051
= 1.392.

IfH0 is true, then statistical theory tells us that this statistic has a t-distribution,
with parameter df = n− 2 = 20− 2 = 18. (We subtract 2 from the number of
data points, because we are estimating 2 parameters, α and β. This leaves us
with n− 2 ‘degrees of freedom’ in the residual variability.)

The p-value is then calculated from this t18 distribution:

2 * pt(1.392, df=18, lower.tail=FALSE) = 0.1809856

These values match the R output, with slight differences from rounding errors.

By contrast, for better.fit:

Estimate− Hypothesized value

Standard error of estimate
=

0.19867− 0

0.07031
= 2.826,

and now we have n = 40 data points, so we use df= 38:

2 * pt(2.826, df=38, lower.tail=FALSE) = 0.00748

In general, the t-statistic is telling us how many standard errors away
from the hypothesized value our estimate is.

If our estimate is too many standard errors away from the hypothesized value
β = 0, it is no longer believable that β = 0 is the true value. The p-value from
the t-test tells us how believable it is.

If the p-value is very small, our data are not believable for the null model, and
we have evidence against H0.

p-value summary

• We began this section by asking, Is there a real relationship between X and Y ?
This translates to the hypothesis test H0 : β = 0 versus H1 : β 6= 0.

• If β = 0 and our data really came from the null model, there are limits to how
convincing a ‘fake trend’ can look. We want to compare the trend in our data
to these ‘believability limits’.

• This means we need to measure something about how convincing our trend
looks. The thing we measure is called the test statistic, in this case a t-statistic.
It measures how many standard errors is β̂ away from the hypothesized β = 0.

• Under H0, we know the probability of a result as extreme as ours. This is the p-
value. If p is very small, our result is very unlikely to arise from the null model,
so we have evidence against H0. Our trend is too convincing to be ‘fake’.

21

1.4 Confidence intervals and prediction intervals

One of the key features that distinguishes statistics as a science is that we don’t
just provide estimates like α̂ and β̂: we also provide information about how
reliable these estimates are.

Without including reliability measures, estimates by themselves are almost
worthless. The primary way of describing the reliability of our estimates is
to include confidence intervals.

R provides us with confidence intervals using the command confint.

Let’s find CIs for simulated data using α = 5, β = 2, σ = 3:

Generate data and fit the linear model:

mydat <- data.frame(x=1:20, y=5+2*(1:20)+rnorm(20, 0, 3))

myfit <- lm(y~x, mydat)

Extract the 95% confidence intervals:

confint(myfit)

2.5 % 97.5 %

(Intercept) -0.7903782 5.487531

x 1.9038630 2.427933

This means the confidence interval for α is (-0.79, 5.49)
and the confidence interval for β is (1.90, 2.42).

In this case, both of the confidence intervals contain the true values: α = 5
and β = 2. The CI for β is much narrower than that for α, indicating that the
slope, β, has been estimated with much better precision than the intercept, α.

The CIs have been returned as a matrix of results. To extract the CI just for
β, use the R subsetting command to ask for the second row only:

confint(myfit)[2,]

2.5 % 97.5 %

1.903863 2.427933

Will it always happen that the 95% confidence interval encloses the true value
β = 2?

No: the idea of a confidence interval is that it should enclose the
true value exactly 95% of the time.

22

What do we mean by ‘exactly 95% of the time?’

Every sample dataset will give us a different interval. We mean that
95% of times that we take a sample, fit the model, and construct the
confidence interval, this interval will enclose the true value β = 2.

The interval is random, while β = 2 stays the same. So we should try
running these commands many times over and see how the intervals change:

mydat <- data.frame(x=1:20, y=5+2*(1:20)+rnorm(20, 0, 3))

myfit <- lm(y~x, mydat)

confint(myfit)[2,]

How can we quickly see if the interval does contain the true value β = 2?

beta.CI <- confint(myfit)[2,]

Ask whether the following logical statement is true:

(beta.CI[1] <= 2) & (2 <= beta.CI[2])

2.5 %

TRUE

Convert to a number, 0 or 1, and remove the unwanted name:

as.numeric((beta.CI[1] <= 2) & (2 <= beta.CI[2]))

[1] 1

If you run the code above a few times, you’ll see the occasional time when the
CI doesn’t enclose the true value. However, we need to repeat it thousands
of times to see if the 95% coverage property holds exactly. This is where it
becomes very helpful to write your own functions. Here is a simple function
that takes inputs α, β, σ, simulates one data set, and reports whether the CI
for β contains the true value.

one.confint.func <- function(alpha=5, beta=2, sigma=3){

Generate the data and fit the linear model:

mydat <- data.frame(x=1:20, y=alpha+beta*(1:20)+rnorm(20, 0, sigma))

myfit <- lm(y~x, mydat)

Extract the 95% confidence interval for beta:

beta.CI <- confint(myfit)[2,]

Find whether the confidence interval encloses the true beta:

CI.res <- as.numeric(beta.CI[1]<=beta & beta<= beta.CI[2])

Print output:

cat("95% Confidence interval:", format(round(beta.CI, 2), nsmall=2), "\n")

cat("Contains beta=", beta, "? ", CI.res, "\n")

Finish the function by returning 0 or 1 for whether the CI encloses beta:

return(CI.res)

}

23

To run this function:

1. Either: copy-and-paste the text directly into R;
Or: save the code in a text file called mycode.R and put it in your working
directory, then type source("mycode.R") to read it into R.

2. Run the code by typing: one.confint.func()

By running this many times, you’ll see that the CI mostly does, but sometimes
doesn’t, contain the true β. We need a better function that can run this code
thousands of times and report back the exact frequency with which the CI
encloses the true β. The function below takes inputs α, β, σ, as before, and also
the desired number of simulations, Nsim. It then returns the CI coverage:
how many simulations yielded CIs that covered the true β.

confint.func <- function(alpha=5, beta=2, sigma=3, Nsim=1000, printit=T){

Create a vector of results:

CI.res <- numeric(Nsim)

Let simulation i run from 1 to Nsim:

for(i in 1:Nsim){

Generate the data for this simulation, and fit the linear model:

mydat <- data.frame(x=1:20, y=alpha+beta*(1:20)+rnorm(20, 0, sigma))

myfit <- lm(y~x, mydat)

Extract the 95% confidence interval for beta:

beta.CI <- confint(myfit)[2,]

Find whether the confidence interval encloses the true beta,

and put the result in entry i of CI.res:

CI.res[i] <- as.numeric(beta.CI[1]<=beta & beta<= beta.CI[2])

Print output for simulation i, if requested via argument "printit":

if(printit)

cat("Confidence interval", format(round(beta.CI, 2), nsmall=2),

"contains beta=", beta, "? ", CI.res[i], "\n")

}

We now have Nsim results stored in vector CI.res.

Find out how many of the confidence intervals contained beta:

cat("\n", sum(CI.res), "out of", Nsim,

"data sets contained the true beta: coverage rate=",

round(sum(CI.res)/Nsim, 2), "\n")

Finish the function by returning the vector of results:

return(CI.res)

}

Interpreting the confidence interval

The term 95% confidence interval has a very specific meaning in statistics. It
displays the precision with which we have estimated the parameters,
α and β.

Our ultimate aim is a narrow confidence interval: this means we can narrow
down the parameter values to a small range.

24

Suppose we fit a linear model and obtain β̂ = 2.05 with 95% confidence interval
(1.85, 2.25). Does this mean:

— The true value β is somewhere between 1.85 and 2.25?
No. We are quite confident it is, but there is a 5% chance our
interval does not enclose β.

— There is a 95% probability that the true value β is between 1.85 and 2.25?
No: this is poor wording. The true β either is or isn’t between 1.85
and 2.25: it can’t be true 95% of the time.

— There is a 95% probability that our confidence interval encloses the true β?
Yes. It is correct to say that 95% of confidence intervals will en-
close the true β. The probability is taken over all possible samples:
each sample leads to its own CI, which will or will not contain β.

Where does the confidence interval come from?

The confidence interval comes from the same t-distribution as the p-value. The
degrees of freedom is df = n− (#parameters estimated). If β is the true value,
then:

Estimate− β
Standard error of estimate

∼ tdf .

0q2.5 q97.5

95%

In other words,
β̂ − β
se(β̂)

∼ tdf .

So we can find probability intervals for
β̂ − β
se(β̂)

.

Let q2.5 be the 2.5% quantile of the tdf distribution, and q97.5 the 97.5% quantile:

q2.5 = qt(0.025, df) = −q97.5
q97.5 = qt(0.975, df)

Then the statement underlying the 95% confidence interval is:

P

(
q2.5 ≤

β̂ − β
se(β̂)

≤ q97.5

)
= 0.95

endpoints fixed;
middle random

⇒ P
(
β̂ − q97.5 se(β̂) ≤ β ≤ β̂ + q97.5 se(β̂)

)
= 0.95

middle fixed;
endpoints random

The second line is a simple rearrangement of the first, but we must remember
that it is the endpoints that are random, whereas the β in the middle stays
fixed. Thus the 95% CI is:(

β̂ − q97.5 se(β̂) , β̂ + q97.5 se(β̂)
)
, or equivalently, β̂ ± q97.5,df se(β̂) .

25

Confidence interval for the whole line

Recall that the true mean of Y when X = x is:

µ = α + βx = E (Y |X = x) .

This is a function of the parameters α and β. It is estimated by the fitted value:

µ̂ = α̂ + β̂x = Ê (Y |X = x) .

Just as we can create confidence intervals for α and β, we can also create them
for any function of α and β, including for µ = α + βx.

As above, the 95% confidence interval is:

Estimate ± q97.5,df × Standard error ,

so the 95% CI for µ is: µ̂ ± q97.5,df se(µ̂) .

So all we have to do is to figure out how to compute the standard error of µ̂,
given we already know se(α̂) and se(β̂). Although this calculation is not covered
in this course, you might already know from other courses that:

Var(µ̂) = Var(α̂ + β̂x) = Var(α̂) + x2 Var(β̂) + 2 x cov(α̂, β̂) ,

where cov stands for ‘covariance’. The standard error is the square root of the
estimated variance:

se(µ̂) =

√
se(α̂)2 + x2 se(β̂)2 + 2x ĉov(α̂, β̂) , (?)

and all terms are given in the model summary from R, using vcov(myfit).
So we have everything we need to
calculate the confidence interval.

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

5 10 15 20

0
10

20
30

40
50

x

y

95% confidence interval for fitted values

Fortunately, R has a function that
does it for us:

predict(myfit, interval="confidence")

which can be abbreviated to:
predict(myfit, interval="conf")

The interpretation of the confidence interval
remains the same: on 95% of occasions that
we draw a sample and build a CI for µ = E(Y |X = x), the interval will contain
the true µ.

So the CI marked on the figure above reflects our uncertainty about where
the FITTED LINE goes.

26

Prediction intervals

As well as the confidence interval, which describes our uncertainty about where
the fitted line goes, we might be interested in another type of interval, called a
prediction interval.

A prediction interval is an interval in which we expect a data point to lie:
in other words it specifies an interval that is likely to enclose the value of Y for
a particular x. Compare this with the confidence interval which specifies an
interval that is likely to enclose the value of E(Y |X = x), not the raw value of
(Y |X = x).

The prediction interval incorporates both the uncertainty in estimating the
fitted line via α̂ and β̂, and the variability in Y around the fitted line which is
estimated by σ̂. It adds the extra term V̂ar(Y) = σ̂2 under the square root in
eqn (?) overleaf, where σ̂ is extracted by the command summary(myfit)$sigma.

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

5 10 15 20

−
20

0
20

40
60

x

y

Confidence and prediction intervals

Again, there is an R function to extract the prediction interval. Note the use
of the newdata argument. We can ask R for fitted values and confidence or
prediction intervals for any new set of x values, as specified in the newdata

data-frame. For example:

predict(myfit, newdata=data.frame(x=0:21), interval="prediction")

predict(myfit, newdata=data.frame(x=c(5, 10, 15)), interval="prediction")

Compare with: predict(myfit, newdata=data.frame(x=c(5, 10, 15)), interval="conf")

R will deliver predictions outside of the original range of the data x-values if
asked, but it is not a good idea to extrapolate beyond the range of the data.

27

The function below computes the prediction interval for a selected value of
xpred. Run the function using predint.func(). You should find that the
simulated data-value ypred lies in the prediction interval for about 95% of
simulations.

predint.func <- function(alpha=5, beta=2, sigma=3, xpred=5, Nsim=1000, printit=T){

Create a vector of results:

pred.res <- numeric(Nsim)

Let simulation i run from 1 to Nsim:

for(i in 1:Nsim){

Generate the data for this simulation, and fit the linear model:

mydat <- data.frame(x=1:20, y=alpha+beta*(1:20)+rnorm(20, 0, sigma))

myfit <- lm(y~x, mydat)

Generate a new y-value from the true model when x=xpred:

ypred <- alpha + beta*xpred + rnorm(1, 0, sigma)

Extract the 95% prediction interval for ypred:

ypred.itvl <- predict(myfit, newdata=data.frame(x=xpred), interval="prediction")

Find whether the prediction interval encloses the simulated value ypred,

and put the result in entry i of pred.res:

pred.res[i] <- as.numeric(ypred.itvl[,"lwr"]<=ypred & ypred<=ypred.itvl[,"upr"])

Print output for simulation i, if requested via argument "printit":

if(printit)

cat("Prediction interval", format(round(ypred.itvl, 2), nsmall=2),

"contains ypred=",format(round(ypred, 2),nsmall=2),"? ", pred.res[i], "\n")

}

We now have Nsim results stored in vector pred.res.

Find out how many of the prediction intervals contained ypred:

cat("\n", sum(pred.res), "out of", Nsim,

"data sets contained the simulated value of ypred: inclusion rate=",

round(sum(pred.res)/Nsim, 2), "\n")

Finish the function by returning the vector of results:

return(pred.res)

}

1.5 What is the quality of the relationship between X and Y ?

So far we have looked at: (a) evidence of the existence of a relationship between
X and Y , using the p-value; (b) what the estimated relationship is between X
and Y , using the fitted line; (c) quantifying our uncertainty in the fitted line,
using a confidence interval; and (d) specifying an estimated range of values of
Y for a given X, using a prediction interval. These ideas address the first two
of our key questions in Section 1.1.

Here we look at the next question: how can we assess the quality of the
relationship between X and Y ? Another way of phrasing this question is,
how MUCH does X tell us about Y ?

28

Look at the two examples below. Which of these plots describes a stronger
relationship between X and Y ?

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

0 5 10 15 20

0
20

40
60

80
10

0
y

−

−
● ●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 5 10 15 20
0

20
40

60
80

10
0

y

−

−

The left panel shows a stronger relationship.

So perhaps the ‘quality’ or ‘strength’ of relationship has something to do with
the scatter or variance about the fitted line, in other words σ ?

What about the two plots below? They have very different values of σ, as well
as α and β. Should they be assigned the same ‘quality’ measures, or different?

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

0 5 10 15 20

30
40

50
60

y

−

−
α̂ = 24.7 ; β̂ = 2.0 ; σ̂ = 2.9

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

0 5 10 15 20

20
0

25
0

30
0

35
0

40
0

45
0

50
0

y

−

−
α̂ = 198.0 ; β̂ = 14.2 ; σ̂ = 20.4

The strength of relationship looks identical in these cases, even
though their σ̂ values are very different.

We need a relative measure of variance about the line. The parameter σ is
an absolute measure: we need to scale it somehow so that we can compare all
scatterplots on the same scale.

29

Multiple R2, or the percentage of variance explained

We seek a relative measure of variance about the fitted line which assesses the
strength or quality of the relationship between X and Y . An obvious choice is
to compare the variance around the fitted line with the variance in
the null model.

This tells us how useful the predictor X has been in removing the variance or
scatter in Y .

In an ideal world, we would be able to explain Y perfectly without any scatter
at all. The reduction in scatter due to X is a good measure of what we
have achieved by attempting to explain Y using X, relative to what we could
have achieved with no predictor variables.

● ●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 5 10 15 20

0
20

40
60

80
10

0
y

● ●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 5 10 15 20

0
20

40
60

80
10

0
y

Let’s generate some data and fit both the slope model, lm(y~x), and the null
model, lm(y~1). Note that the syntax lm(y~x) is actually an abbreviation for
lm(y~1+x), meaning we fit a linear model with E(Y |X = x) = α× 1 + β × x.

To fit the null model by itself, we clarify the intercept term explicitly using
lm(y~1). This means the null model is: E(Y |X = x) = α× 1, with no slope
term.

mydat <- data.frame(x=runif(100, 0, 20))

mydat$y <- 25 + 2*mydat$x + rnorm(100, 0, 15)

Fit the linear model including the slope term, slope.fit.

slope.fit <- lm(y~x, mydat)

Fit the null model: null.fit, using the notation lm(y~1).

null.fit <- lm(y~1, mydat)

30

The relative amount of scatter still left in the full model, compared with the
null model, is:

scatter remaining =
sum

{
residuals(slope.fit)2

}
sum

{
residuals(null.fit)2

} .

So the relative amount of scatter that has been removed or explained by
including variable X in the model is:

proportion of variance explained = 1 −
sum

{
residuals(slope.fit)2

}
sum

{
residuals(null.fit)2

} .

This idea of variable X explaining a proportion of the variance or scatter in
Y is why we often use the term explanatory variable for X. We call X a
predictor or explanatory variable interchangeably.

Let’s check out the expression above with the model output for model slope.fit:

summary(slope.fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.5453 2.8970 8.127 1.36e-12 ***

x 2.1147 0.2416 8.755 6.07e-14 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 14.56 on 98 degrees of freedom

Multiple R-squared: 0.4389, Adjusted R-squared: 0.4331

F-statistic: 76.64 on 1 and 98 DF, p-value: 6.071e-14

What does the expression above give us for proportion of variance explained?

1 - sum(residuals(slope.fit)^2) / sum(residuals(null.fit)^2)

[1] 0.4388579

This matches the R output for Multiple R-squared. R-squared is also called
the coefficient of determination or the squared correlation coefficient. However,
the best way to think about R2 is the proportion of variance explained.

R2 is the proportion of variance explained by the fitted model, com-
pared with the null model.

(Aside: R2 is called the squared correlation coefficient because it can also be
obtained by cor(mydat$y, fitted(slope.fit))^2 .)

The residual standard error is the estimated σ̂, from summary(slope.fit)$sigma.

The computation R performs for σ̂ is: sqrt(sum(residuals(slope.fit)^2/98)).

The adjusted R2 can be ignored: it just makes a small adjustment for the number of parameters.
Here, we have 98 df in the slope.fit model, and 99 in the null.fit model, so the adjusted
R2 is: 1 - sum(residuals(slope.fit)^2/98) / sum(residuals(null.fit)^2/99).

31

Difference between R2 and the p-value

R2 is interpreted as a measure of the quality of our linear fit, or how effective
X is as a predictor of Y . It measures the proportion of variance in Y that is
removed or explained by X. R2 is always a number between 0 and 1,
and it can be compared for any two scatterplots.

R2 aims to measure the relationship between X and Y in the population at
large. If we increased or reduced our sample size from a population, we would
not expect R2 to change much. (Try generating mydat using 1000 data points
instead of 100, and see if R2 changes much.)

The p-value is a measure of our evidence, in our sample, that a linear
relationship between X and Y exists.

In other words: the p-value measures our evidence against H0 : β = 0 in favour
of H1 : β 6= 0. The p-value is heavily dependent upon sample size — because
it measures the evidence in OUR SAMPLE.

The p-value is also affected by the strength of the relationship, because strong
relationships are easy to detect even in small samples. However it is important
to recognise that the p-value is not primarily measuring a population quantity:
it is measuring evidence in OUR SAMPLE.

Have a guess at the ball-park p-values and R2 values in the scatterplots below.

●
●

●

●●

●
● ●

●

● ●

●

●

●

●●
●

●

●

● ●
●

●●●
●

●

●

●

●
●

●

●

●●
●

●

●●●

●

●

●
●

●

● ●

●

●
●

●

●
● ●●

●

●

●
●

● ●●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●
● ●

●
● ●

●

●

●

●

●
●

0 5 10 15 20

0
10

20
30

40

x

y −
−

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

0 5 10 15 20

0
10

20
30

40

x

y −

−

●

●

●

●

●

0 5 10 15 20

0
10

20
30

40

x

y

−

−

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

0 5 10 15 20

0
10

20
30

40

x

y

−
−

32

1.6 Writing Methods & Assumption Checks and the Executive Summary

Up to now, we have used the notation Yi = α+βxi + εi. When writing up your
results, you should use the alternative notation Yi = β0 + β1xi + εi. The first
notation is simpler, which is why we have used it for introducing the modelling
framework, but the second notation is more extendable, which will be useful
for models we will see soon with more than one predictor variable.

Methods and Assumption Checks

What you write in this section should allow another statistician to repeat your
analysis and get the same results.

1. Say what sort of model you fitted, and why. ‘The data appear to follow a
linear trend, so we fitted a simple linear regression model.’

2. Show you have thought about whether your sample is appropriate for this
model. Are the data independent and representative of the population? If you
have doubts, mention them here. Examples: ‘The dataset is a random sample
of students, so we can assume it is an independent and representative sample.’
‘We are not told how the sample was obtained, so we cannot comment on
whether the data are representative of the intended population.’

3. Mention results from the three assumption plots. If everything is fine: ‘The
residual plot showed patternless residuals with approximately constant scatter,
and there were no concerns about normality or influential points.’
Or just: ‘There were no problems with any of the assumptions.’

If there are doubts about constant scatter, these should be mentioned but might
not be very serious. Similarly if the normcheck plot has short or long tails
but is reasonably symmetric. ‘There was a hint of non-constant scatter in the
residuals, but this was not of great concern.’ Or: ‘Residual scatter had an
increasing appearence, so confidence interval coverage might not be reliable.’
If the residual plot has clear curvature in the central red trend line, a different
model will be needed: see the next chapters.

4. If you removed any data, say what you removed and why. ‘Two data-points
had much larger x-values than the others, so they were removed because we
cannot assume they follow the same pattern as the rest of the data.’ Or: ‘One
data-point with an excessively large y-value was removed as a presumed error.’

5. Give the model formula.
Our model is: Weighti = β0 + β1Heighti + εi, where εi ∼ iid N(0, σ2).

6. Give the percentage of variance explained and comment on its size.

33

Executive Summary

The purpose of the Executive Summary is to describe your findings to a non-
technical audience. You should include the following items, which are closely
linked to the Key Questions we posed at the beginning of this handout.

1. What is the purpose of the analysis? You can reproduce the purpose
given in the question. Your introduction should also indicate the population of
interest, and mention if you excluded any data-points and why.

Example: We aimed to model the relationship between the height and weight of
NZ adults, and assess how useful the model is for prediction.

2. Do we have evidence that a relationship exists? If so, what does the
relationship look like? You can combine the answers to these two key points
concisely in your write-up.

• For evidence of a relationship, look at the p-value for the β1 parameter. If
this is significant, there is evidence of a relationship.

• In the Executive Summary, use plain English to describe the strength of
evidence. You may quote the p-value in brackets if you wish.

• If there is a relationship, describe what it looks like using simple language
like ‘positive’, ‘increasing’, ‘negative’, or ‘decreasing’.

We found evidence of a positive relationship between weight and height (p<0.05).
There was strong evidence of a decreasing relationship between exercise time
and heart rate (p = 0).
There was only weak evidence that yield increased with fertilizer dose (p = 0.07).

3. How can we quantify the relationship numerically? Quantification of
the relationship is based on the principle that for every one unit increase in x,
the estimated increase in the mean of y is β̂1. However, you need to apply this
principle intelligently:

• When you are talking about the best-fit line, you are talking about the
estimated mean or average of y. Ensure your wording makes this clear.

• Quote your answers in terms of confidence intervals rather than point
estimates: use confint(fit) and read off the lower and upper confidence
limits for β1. The basic template for your answer is then something like,
‘We estimate that every unit increase in x is associated with an increase in
the mean y of between CIlow and CIhi units.’

• Use natural language for variables and units: e.g. ‘We estimate that for
every extra hour a person spends exercising each week. . . ’. Do not use
variable names like exerTime or mathematical notation like x and y.

34

• Use appropriate rounding: e.g. quoting a change in the mean heart rate of
4.1 beats per minute is informative, whereas quoting 4.128715 obscures the
key message and looks like you are not thinking about what you write.

• Important! Choosing a 1-unit increase in x is not always appropriate.
Sometimes 1 unit is far too small or far too large. For example, if all your
data fall between x = 0.3 km and x = 0.8 km, then you have no justification
for specifying the result of a 1 km increase in x. Equally, if your data fall
between x = $3 million and x = $8 million, then quoting the results of
a $1 increase in x is meaningless. If the data are input to R in units of
kilometres or dollars, then R will use those same units for reporting β̂1 and
confidence intervals.

To adjust the scale appropriately, first decide how many of the units that
R is using you want to quote for an increase in x: e.g. 0.1 km or $1 million
dollars. Then just multiply the lower and upper confidence limits by this
same amount. If one unit increase in x corresponds to an average increase
of between CIlow and CIhi units in y, then the average increase generated
by a 0.1 unit increase in x is between 0.1 CIlow and 0.1 CIhi units; and by
a 1 million unit increase in x is between 1e6×CIlow and 1e6×CIhi units.

y

x

10 units along

10

y

x

β

1 unit along

 units up

Best fit line

β units up11

Best fit line

4. Predictions. If asked for predictions, check whether the question is asking
about predicting the mean, or predicting the outcome for a subject.

(a) If the question is about the mean, then it should include the word ‘mean’ or
‘average’. Your answer should then be based on confidence intervals for
the mean, and must clearly use the word ‘mean’ or ‘average’. Examples:

— Predict the average weight for a person of height 175 cm. Use:
predict(fit, newdata=data.frame(height=c(175)), interval="conf")

‘We estimate that the average weight for people of height 175 cm is between. . . ’

— Find the average heart rate for a person who does 5 hours exercise per week, and
say if your estimate is consistent with the value of 72 beats per minute. Use:
predict(fit, newdata=data.frame(exerTime=c(5)), interval="conf")

and see if the confidence interval contains the value 72.

35

(b) More commonly, the question is about generating a prediction for a subject.
In this case, it will not mention the word ‘mean’ or ‘average’. Your answer
should then be based on prediction intervals, and your wording should
indicate individual subjects rather than population means. Examples:

— Predict the weight of a person of height 175 cm. Use:
predict(fit,newdata=data.frame(height=175), interval="prediction")

‘We estimate that a typical person of height 175 cm will weigh between
. . . and . . . kg.’

— What heart rate do you predict for a person who does 5 hours exercise per week?
Use:
predict(fit,newdata=data.frame(exerTime=5), interval="prediction")

5. Is the model useful for prediction? You should only mention this in the
Executive Summary if prediction is an explicit aim of the analysis. There are
two ways you can comment about usefulness.

(a) Percentage of variance explained. Quote R2 as a percentage to the
nearest whole number, and describe it as ‘percentage of variance explained’.
Do not use the notation R2 in the Executive Summary. Comment on the
size of R2 in terms of usefulness. Examples:

The model explained 82% of the variability in heart rate, so it is reasonably
useful for prediction.

The model explained only 46% of the variability in weight, so we cannot
expect predictions to be very precise relative to the overall range of the data.

The model explained only 32% of the variability in outcome, so although we
found evidence of a trend, the usefulness for prediction purposes is limited.

The model explained only 16% of the variability in the data, so it is not
very useful for prediction.

(b) Width of the prediction interval, relative to the overall range of y.
If the prediction interval has a width of 10 units of y, is this useful or not?
The answer depends upon the original range of y in the data.

If the original range of y was 100 units, then a prediction interval of width
10 units has narrowed it down to 10% of the original, so we have made
an important gain. If the original range of y was 12 units, we have barely
made any gain by narrowing it down to 10 units.

Use wording like: ‘The prediction interval for heart rate spans a range
of 10 beats/minute, which is a quarter of the original data range of 40
beats/minute. The prediction is therefore quite useful.’

36

Handout 2: Linear Model Variations

Chapters 1 and 2: introduction to the simple linear model

Yi = β0 + β1xi + εi, where εi ∼ iid Normal(0, σ2).

Fit with lm(y~x) or lm(y~1+x). To deliberately omit the intercept, lm(y~x-1).

summary(fit) gives p-values for t-tests of H0 : β0 = 0 (intercept is zero), and
H0 : β1 = 0 (slope is zero: this is the test of no relationship between X and Y).

To describe the fitted model, use a plain language equivalent of ‘the fitted value
increases by β̂1 units for every x = 1 unit increase.’ Use an appropriate x-unit
increase for the context, e.g. not x = 1 if the x-axis spans a range of millions.

Chapter 3: null model, also useful as a one-sample t-test

Yi = β0 + εi, where εi ∼ iid Normal(0, σ2).

Fit: lm(y~1). Use as null model for baseline comparisons, or for paired t-test.

The estimate β̂0 is the sample mean: β̂0 = y = mean(y).

The estimate σ̂ is the sample standard deviation: σ̂ = sd(y)=sqrt(var(y)).

To do a t-test by hand of H0 : β0 = µ0 vs H1 : β0 6= µ0:

Test statistic =
Estimate− Hypothesized value

Standard error of estimate
=

mean(y)− µ0
sd(y)/sqrt(n)

.

summary(fit) gives the p-value for the t-test of H0 : β0 = 0: same as the test
above but for µ0 = 0 only. This is most useful for a paired t-test, where each
observation yi is the difference between two items in a pair. For example:

• yi is the difference between a husband’s age and a wife’s age, when testing H0

that the average age difference within a married couple is zero;

• yi is the difference between birthweights of a first-born sibling and a second-born
sibling, when testing H0 that birth order has no effect on birthweight.

Chapter 4: quadratic model

Yi = β0 + β1xi + β2x
2
i + εi, where εi ∼ iid Normal(0, σ2).

Fit: lm(y ~ x + I(x^2)). Enables a curved quadratic-shaped fitted line.

summary(fit) gives test of H0 : β2 = 0 as well as the other coefficients. Use
the β2 test to decide if the quadratic term is needed.

To describe the fitted model, say what shape the curve is, e.g. ‘always increasing,
curving upwards’, or ‘decreases to a minimum at x = . . . and then increases’.

To plot the fitted line over the data (replacing xvals by values, e.g. (1:20)):

plot(y~x, dat)

pred <- predict(fit, data.frame(x=xvals), interval="conf")

lines(xvals, pred[,"fit"], col="red")

1

Chapter 5: simple linear model when X is a two-level categorical variable

Suppose the predictor variable X is a categorical (label) variable, taking two
levels: e.g. Yes and No. For example, X might represent whether a subject
is a NZ Citizen or not.

Because we can’t use words like ‘Yes’ and ‘No’ in equations, we introduce what
we call a dummy variable that converts the different word-responses into the
numbers 1 and 0. In the Citizen case, the dummy variable is

Citizen i =

{
1 if subject i answers Yes,
0 if subject i answers No.

The model is:

Yi = β0 + β1 Citizen i + εi, where εi ∼ iid Normal(0, σ2).

This has the following effect:

When subject i answers Yes: Yi = β0 + β1 + εi

When subject i answers No: Yi = β0 + εi.

Thus this model only specifies two different intercepts: one for the Yes
group, and one for the No group.

The parameter β1 specifies the difference between the Yes and the No
group means.

This gives us an easy way of doing a two-sample t-test: in other words, a t-test
when there are two independent samples (the Yes group and the No group).
We can use summary(fit) to test H0 : β1 = 0. If β1 really is zero, it means
there is no evidence of a difference between the two groups.

To fit a model with a categorical (label) predictor:

• If variable X is coded in the dataframe as character labels (e.g. Yes and No),
R will automatically understand how it should be treated. You can then fit the
model using lm(y~x) as usual. In the Citizen case, lm(y ~ Citizen).

• Sometimes, variable X might be coded as numeric labels (e.g. 1 and 0). R
will treat this as a numeric variable by default, which isn’t what you want. To
force R to treat the variable as a label variable, use as.factor(x) in the model
formula: lm(y ~ as.factor(x)). For example, lm(y ~ as.factor(Citizen)).

The term factor is an alternative name for a categorical variable.

2

Demonstration of the two-level factor model

mydat <- data.frame(x=c(rep("Yes", 15), rep("No", 15)))

mydat$y <- 5 + 2*as.numeric(mydat$x=="Yes") + rnorm(30, 0, 3)

mydat

x y

1 Yes 4.114200

2 Yes 6.122423

3 Yes 7.776365

: : :

16 No 4.077031

17 No 2.140948

18 No 3.055272

plot(y~x, mydat)
No Yes

0
2

4
6

8
10

x

y

The plot automatically comes out as a boxplot. You can see that it does indeed
look like a two-sample t-test.

Fit the linear model:

myfit <- lm(y~x, mydat)

summary(myfit)

Call:

lm(formula = y ~ x, data = mydat)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.1725 0.6380 6.54 4.33e-07 ***

xYes 2.2557 0.9022 2.50 0.0185 *

Residual standard error: 2.471 on 28 degrees of freedom

Multiple R-squared: 0.1825, Adjusted R-squared: 0.1533

F-statistic: 6.25 on 1 and 28 DF, p-value: 0.01855

4.5 5.0 5.5 6.0 6.5

−
4

−
2

0
2

4

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

lm(y ~ x)

Residuals vs Fitted

19 1027

You can do all the usual model checks
(normcheck(myfit)) and residual plots:

plot(myfit, which=1)

3

Writing the model formula for a categorical model:

Use notation like this: Income i = β0 + β1 Citizen i + εi, where Citizen i takes
the value 1 if person i is a Citizen and 0 if not, and εi ∼ iid Normal(0, σ2).

Changing the baseline group

R orders the factor categories in alphabetical order, so the alphabetically-first
level will be chosen as the baseline, which is given group mean equal to β0.
Here, the baseline is the ‘No’ category. You can change this behaviour using
the R command relevel(x, ref="Yes"). Let’s see what happens.
mydat2 <- data.frame(x=mydat$x, xnew=relevel(mydat$x, ref="Yes"), y=mydat$y)

mydat2

x xnew y

1 Yes Yes 4.114200

2 Yes Yes 6.122423

: : :

summary(mydat2$x) summary(mydat2$xnew)

No Yes Yes No

15 15 15 15

summary(lm(y ~ xnew, mydat2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.4282 0.6380 10.08 8.15e-11 ***

xnewNo -2.2557 0.9022 -2.50 0.0185 *

Multiple R-squared: 0.1825, Adjusted R-squared: 0.1533

summary(lm(y ~ x, mydat2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.1725 0.6380 6.54 4.33e-07 ***

xYes 2.2557 0.9022 2.50 0.0185 *

Multiple R-squared: 0.1825, Adjusted R-squared: 0.1533

You can also turn off the intercept altogether, using lm(y~x-1). However,
this will render R2 meaningless. Why? Because it reports %variance
explained compared with the variance in the zero-intercept model!
(We don’t expect that either group has mean zero, so the zero-intercept model is not of interest.)

summary(lm(y ~ x-1, mydat2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

xNo 4.173 0.638 6.54 4.33e-07 ***

xYes 6.428 0.638 10.08 8.15e-11 ***

Multiple R-squared: 0.8375, Adjusted R-squared: 0.8259

4

Chapter 6: log-transformed responses, y

If the response Y shows increasing scatter at higher values, it can sometimes
be appropriate to use a log-transformation:

log(Yi) = β0 + β1xi + εi, where εi ∼ iid Normal(0, σ2).

Similarly, you can use any of the other models we’ve seen, such as
log(Yi) = β0 + εi, or log(Yi) = β0 + β1xi + β2x

2
i + εi, etc.

Fit with lm(log(y)~x), or lm(log(y)~x+I(x^2)), etc.

The figures show typical data patterns that indicate a log-transformation may
be appropriate. Note there is both curvature and increasing scatter.

●

●●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●●

●

● ●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●●●
●

●

●

●

●● ●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●●

●

●
●

●●

0 5 10 15 20

0
20

00
40

00
60

00
80

00

y against x

x

y

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20

5
6

7
8

9

log(y) against x

x

lo
g(

y)

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Shapiro−Wilk normality test
W = 0.8456
P−value = 0

Residuals from lm(y ~ x)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●
● ●●

●●

●
●

●

●

●
●

●
●

●

●

●

● ●
●

●●

●

●

●●
●

● ●
●

●● ●

●

●

●

●

●

●●●

●

●● ●

●

●●

●

● ●●

●
● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

0 5 10 15 20

0
20

00
60

00
10

00
0

Quadratic fit

x

y

0 2000 4000 6000

−
20

00
0

20
00

40
00

Fitted values

R
es

id
ua

ls

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●●

●

●

●

●
●
●

●

●

●
●

●

●

●●

●

●

●

● ●
●
●

●●
●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●●●
●

●

●
●

●●●

●

●

●
●

●

●●

●

●●

●
●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

● ●

● ●
●●

●

●
●

●

●

●

●

●

Residuals vs Fitted

9
125
151

What if we try to model the
curvature using a quadratic
model?

myfit <- lm(y ~ x + I(x^2), mydat)

plot(y~x, mydat)

lines(0:20,

predict(myfit, data.frame(x=0:20)))

plot(myfit, which=1)

The residual plot is awful!

5

The example below has a decreasing trend, but the same problem of more
scatter at higher y.

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●
●

●
●● ●

●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

● ●●

●

●

●

●●●

●

●

●

●
●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

0 5 10 15 20

0
10

00
0

20
00

0
30

00
0

40
00

0

y against x

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20

6
7

8
9

10

log(y) against x

x

lo
g(

y)

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●●

●

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Shapiro−Wilk normality test
W = 0.8626
P−value = 0

Residuals from lm(y ~ x)

What you need to know about logs:

• If y = ez, then z = log(y).

• elog y = y, and log (ez) = z.

• log(ab) = log(a) + log(b).

• ea+b = ea eb.

• log (ya) = a log y. So: exp(a log y) = ya.

Important: back-transforming mean{log(Y)} DOES NOT give mean(Y)

When we model log(Y) in a linear model, we estimate the mean of log(Y).

We can exponentiate this, but we will NOT get back the mean of Y.

The problem is that e(mean log Y) does NOT equal mean(elog Y).

Instead, to convert back to the Y -scale, we must focus on the median of Y .

6

Using the median instead of the mean

Try these commands:

> y <- runif(100, 0, 1) ## 100 random numbers between 0 and 1

> mean(y)

[1] 0.5030

> exp(mean(log(y)))

[1] 0.3698 ## exp(mean of log y) is very different from mean(y)

> median(y)

[1] 0.5086

> exp(median(log(y)))

[1] 0.5086 ## exp(median of log y) is the same as median(y)

When we fit the model log(Yi) = β0 + β1xi + εi, where εi ∼ iid Normal(0, σ2),
we make the assumption that log(Y) is Normal.

For the Normal distribution, the median equals the mean. So when we talk
about the mean in a simple linear model, we are simultaneously talking about
the median.

The point here is that if we back-transform a fitted value (i.e. a mean) for
log(Y) by exponentiating, we will not get back the mean of Y . But, if we
back-transform the median of log(Y), we will get back the median of Y .

And, since the mean of log(Y) is the same as the median, due to our Normal
assumption for log(Y), we can back-transform any fitted value for log(Y) as
long as we DESCRIBE it as the fitted MEDIAN for Y .

• You need to know that when we fit a simple linear model to log-transformed
responses (log Y), then we only talk about the MEDIAN of Y after
back-transforming. We don’t talk about the MEAN of Y .

Multiplicative model

If log(Yi) = β0 + β1xi + εi, then Yi = exp(β0) exp(β1xi) exp(εi).

The same multiplicative effect applies to the fitted medians. The fitted value
on the log scale can be described as either the mean or the median:

µ̂i = median {log(Yi)} = β̂0 + β̂1xi.

On the Y -scale, the back-transformed value can only be called the median:

median(Yi) = exp(β̂0) exp(β̂1xi).

On the Y -scale, terms multiply rather than add.

7

Quantifying the model in the Executive Summary

When we fit a simple linear model, we quantify it in the Executive Summary
using wording like,

‘We estimate that every unit increase in x is associated with an
increase in the mean Y of between CIlow and CIhi units.’

Here, CIlow and CIhi are the lower and upper confidence limits for β1 obtained
from confint(fit).

When we use a log-transformation for Y , we use a similar formulation, except:

1. we need to back-transform CIlow and CIhi by exponentiation;

2. we should use the word MEDIAN instead of mean;

3. terms MULTIPLY rather than add.

Your summary should therefore follow a template like this:

‘We estimate that for every unit increase in x, we MULTIPLY the
MEDIAN of Y by between exp(CIlow) and exp(CIhi) units.’

exp(β1)

y

x

log(y)

x

β units up

Best fit line

1

1 unit along

1 unit along

Back−transformed line

units

Multiply by

This works because a 1-unit increase in x takes the estimated median of Y from

exp(β̂0) exp
{
β̂1x
}

to exp(β̂0) exp
{
β̂1(x+ 1)

}
= exp(β̂0) exp

{
β̂1x
}

exp(β̂1),

so we have multiplied our original value by exp(β̂1).

Why is this useful? Because the SAME expression holds for ALL x.

We could also describe the increase in the median of Y for other increases in x:

• We estimate that for every 10 units increase in x, we multiply the median
of Y by between exp(10 ∗ CIlow) and exp(10 ∗ CIhi) units.

• We estimate that for every 0.1 units increase in x, we multiply the median
of Y by between exp(0.1*CIlow) and exp(0.1*CIhi) units.

To describe the fitted model, we first extract the confidence interval for β1 using
confint(fit)[2,], and then back-transform it using exp(confint(fit)[2,]).

8

Percentage growth and Percentage change

We have seen that every 1-unit increase in x corresponds to MULTIPLYING
the MEDIAN of Y by eβ̂1.

We could also express this as a percentage growth or a percentage change.
For example:

• If each unit increase in x multiplies the median of Y by 1.2, the final value
is 120% of the original value.

The percentage change is a 20% increase.

The result has been increased TO 120% of its previous value, but it has
been increased BY 20%.

• If each unit increase in x multiplies the median of Y by 0.3, the final value
is 30% of the original value.

The percentage change is a 70% decrease.

The result has been decreased TO 30% of its previous value, but it has
decreased BY 70%.

In general:

• To convert a multiplier exp(β̂1) into a percentage, just multiply by 100.

Then write that each unit increase in x increases the median of Y TO the
specified percentage of its original value.

For example: ‘Every unit increase in x increases the median of Y TO 120%
of its previous value.’

• To convert a multiplier exp(β̂1) into a percentage change, subtract 1
and then multiply by 100.

Or equivalently, multiply by 100 and then subtract 100.

Then write that each unit increase in x changes the median of Y BY the
specified percentage of its original value.

For example: ‘Every unit increase in x increases the median of Y BY 20%.’

If the change is a decrease rather than an increase, the percentage change
will be negative. In that case you could also discard the negative sign and
describe it as a percentage decrease. For example, if exp(β̂1) = 0.3, then:

– the percentage change is 100× (0.3− 1) = 100× (−0.7) = −70%,

– the percentage decrease is 70%.

9

In practice, you will do these calculations using confidence intervals.

• Convert multiplier to a percentage and use the word TO:

100 * exp(confint(fit)[2,]).

• Convert multiplier to a percentage change and use the word BY:

100 * (exp(confint(fit)[2,]) - 1).

If you are scaling the units of x, e.g. to report percentage change for every 5
units increase in x, where should you put the multiplier 5?

Directly before the ‘confint’. We scale the confidence interval on
the linear scale, and then back-transform it.

So the percentage change in the median of Y for every 5 units increase in x
is:

100 * (exp(5*confint(fit)[2,]) - 1).

It is very important to have all the brackets and terms in the right places.

Examples

Fill in the numbers to make these statements equivalent.

1. Every unit increase in x is associated with a multiplicative increase in the
median of Y :
a) of between 1.5 and 1.8 units;

b) TO between 150% and 180% of its previous value;

c) BY between 50% and 80%.

2. Every 10-unit increase in x has the following effect on the median of Y :
a) multiplied by between 3 and 4 units;

b) increased TO between 300% and 400% of its previous value;

c) increased BY between 200% and 300%.

3. Every unit increase in x has the following effect on the median of Y :
a) multiplied by between 0.1 and 0.2 units;

b) decreased TO between 10% and 20% of its previous value;

c) decreased BY between 80% and 90%.

4. Every 100-unit increase in x has the following effect on the median of Y :
a) decreased by between 60% and 70%.

b) decreased to between 30% and 40% of its previous value;

c) multiplied by between 0.3 and 0.4 units.

10

Back-transforming confidence and prediction intervals for fitted values

As before, you can create confidence and prediction intervals for individual fitted
values on the log scale using predict(fit, newdata, interval="conf")

and predict(fit, newdata, interval="prediction").

You need to back-transform these intervals by exponentiation to report them
on the Y -scale.

• For confidence intervals, exponentiate and then report as the MEDIAN.

‘With 95% confidence, we estimate that the median house price in a suburb
located 20km from the city centre lies between $800,000 and $900,000.’

• For prediction intervals, exponentiate. There is no change in interpre-
tation from the simple linear model.

‘With 95% confidence, we estimate that the price of an individual house in
a suburb located 20km from the city centre will be between $600,000 and
$1,200,000.’

To obtain these intervals, exponentiate the usual intervals as follows:

exp(predict(fit, data.frame(x=20), interval="conf"))

exp(predict(fit, data.frame(x=20), interval="prediction"))

Example

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●
●

●

●

●

●

●

0 5 10 15 20

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

x

y

Generate simulated data where log(Y)

follows the simple linear model:

mydat <- data.frame(x=runif(100, 0, 20))

mydat$log.y <- 5+0.2*mydat$x+rnorm(20,0,0.3)

mydat$y <- exp(mydat$log.y)

head(mydat)

x log.y y

19.6 8.5 4773

13.0 6.7 823

16.1 7.8 2493

: : :

Fit the simple linear model to LOG Y:

fit.log <- lm(log.y~x, mydat)

Backtransform for confidence intervals and prediction intervals ON THE Y-SCALE:

conf.res <- exp(predict(fit.log, data.frame(x=0:20), interval="conf"))

pred.res <- exp(predict(fit.log, data.frame(x=0:20), interval="prediction"))

Extract the CIs using conf.res[,"lwr"], conf.res[,"upr"], etc.

The confidence intervals are for the median of Y . The prediction intervals are
intervals in which we expect about 95% of Y data-points to fall.

11

Chapter 7: log-log models (both x and y are log-transformed)

In some models, we log-transform not only Y , but also X. We call these log-log
models or power-law models. The model structure is:

log(Yi) = β0 + β1 log(xi) + εi, where εi ∼ iid Normal(0, σ2).

This model is similar to the previous model, except now the predictor, X, is
log-transformed, as well as the response, Y .

If we exponentiate both sides, we get:

median(Yi) = exp (β0)× exp {β1 log(xi)}

= eβ0 × xβ1i
= κxβ1i ,

where we use the notation κ = eβ0 for convenience.

Our model therefore says that the median or central value of Y is some unknown
power of x:

median(Yi) = κxβ1i .

This is why we call the model a power-law model. The aim is to estimate
the power, β1: e.g. does Y increase as X3, or X2.5, or . . . ?

Describing the log-log model in the Executive Summary

When we describe the log-log model in the Executive Summary, we need to use
multiplicative changes in BOTH x AND Y .

β1

y

x

log(y)

log(x)

β units up

Best fit line

1

Multiply x by 2

1 unit along

Back−transformed line

Multiply y by 2

What you need to remember is:

• Every time we multiply x by M , we multiply the median of Y by M β̂1.

For example, if we double x:

(new median of Y) = κ (2x)β̂1 = 2β̂1
(
κxβ̂1

)
= 2β̂1 × (old median of Y) .

12

When should we use a log-log model?

There are two main reasons for using a log-log or power-law model:

1. We have external knowledge that the relationship is a power-law, e.g. due to
the laws of physics or geometry.

2. We want to be able to express both variables multiplicatively or in terms of
percentage changes. For example:

— We estimate that every time we double the value of the predictor, x, we
multiply the median of Y by between 3 and 5.

— We estimate that every time we increase the predictor x by 10%, we increase
the median of Y by between 25% and 30%.

Use the same rules as for Chapter 6:

• To convert a multiplier M β̂1 into a percentage, just multiply by 100.

Then write that every time we multiply x by M , we increase the median of Y
TO the specified percentage of its original value.

For example: ‘Every time we double x, we increase the median of Y TO between
120% and 130% of its previous value.’

Because the multiplier is M = 2, use 100 * 2^confint(fit)[2,].

• To convert a multiplier M β̂1 into a percentage change, subtract 1 and then
multiply by 100. (Or equivalently, multiply by 100 and then subtract 100.)

At the same time, convert the multiplier itself into a percentage change in x,
by subtracting 1 and multiplying by 100. Multiplying x by M is equivalent to
increasing x by 100 (M − 1)%.

Then write that every time we increase x by 100(M − 1)%, we change the

median of Y BY 100
(
M β̂1 − 1

)
%.

For example: ‘Every 10% increase in x changes the median of Y BY between
20% and 30%.’

What is the value of M in this case? For a 10% increase in x, we need
M = 1.10.

Because the multiplier isM = 1.10, use 100*(1.10^confint(fit)[2,] - 1).

Note: if the percentage change in x is very small, e.g. 1%, then the calcu-
lation for percentage change, 100*(1.01^confint-1), is approximately equal
to confint, so using confint suffices. However, it’s complicated to remember
this exception, so it’s better just to remember the general rules above.

13

Chapter 6 summary

Try log-transforming Y if the residual plot, plot(lm.fit, which=1), shows
increasing and right-skewed scatter. Conduct the usual normcheck plots
to check the suitability of the log-transformation.

log(Yi) = β0 + β1xi + εi, where εi ∼ iid Normal(0, σ2), or alternative model.

Fit with lm(log(y)~x), or lm(log(y)~x+I(x^2)), etc.

Back-transform confidence and prediction intervals to the Y scale using exp.
Make sure you only talk about the median of Y , where you usually talk about
the mean. For fitted medians, and their confidence and prediction intervals, use
exp(fitted(fit)), exp(predict(fit, newdata, interval="conf")), and
exp(predict(fit, newdata, interval="prediction")).

To describe the model in the Executive Summary, if using the straight-line
model log(Yi) = β0 + β1xi + εi, we estimate each unit additive increase in x:

— multiplies the median of Y by exp(β̂1) units;

— changes the median of Y TO 100 exp(β̂1)% of its current value;

— changes the median of Y BY 100
{

exp(β̂1)− 1
}

%.

In practice, report these numbers using confidence intervals:

— multiplies by exp(confint(fit)[2,]) units;

— changes median of Y to 100*exp(confint(fit)[2,])% of current value;

— changes median of Y by 100*(exp(confint(fit)[2,]) - 1)%.

Chapter 7 summary

log(Yi) = β0 + β1 log(xi) + εi, where εi ∼ iid Normal(0, σ2).

Fit with lm(log(y)~log(x)).

The equivalent power-law description is: median(Yi) = κxβ1i , where κ = eβ0.

For fitted values, back-transform using exp, and refer to the MEDIAN of Y .
To obtain the fitted medians, and their confidence and prediction intervals, use
exp(fitted(fit)), exp(predict(fit, newdata, interval="conf")), and
exp(predict(fit, newdata, interval="prediction")).

To describe the model in the Exec Summary, use multiplicative or percentage
changes in BOTH x and Y . For example, using M = 1.50 for a 50% increase
in x: We estimate that for every 50% increase in x, the percentage change in
the median of Y is between 100*(1.50^confint(fit)[2,] - 1)%.

14

Stats 20x Handout 3: Multiple predictors

Chapter 8: different fitted lines for two different groups

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

5 10 15 20

0

10

20

30

40

50

y

x No Yes

0
2

4
6

8
10

x

y

We have seen models where Y is a response to a numeric variable, X (Chapters
1-2), and where Y has two different means for two different groups (Chapter 5).

Here, we combine these two models. Suppose we have data that include both
a categorical group variable with levels A and B, and a numeric variable, X:

gp x y

A 0.2 19.57

A 1.5 15.38

A 2.0 24.17

: : :

B 0.1 1.97

B 1.7 8.95

: : :

We might wish to fit a different straight line for each group:

For Group A: Yi = α1 + β1xi + εi where εi ∼ iid Normal(0, σ2) ,

For Group B: Yi = α2 + β2xi + εi where εi ∼ iid Normal(0, σ2) .

●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●

●●

●
●

●

●

●

●

0 5 10 15 20

0

20

40

60

80

100

y

x

Group A

Group B

1

Why would we want to fit two different lines?

y

x

Graduates

Non−Grads

• X is Age (21-65), Y is income after debts ($).
We want to compare how net income differs
for university graduates and non-graduates.
Studying at university creates a temporary loss of

income. By what age is this neutralized, and how much

advantage does it bring in the long term?

— Many similar examples where an initial investment creates a temporary setback,

but a faster rate of return in the long run.

y

x

Auckland

Wellington

• House prices in Auckland and Wellington.
X is year, Y is house sale price. We might
suspect prices are more expensive in Auckland,
but are they also increasing at a higher rate?
— Many similar examples where X is year, and we want to

test growth under two conditions. For example, Y is kiwi

population size under two different predator control regimes.

Our interest in fitting these models is to investigate:

1. the relationship between X and Y in each group;

2. whether this relationship DIFFERS between the two groups.

Similar to the set-up for Chapter 5 (categorical variables), the default way that
R handles this type of model is:

• Fit an intercept, α1, and a slope, β1, for the baseline group.
(Unless requested otherwise, the baseline group is decided alphabetically.)

• Fit a top-up intercept parameter, αextra, for the second group. The final
intercept for the second group is α2 = α1 +αextra. We can test if αextra = 0.

• Also fit a top-up slope parameter, βextra, so the second group has slope
β2 = β1 + βextra. We can test if βextra = 0.
(If βextra 6= 0, this might force the intercepts apart, so the previous test is of less interest.)

Writing the model formula in the Methods and Assumptions section

When writing the model formula, use notation β0, β1, β2, . . . for parameters, and
define dummy variables for categorical predictors as in Ch 5 (Handout 2).
For the house price example, Auckland will automatically be baseline, so define
dummy variable Wellington which takes value 1 if house i is in Wellington and
0 otherwise. To give Wellington both a top-up intercept and a top-up slope:

Pricei = β0 + β1 × Yeari + β2 × Wellingtoni + β3 × Yeari × Wellingtoni + εi
where εi ∼ iid N(0, σ2).

2

Interaction terms

When a model includes a different slope for each group, this is called an
interaction effect.

• Y is related to X through a sloping relationship. We could say that X
acts on Y : a change in X brings about a change in the mean of Y .

• The ‘Group’ variable also changes the mean of Y : it shifts the mean up
or down depending on which group the subject is in. We can say that the
Group variable also acts on Y to change its mean.

• When the slope of the line also depends upon Group, then we say that the
two predictors interact in their effect on Y .

The X variable acts on Y via a slope, while the Group variable acts on Y by
generating different intercepts. An interaction between X and Group means
that each group has a different slope as well as a different intercept.

An interaction between a numeric variable and a factor means that
we fit a different slope for every different group in the factor.

Different ways for X and Group to act on Y

y

x

Groups A and B

y ~ x
y

x

Group A

Group B

y ~ group

y

x

Group A

Group B

y ~ x + group
y

x

Group A

Group B

y ~ x + group + x:group

3

Fitting the interaction model

We build up the model term by term, and also interpret the output in the same
way. First generate some data such that there are two groups, A and B, with
two different straight-line relationships between X and Y .

Group A: Y = 15 + 2*x + Normal(0, sigma=4)

datA <- data.frame(group=rep("A", 30), x=runif(30, 0, 20))

datA$y <- 15 + 2*datA$x + rnorm(30, 0, 4)

Group B: Y = 2 + 5*x + Normal(0, sigma=4)

datB <- data.frame(group=rep("B", 30), x=runif(30, 0, 20))

datB$y <- 2 + 5*datB$x + rnorm(30, 0, 4)

Join datA and datB using row-bind (rbind) to make a single data frame, mydat:

mydat <- rbind(datA, datB)

group x y

A 0.2 19.57

A 1.5 15.38

: : :

B 0.1 1.97

B 1.7 8.95

: : :

Fit the interaction model:

myfit <- lm(y ~ x + group + x:group, data=mydat)

summary(myfit)

Call:

lm(formula = y ~ x + group + x:group, data = mydat)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.0795 1.5405 9.789 9.85e-14 ***

x 1.9809 0.1178 16.816 < 2e-16 ***

groupB -13.6050 2.1457 -6.340 4.22e-08 ***

x:groupB 2.9994 0.1651 18.162 < 2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 3.645 on 56 degrees of freedom

Multiple R-squared: 0.979,Adjusted R-squared: 0.9779

F-statistic: 870.7 on 3 and 56 DF, p-value: < 2.2e-16

By default, R has taken the baseline group to be Group A. The fitted line
for the baseline group is: Group A: ŷ = 15.1 + 1.98x: very close to the true
relationship of E(Y |x) = 15 + 2x.

The intercept for Group B is the baseline intercept minus 13.6, and the slope
for Group B is the baseline slope plus 3.0 (or 2.9994). So the fitted line for
Group B is: Group B: ŷ = (15.1− 13.6) + (1.98 + 3.0)x, i.e. ŷ = 1.5 + 5.0x.
Again this is close to the true relationship of E(Y |x) = 2 + 5x.

4

Testing for an interaction

In general, we fit the interaction model using the shorthand lm(y ~ x * group).

The notations lm(y ∼ x + group + x:group), and lm(y ∼ x ∗ group),
mean the same thing.

The way that R sets up the fit, as a baseline intercept and slope, plus contrast
intercepts and slopes for the other group levels, enables us to test whether these
contrasts are significant in the model. The most important of these tests is the
test for different slopes.

If the test H0 : βextra = 0 is non-significant, then our sample data do not
support the need for two different slopes.

Thus, if we see no ∗’s in the R output for the x:groupB row, we have no evidence
against H0. In this case, we should generally drop the interaction term
and retreat to the simpler model y ∼ x + group. (Refit this model.)

This simpler model is called a ‘main effects only’ model.

By contrast, if we do see ∗’s in the R output for x:groupB, then we do have
evidence against H0 and we should retain the interaction effect.
In this case, we have evidence that βextra 6= 0, so group B has a different slope
from group A.

If the interaction term is significant, we usually retain all its terms — in other
words we keep all three terms x + group + x:group, even if the row for x or
group is not marked as significant. This means that we can always interpret
the parameters in terms of baseline group plus top-ups or contrasts. While you
could try omitting the main effect terms, this would be unusual unless you had a
good reason to do so. For example, if there was some physical reason why both
groups must have the same intercept, you could fit the model x + x:group,
which would give each group a different slope but the same intercept. However,
as a strong guideline, look only at the ouput for the interaction row. If
it is significant, keep the whole interaction term, x * group.

Notes: 1. The model with an interaction between a numeric and a categorical
variable is also called an ANCOVA model. ANCOVA stands for ‘Analysis
of Covariance’, but it is probably less confusing to think of it as ‘analysis of
covariables’, because of the interaction between the two variables X and Group.

2. The R command model.matrix(myfit) can be useful to see exactly what
terms R is adding together to get the fitted value for every observation.

5

Chapter 9: ANOVA for factors with more than two levels

When a categorical variable contains more than two groups, we can no
longer rely on the t-tests we get from the summary(lm.fit) output to assess
the significance of the factor. Instead, we need to use the anova command.

There are two reasons we can no longer use the summary(lm.fit) output alone.

1. The summary(lm.fit) output only compares all groups against the single
baseline group. It is possible that there is no significant difference between
Groups A and B, and between Groups A and C, but there might be a significant
difference between Groups B and C. If this is the case, we will not notice it if
we only look at summary(lm.fit).

Note: we can use the relevel command to change the baseline group to B or
C, and refit the model to see the summary with the new baseline. This is also
called ‘rotating the factor’. However, this will be very cumbersome for more
than 3 groups, and doesn’t solve the second problem below.

●

A B C

2

4

6

8

10Example:

Create a categorical variable with

three different levels, A, B, and C:

mydat <- data.frame(group=c(rep("A", 20),

rep("B", 20), rep("C", 20)))

Generate three different means for

mydat$y in the three groups:

mydat$y <- c(5+rnorm(20, 0, 2),

4+rnorm(20, 0, 2),

6+rnorm(20, 0, 2))

plot(y~group, mydat) ## Plots the boxplot above

myfit <- lm(y~group, mydat) ## Fits the linear model with "group" as a factor

summary(myfit) ## Using this, it appears nothing is significant:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.2157 0.4339 12.020 <2e-16 ***

groupB -1.0308 0.6137 -1.680 0.0985 .

groupC 0.7479 0.6137 1.219 0.2280

We can use ‘relevel’ to rotate the Group factor:

we now see that groups B and C differ significantly, but this is cumbersome.

summary(lm(y~relevel(group, ref="B"), mydat))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.1850 0.4339 9.644 1.39e-13 ***

relevel(group, ref = "B")A 1.0308 0.6137 1.680 0.09850 .

relevel(group, ref = "B")C 1.7786 0.6137 2.898 0.00532 **

6

Using anova, we only need one command to show the group factor is significant:

anova(myfit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

group 2 31.902 15.9510 4.2355 0.01928 *

Residuals 57 214.666 3.7661

2. The second reason why we do not use summary(lm.fit) to test for inclusion
of the whole factor is the problem of multiple testing. If we use 5% as our
threshold of statistical significance, then we have a 5% chance of generating a
‘false positive’ or Type I error for every hypothesis test we conduct. This false
positive rate expands rapidly if we conduct multiple tests. For example, if we
conduct 5 tests in which H0 is true, the probability that at least one test
will generate a false positive (falsely significant result) is 1− (1− 0.05)5 = 0.23.
This is way higher than our ideal of 0.05 for the false positive rate.

If we fit a factor with k levels, this will generate k − 1 pairwise t-tests against
the baseline reference group in the summary(lm.fit) output. We then have an
unacceptably high false positive rate.

●

A B C D E F
0

2

4

6

8

10

Example:

Create a categorical variable with

six different levels, A, B, C, D, E, F:

mydat <- data.frame(group=c(rep("A", 20),

rep("B", 20), rep("C", 20),

rep("D", 20), rep("E", 20),

rep("F", 20)))

Generate mydat$y with the SAME mean

in each of the six groups:

mydat$y <- 5 + rnorm(120, 0, 2)

plot(y~group, mydat)

myfit <- lm(y~group, mydat)

summary(myfit) ## One of the 5 pairwise tests is significant (false positive):

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.49017 0.46256 11.869 <2e-16 ***

groupB -0.34032 0.65416 -0.520 0.6039

groupC 0.06894 0.65416 0.105 0.9163

groupD -1.34140 0.65416 -2.051 0.0426 *

groupE -0.24224 0.65416 -0.370 0.7118

groupF 0.02415 0.65416 0.037 0.9706

7

anova(myfit) correctly deduces there is no difference between the groups:

anova(myfit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

group 5 28.41 5.6821 1.3278 0.2574

Residuals 114 487.83 4.2792

ANOVA

ANOVA stands for analysis of variance. Instead of looking at a series of
comparisons of each group with a baseline group, it treats the whole categorical
variable in one go.

ANOVA tests whether or not we should include the WHOLE VARI-
ABLE in the model.

It does this by looking at the decrease in residual variance due to this
variable, and comparing it with the overall residual variance. This is why
it is called ‘analysis of variance.’ There are limits to how much decrease in
variance can be obtained by a ‘lucky fluke’, under the null hypothesis that the
variable has no impact on the response. If inclusion of the variable in our model
generates a greater decrease in variance than would be expected by lucky fluke,
ANOVA will give a significant result and we can conclude that the variable is
fulfilling a useful purpose and should be retained in the model.

The broad idea behind this is a fundamental principle of modelling: the prin-
ciple of parsimony. This principle specifies that we should always aim to use
the smallest adequate model for our data. Think of variables in a model
like employees in a business. Every employee costs the company money, because
they need salary. An employee is only productive if they earn the business more
than they cost. The same is true of variables. A variable costs uncertainty in a
model: it requires a number of parameters to be estimated, each of which uses
up information and creates uncertainty in the form of standard errors. However,
a variable also creates an opportunity to reduce uncertainty, in the form of the
residual variance, by ‘explaining’ some of the variance in the way we described
in Chapter 1. The idea of ANOVA is that we want to keep variables in the
model if they ‘earn more than they cost’: that is, if the work that they do in
reducing the residual variance is beyond lucky chance. The more parameters
that the variable introduces into the model, the higher the reduction in residual
variance must be for the variable to ‘earn its keep’.

8

The ANOVA table

Just for the record, here is how the ANOVA table is computed. We will
use the table from the student language example in Chapter 9 of the course-
book. The response, lang, measures student language scores after they have
been treated with one of three different teaching methods (predictor method).
There is an additional numeric predictor of student IQ. The overall model
is: lm(lang ~ IQ * method), so we are fitting a different straight-line re-
sponse of language score to IQ, for each of the three different teaching methods.

teach.fit <- lm(lang ~ IQ * as.factor(method), data=teach.dat)

anova(teach.fit)

Analysis of Variance Table

Response: lang

A B C=B/A C/D p-val: df from B & 24

Df Sum Sq Mean Sq F value Pr(>F)

IQ 1 1004.42 1004.42 26.1416 3.124e-05 ***

as.factor(method) 2 2901.83 1450.91 37.7625 3.867e-08 ***

IQ:as.factor(method) 2 78.82 39.41 1.0257 0.3737

Residuals 24 922.13 38.42

resid df=24 D=38.42

Column A shows how many parameters each variable requires: the more pa-
rameters, the better the reduction in variance the variable will need to produce
to ‘earn its keep’. Thus column A is connected with the ‘cost’ of each variable.

Column B displays the reduction in residual variance that each variable has
contributed to the model.

Column C compares the useful contribution in column B, with the ‘cost’ of the
variable in column A. This value needs to be sufficiently high for the variable
to be retained.

Value D provides the baseline variance against which column C is compared.
Our test statistic for whether the variable has ‘earned its keep’ is given in the
‘F value’ column, and is obtained from C/D.

Roughly speaking, the second row of the table shows that the variable method

costs 2 parameters, but those parameters contribute 1450 each to reducing
the residual variance. This compares very favourably with the final residual
variance ofD = 38.42 per observation, so we conclude that these two parameters
have been very successful and we will retain this variable in the model.

9

By contrast, the interaction term IQ:method also costs 2 parameters, but these
parameters only make a contribution of size 39.4 each. This is not a large contri-
bution compared with the residual variance of 38.4 for each residual observation.
In fact, each parameter should make a significantly larger contribution than the
residual variance per observation to justify its inclusion. The result is that the
interaction term is non-significant and we do not retain it in the model.

Chapter 10: models with multiple predictors of different formats

In Chapter 10 we see that we can add multiple predictors to a single model,
including multiple numeric and categorical variables, together with interactions.

In general, choosing an optimal set of predictors is not easy, and is treated in
more detail in Stats 330. However, there is one key point to note now. This
is the risk of multi-collinearity, which occurs when two predictors are
linearly related to each other.

For example, if two predictors X1 and X2 are repeating almost the same in-
formation as each other, the model cannot distinguish which of the response it
should attribute to X1 and which to X2. Pairs of predictors that have a closely
linear relationship can be identified visually using the pairs20x function.

The classic symptoms of multi-collinearity in a fitted model are that adding one
of the predictors: (a) makes little difference to R2; (b) suddenly switches off
the significance of one or more previous predictor; and (c) inflates the standard
errors of all the predictors involved. See what happens in the example below.

mydat <- data.frame(x1=runif(100, 0, 20))

Make predictor x2 VERY closely related to predictor x1:

mydat$x2 <- mydat$x1 + rnorm(100, 0, 0.1)

y is a response to x1, but will also be very closely related to x2:

mydat$y <- 5 + 2*mydat$x1 + rnorm(100, 0, 3)

If we fit the model with x1 only, all is well:

summary(lm(y~x1, mydat)) ## Multiple R-squared: 0.9299

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.45960 0.65486 6.81 7.9e-10 ***

x1 2.10132 0.05829 36.05 < 2e-16 ***

Fit the model with x1+x2 and we see the symptoms of collinearity:

summary(lm(y~x1+x2, mydat)) ## Multiple R-squared: 0.9303

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.4502 0.6561 6.783 9.3e-10 ***

x1 5.0569 3.6391 1.390 0.168

x2 -2.9553 3.6382 -0.812 0.419

10

Stats 20x Handout 4: n-way ANOVA

ANOVA for testing inclusion of categorical variables in a model

In Chapters 9 and 10, we saw the R command anova(lm.fit) for testing
whether an entire variable should be kept in a model. Recall that ‘anova’
stands for ‘analysis of variance’. The anova() command is needed when
the model includes factors with three or more levels. For other cases, it
will tend to deliver the same results as the summary(lm.fit) command. The
key points to remember about the anova command are:

1. anova considers the contribution of the variable as a whole to reducing the
residual variance in the model.

2. It solves the problem in summary(lm.fit) that all groups are compared only
with the single baseline group, so differences between two other groups might
go unnoticed.
(E.g. if neither group B nor C differs from group A, but B and C do differ from each other).

3. Importantly, it solves the problem of multiple testing in summary(lm.fit).
Conducting numerous pairwise tests between each group and the baseline group
greatly inflates the chance of seeing false positives. Typically we consider
results ‘significant’ if they return a p-value ≤ 0.05, and this same value 0.05
defines the false-positive rate of the test. If H0 is true and we conduct k different
tests, then the chance that at least one will return a false-positive result is
about 1− (1− 0.05)k, which is unacceptably high even for k as small as 3 or 4.
The anova command rethinks the whole question, and returns an output based
on whether the variable as a whole has reduced the residual variance more than
could reasonably be ‘fluked’ under H0.

One-way ANOVA and two-way ANOVA

The word ‘ANOVA’ is strictly speaking a type of test, as described above.
However, it is also used colloquially to describe a type of model for which
this test is appropriate. This colloquial usage has become very widespread
and entrenched, so it is important to understand both meanings of the word.

• A one-way ANOVA describes a model with a single predictor consisting of
one categorical variable with 3 or more levels.

lm(y ∼ x), where y is numeric and x is a factor with ≥ 3 levels.

We are interested in testing whether all groups have the same mean.

This is equivalent to testing whether the variable needs to be included in
the model at all: because if all groups have the same mean, the null model
lm(y ~ 1) applies. Thus, the command anova(lm(y∼x)) will simultane-
ously answer both questions.

1

●

A B C D E F
0

2

4

6

8

10
A one-way ANOVA simply tests if
all groups have the same mean.
This can be viewed as testing whether the
categorical variable makes a significant
contribution to reducing residual variance,
over and above the null model lm(y~1)
in which all groups do have the same mean.

‘Do the groups have the same mean?’, and
‘Is the variable justified?’, can be seen as
the same question posed in different ways.
The single command anova(lm(y~x)) addresses both questions.

• We will also see two-way ANOVA models. These are models with two
predictors, both of which are categorical variables. We are interested
in the main effects, and also in the interaction between the two predictors:
lm(y ~ x1 * x2). The command anova(lm(y ~ x1 * x2)) displays whether
the main effects and the interaction are significant.

We have already covered most of the material needed to understand one-way
and two-way ANOVA models. The new material in this handout is:

• ‘Means and effects’ notation for writing out the model formula.

• Commands summary1way and multipleComp for assessing one-way ANOVA
models and the significance of pairwise comparisons, adjusted for the multiple-
testing problem described above.

• Commands interactionPlots and summary2way for exploring two-way
ANOVA data and assessing model fit.

All four of the functions mentioned above are in the s20x library: library(s20x).

Chapter 11: One-way ANOVA

This example comes from the Fruitfly data in Chapter 11 of the coursebook.
There are 5 groups of male fruitflies, placed under different conditions based on
the number of receptive females nearby. The response is lifespan, measured in
days. The idea is that the potential for reproductive success might influence a
male fruitfly’s lifespan, in terms of what (if anything) he has to live for.

2

head(Fruitfly.df): days group tail(Fruitfly.df): days group

40 G1 56 G5

37 G1 60 G5

44 G1 44 G5

Our model has the following formulation: lm (days ~ group). Because
group is a categorical variable, this means: fit a different intercept pa-
rameter for every different level of the variable ‘group’.

Up to now, we have written out the model formula in Methods & Assumptions
like this:

daysi = β0 + β1 group2i + β2 group3i + β3 group4i + β4 group5i + εi ,

where εi ∼ iid Normal(0, σ2), and where:
group2i is 1 if the fruitfly is in group 2 and otherwise 0;
group3i is 1 if the fruitfly is in group 3 and otherwise 0;

and so on to group 5.

This is a tedious notation, so we now introduce another notation called means
and effects notation. We can rewrite the model formula like this.

Let subjectij be the jth subject in group i, for groups i = 1, 2, 3, 4, 5.
Then:

daysij = µ+ αi + εij ,

where µ is the overall mean lifespan across all groups;
αi is the effect of being in group i: αi is a top-up intercept for group i;
and where εij ∼ iid Normal(0, σ2) as usual.

Thus, we reconsider the model to be composed of:

• a grand mean, µ (the mean of Y across all groups);

• an effect of being in group i, αi, which describes the difference of group
i from the grand mean, so it is easily interpreted as a positive effect or a
negative effect;

• and the usual scatter term εij, which is now given a double subscript ij to
emphasize that we are looking at an individual subject (j) coming from
group i. That is, every different fly in group i has its own scatter value,
εij. We cannot just use a single subscript εi because that would imply that
every member of group i has exactly the same value for its random scatter.

We will come back to the means and effects notation later. For now we will
continue with the one-way ANOVA example.

3

The ANOVA table

We will use the following model fit:

Fruitfly.fit <- lm(days ~ group, data=Fruitfly.df)

> anova(Fruitfly.fit)

Analysis of Variance Table

Response: days

Df Sum Sq Mean Sq F value Pr(>F)

group 4 11939 2984.82 13.612 3.516e-09 ***

Residuals 120 26314 219.28

The significance of the group variable, as a whole, is shown in the first row. In
the example above, we learn that the group variable adds 4 parameters to the
model, and on average the amout of work each of these 4 parameters does to
reduce the residual variance is Mean Sq= 11939/4 = 2984.8.

Compare this with an average of 26314/120 = 219.28 residual variance left per
observation in the Residuals line, after model parameters have been deducted
from the degrees of freedom. We can think of this as a reference requirement
for a parameter to be included in the model.

• One observation tells us one thing about the population.

• One parameter also tells us one thing about the population. For example,
it tells us that Y has a population mean of µ.

• Thus there is a duality between parameters and observations. We can
think of each parameter as ‘using up’ the information from one observation.

• We use the term degrees of freedom to count both observations and
parameters. If there are n observations and p parameters, then the degrees
of freedom left after the parameters have been deducted is n− p.

• This makes sense: for example, if we have n observations (n d.f.), and
specify one thing about them (e.g. their mean is µ), then we can only
freely choose n − 1 observations in order to satisfy this constraint. Once
we have chosen n − 1, the last one is determined by the knowledge that
they must all have mean µ. So we say that the mean µ has ‘used up’ 1
degree of freedom, leaving us with only n− 1 d.f. for the residuals.

If parameters somehow ‘equate’ to observations, then it makes sense to use the
amount of residual variance per observation as a benchmark against which to
compare the useful work a parameter is doing in the model:

4

• An observation adds residual variance to the model (via its scatter). We can
view this as the ‘cost’ of each degree of freedom in the model.

• A parameter reduces the residual variance. The more a parameter reduces the
residual variance, the more useful it is.

• A parameter is deemed to be making a useful contribution if it reduces the
residual variance by a lot more than the ‘cost’ of one degree of freedom.

Going back to the ANOVA table:

Df Sum Sq Mean Sq F value Pr(>F)

group 4 11939 2984.82 13.612 3.516e-09 ***

Residuals 120 26314 219.28

The cost of one d.f. in this model is 26314/120 = 219.28: the residual variance
per residual d.f.

The contribution per d.f. made by the group variable is 11939/4 = 2984.82,
which is 13.6 times larger than the cost of each d.f.: 2984.82/219.28 = 13.6.

It is vanishingly unlikely that a variable could ‘fluke’ such a staggering result
by chance (p = 3.5×10−9). Thus the group variable is contributing much more
than simply paying back the 4 d.f. that it costs. This is displayed in the highly
significant result, and we conclude we should retain this variable in the model.

As a rough rule, the F -ratio can be compared with the value 1, which creates
an equivalence between the amount a parameter earns, and the cost of its d.f.
Ratios substantially higher than 1 will deliver significant F tests. The value
required for significance depends upon the two degrees of freedom (4 and 120
here), but roughly speaking F -values that are a few integers higher than 1 are
likely to be significant, and those close to 1 are likely to be non-significant.

Link between the ANOVA table and R2

As we have seen, the Sum Sq column reveals how much residual variance has
been removed by the group variable, relative to the null model. The amount
that still remains is reported in the Residuals row. Thus, we can use these
two numbers to calculate the proportion of variance explained, which is
exactly the same as the definition of R2 we have been using since Chapter 1.

To calculate R2, we take the ratio of ‘variance explained’ to ‘total’:

R2 =
11939

11939 + 26314
= 0.3121.

This is the same value as we shall see in the output for summary(Fruitfly.fit).

5

Links between summary(fit), anova(fit), and summary1way(fit)

For ANOVA-type models, we do not use summary(fit) much, but primarily
use anova(fit) and a new command, summary1way(fit) instead. Here are
the connections between the three.

1. summary()

The summary() command is the familiar model output. However, it suffers from
the two problems of single baseline group and multiple testing mentioned
on page 1. For 1-way ANOVA models, it is only really useful for reading off R2:
however even that can be achieved by using anova instead of summary.
> summary(Fruitfly.fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 63.560 2.962 21.461 < 2e-16 ***

groupG2 1.240 4.188 0.296 0.768

groupG3 -0.200 4.188 -0.048 0.962

groupG4 -6.800 4.188 -1.624 0.107

groupG5 -24.840 4.188 -5.931 2.98e-08 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 14.81 on 120 degrees of freedom

Multiple R-squared: 0.3121,Adjusted R-squared: 0.2892

F-statistic: 13.61 on 4 and 120 DF, p-value: 3.516e-09

2. anova()

anova is the core command for analysing these models. IMPORTANT: Use
the anova(fit) command first of all, to decide upon the global sig-
nificance of the categorical variable.

> anova(Fruitfly.fit)

Analysis of Variance Table

Response: days

Df Sum Sq Mean Sq F value Pr(>F)

group 4 11939 2984.82 13.612 3.516e-09 ***

Residuals 120 26314 219.28

The significance of the group variable is shown in the first row. Additionally:

• We can calculate R2 by 11939/(11939 + 26314) = 0.3121.

• The F -statistic and p-value from the table match the ones reported in summary(fit)

above. This is because summary(fit) uses the same F -test idea to report on
the global significance of all variables in the model. Here we only have one
variable, group, so the two tests match.

6

3. summary1way()

summary1way is a s20x library command that conveniently summarizes the
output from anova as well as producing summary-statistics for each group, and
also reporting the ‘means and effects’ formulation of the estimated model.

• summary1way(Fruitfly.fit) combines the outputs from
summaryStats(y~group, Fruitfly.df) and from anova(Fruitfly.fit).

• If each of these commands have already been used, then there might be no need
for summary1way. We often use summaryStats in a previous exploratory phase.

> summary1way(Fruitfly.fit)

ANOVA Table:

Df Sum Squares Mean Square F-statistic p-value

Between Groups 4 11939.28 2984.82 13.61195 0

Within Groups 120 26313.52 219.27933

Total 124 38252.8

Numeric Summary:

Sample size Mean Median Std Dev Midspread

All Data 125 57.44 58 17.56389 24

G1 25 63.56 62 16.45215 28

G2 25 64.80 65 15.65248 22

G3 25 63.36 65 14.53983 21

G4 25 56.76 56 14.92838 20

G5 25 38.72 40 12.10207 15

Table of Effects: (GrandMean and deviations from GM)

typ.val G1 G2 G3 G4 G5

57.44 6.12 7.36 5.92 -0.68 -18.72

Things to look for:

• Are the standard deviations within each group reasonably similar?
As a rule of thumb, accept up to a factor of two difference.

Similarly for the midspreads. The midspread is the interquartile range within
the group, i.e. the difference between the 75% and the 25% quantiles.

• The Grand Mean and Effects output matches the mean and effects notation
yij = µ + αi + εij. Here, the ‘grand mean’ is µ and is (obscurely) given by
typ.val= 57.44 in the table of effects. The effects G1 to G5 specify α1, . . . , α5

and give us a quick insight into which groups have high means (positive effects)
and which have low means (negative effects).

Here we see group G5 has a large negative effect (very low mean
relative to the overall mean µ).

7

Pairwise comparisons, adjusted for multiple testing

So far, we have used anova to decide that the categorical variable is significant:
so the factor must contain groups whose means differ on a pairwise basis. We
have specified that we can not use the output from summary(fit) to decide
which pairs of group means differ — however, we still wish to answer this
question.

How can we specify which groups differ from each other, without falling into
the multiple-testing trap?

The answer is that we need to use a different test: one that is specifically
designed to be a global test that does not fall foul of multiple-testing. The test
we use is called Tukey’s adjusted test, named after American statistician
John Tukey (1915-2000). Another name is Tukey’s Honest Significant
Difference method, or Tukey’s HSD test.

The broad idea behind Tukey’s adjustment is that we deliver all the pairwise
differences between groups as a single ‘package’ or ‘parcel’. Tukey’s test is
designed such that the probability of getting at least one false positive
in the WHOLE package is restricted to 0.05.

That is, if H0 is true, then 5% of ‘parcels’ will contain at least one falsely
significant result just by chance. This means that 95% of parcels will contain
no falsely significant results. So our standard understanding of what we mean
by a significance test is preserved.

Tukey’s adjusted test is designed to create an accurate false-positive
rate across ALL p-values simultaneously.

For this reason it is sometimes called a ‘simultaneous’ test.

The more specific idea behind Tukey’s test is that it poses the null hypothesis
of (say) k samples all drawn from the same population: for example we have
k = 5 groups in our fruitfly example. Tukey derived test statistics for the
MAXIMUM pairwise difference among ANY of the k groups. We would expect
this to be larger than the pairwise difference between just two groups, which is
what our summary(fit) pairwise t-tests deliver. The pairwise differences among
groups in our sample are then referenced against this global-pairwise-difference
distribution. The native R function for this calculation is TukeyHSD, and the
name of the global reference distribution is the studentized range distribution.
However, the Stats 20x team have wrapped up a more easily-accessible version
of the Tukey HSD test in an s20x library function called multipleComp, where
‘multipleComp’ stands for multiple comparisons.

8

Here is the output from multipleComp for the fruitfly ANOVA model:

> multipleComp(Fruitfly.fit)

Estimate Tukey.L Tukey.U Tukey.p

G1 - G2 -1.24 -12.8405 10.3605 0.9983

G1 - G3 0.20 -11.4005 11.8005 1.0000

G1 - G4 6.80 -4.8005 18.4005 0.4855

G1 - G5 24.84 13.2395 36.4405 0.0000

G2 - G3 1.44 -10.1605 13.0405 0.9970

G2 - G4 8.04 -3.5605 19.6405 0.3127

G2 - G5 26.08 14.4795 37.6805 0.0000

G3 - G4 6.60 -5.0005 18.2005 0.5158

G3 - G5 24.64 13.0395 36.2405 0.0000

G4 - G5 18.04 6.4395 29.6405 0.0003

You can see that the function gives all possible pairwise comparisons
between groups G1 to G5. There are 10 comparisons in total: 10 =

(
5
2

)
=5C2.

Compare this with the output from summary, which only gives the 4 pairwise
comparisons of groups G2 to G5 with the baseline group, G1.

The final column, Tukey.p, gives the Tukey-adjusted p-values for all 10 pair-
wise comparisons. These p-values have been adjusted legitimately for multiple
testing, so we can be confident in their validity.

It is legitimate to quote results like, ‘The mean of group G5 differs
significantly from the mean of every other group G1 to G4.’

We know that the overall false-positive rate (i.e. Type I error rate) of our whole
‘parcel’ of comparisons is 5%, if we take ‘significance’ to mean the Tukey ad-
justed p-value is 0.05 or less. So we have confidence in our ‘parcel’ of conclusions.

We can use the subset command to extract only those pairwise comparisons
that are significant at the 5% level. Note that R returns the multipleComp

results in matrix format, so we must first convert the matrix to a dataframe to
apply the subset command.

> Fruitfly.mc <- multipleComp(Fruitfly.fit)

> subset(data.frame(Fruitfly.mc), Tukey.p < 0.05)

Estimate Tukey.L Tukey.U Tukey.p

G1 - G5 24.84 13.2395 36.4405 0e+00

G2 - G5 26.08 14.4795 37.6805 0e+00

G3 - G5 24.64 13.0395 36.2405 0e+00

G4 - G5 18.04 6.4395 29.6405 3e-04

Like any significance test, the Tukey-adjusted test can also be converted into
Tukey-adjusted 95% confidence intervals for each pairwise mean difference. The
CIs are reported in the Tukey.L and Tukey.U columns. The confidence intervals
are wider than those obtained from “summary”.

An example conclusion is: ‘We estimate that the mean lifetime for Group 5 flies
is between 13.2 and 36.4 days lower than that for Group 1 flies’.

9

Summary of one-way ANOVA models

Here is a set of steps for conducting a one-way ANOVA analysis.

1. Plot the data using plot(y ~ group), which defaults to a boxplot when group

is categorical.

2. Generate numerical summaries within each group using summaryStats(y ~ group).

Check that standard deviations and midspreads within each group are reason-
ably similar, e.g. within a factor of two from smallest to largest.

3. Fit the one-way ANOVA model using fit <- lm(y ~ group).

4. Check the fit using plot(fit, which=1), normcheck(fit), and cooks20x(fit).

5. View the fit using anova(fit). If the group factor is not significant, this is the
final conclusion and probably the end of the analysis.

6. If the group factor is significant, then use multipleComp(fit) to identify which
pairs of groups differ significantly, and read off 95% confidence intervals for these
differences.

7. Use summary(fit) ONLY to read off R2 once the final model is decided.

Suitable wording for the Executive Summary: We have very strong evidence
(p < 0.001) that the lifespan of male fruitflies differs according to treatment
group. Inspection of pairwise differences, controlled for multiple testing, reveals
that males in Group 5 have significantly lower lifespans than males in every
other group. We estimate that the mean lifespan for Group 5 males ranges
from 6 to 38 days less than that of males in the other groups.

Chapter 12: Two-way ANOVA

A two-way ANOVA model is simply a model with a numeric response, y,
and TWO categorical predictors.

If the first predictor has k levels, and the second has ` levels, the number of
possible combinations of the predictors is k × `. Even if k = ` = 2, there are
already 4 possible combinations. Thus, for any two-way ANOVA, however small
the individual factors are, we need to use the global testing method anova to test
for inclusion of variables and interactions. We also need to use a multiple-test
adjustment when identifying combinations of the predictors with a significant
effect.

We will use the s20x function interactionPlots for initial exploratory plots.
After the model has been fitted and viewed with anova, we will use summary2way
to generate concise summaries of significant effects.

10

Build-your-own two-way ANOVA

Two-way ANOVAs can be tricky to comprehend, so we will use simulated data
to clarify the ideas. We will simulate a numeric response y to two factors, Sex
(male or female) and Age (child or adult).

First we will simulate a response without interaction between Sex and Age.

Generate data with 50 observations in each of FA, FC, MA, MC combinations:

mydat <- data.frame(Sex=c(rep("F", 50), rep("M", 50)),

Age=rep(c(rep("A", 25), rep("C", 25)), 2))

Generate y with baseline mean 2 for FA, add 6 for C, and add 4 for M:

mydat$y<-2+as.numeric(mydat$Age=="C")*6+as.numeric(mydat$Sex=="M")*4+rnorm(100,0,1)

Cheat and create a "combo" factor with levels FA, FC, MA, MC:

mydat$combo <- factor(paste0(mydat$Sex, mydat$Age))

Plot the cheat factor, combo:

plot(y ~ combo, mydat)

FA FC MA MC

0
2

4
6

8
10

12
14

combo

y

We can see that going from Adult to Child
creates a jump of 6 units, and going from
Female to Male creates a jump of 4 units,
and there is no interaction between the
two factors.

Look at interactionPlots for this dataset:

interactionPlots(y~Age * Sex, mydat) interactionPlots(y~Sex * Age, mydat)

Plot of 'y'
by levels of 'Age' and 'Sex'

Age

y

0
5

10
15

●
●
●

●

●●●

●

●

●

●
●
●

●●
●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

A C

●

M
F

Plot of 'y'
by levels of 'Sex' and 'Age'

Sex

y

0
5

10
15

●
●
●

●

●●●

●

●

●

●
●
●

●●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●
●●

●

●●

●

●

●●
●
●

●●

F M

●

C
A

Whichever way around the interaction plots are plotted, the lines between the
two groups are parallel.

11

Check the ANOVA analysis on the data without interaction:

> myfit <- lm(y ~ Sex * Age, mydat)

> anova(myfit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

Sex 1 430.54 430.54 595.5998 <2e-16 ***

Age 1 980.24 980.24 1356.0245 <2e-16 ***

Sex:Age 1 0.88 0.88 1.2216 0.2718

Residuals 96 69.40 0.72

The results are exactly what we would hope for: the main effects are both
significant, but the interaction term is not significant.

To finish off the analysis of the no-interaction data, we fit the simpler model
without interaction. We then use summary2way for Tukey-adjusted pairwise
comparisons, specifying the argument page="nointeraction".

> myfit.final <- lm(y ~ Sex + Age, mydat) ## Main effects only

> summary2way(myfit2, page="nointeraction")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = fit)

$Sex

diff lwr upr p adj

M-F 4.149915 3.812039 4.487791 0

$Age

diff lwr upr p adj

C-A 6.261749 5.923873 6.599625 0

The results are what we would expect. The pairwise differences for (Male -
Female) are about 4 units, and those for (Child - Adult) are about 6 units.

Now let’s see what happens when we have a model with interaction. To
create an interaction, we need to add an extra top-up mean to observations in
one of the four combo-categories. Let’s give Male Children an extra top-up of
3 units.

mydat.int <- mydat

mydat.int$y[mydat.int$combo=="MC"] <- mydat.int$y[mydat.int$combo=="MC"] + 3

myfit.int <- lm(y ~ Sex * Age, mydat.int)

12

interactionPlots(y~Age * Sex, mydat) interactionPlots(y~Sex * Age, mydat)

Plot of 'y'
by levels of 'Age' and 'Sex'

Age

y

0
5

10
15

●
●
●

●

●●●

●

●

●

●
●
●

●●
●
●●

●

●
●
●
●

●

●

●

●●

●

●

●●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

A C

●

M
F

Plot of 'y'
by levels of 'Sex' and 'Age'

Sex
y

0
5

10
15

●
●
●

●

●●●

●

●

●

●
●
●

●●
●
●●

●

●
●
●
●

●

●

●

●

●

●●

●
●

●
●

●

●
●
●●
●

●●

●

●

●●
●
●
●●

F M

●

C
A

The lines are no longer parallel. Use interactionPlots(model) to get a
quick idea of whether there is an interaction between the two fac-
tors. An interaction is signalled by non-parallel lines.

Use anova(fit) as usual to test formally for the interaction.

anova(myfit.int)

Df Sum Sq Mean Sq F value Pr(>F)

Sex 1 798.04 798.04 1103.977 < 2.2e-16 ***

Age 1 1506.12 1506.12 2083.509 < 2.2e-16 ***

Sex:Age 1 43.04 43.04 59.536 1.128e-11 ***

Residuals 96 69.40 0.72

The interaction is significant. Now use summary2way with page="interaction"

to investigate pairwise effects:

summary2way(myfit.int, page="interaction")

Tukey multiple comparisons of means

95% family-wise confidence level

$‘Comparisons within Sex‘

diff lwr upr p adj

F:C-F:A 6.449696 5.820939 7.078454 0

M:C-M:A 9.073802 8.445045 9.702560 0

$‘Comparisons between Sex‘

diff lwr upr p adj

M:A-F:A 4.337862 3.709104 4.966620 0

M:C-F:C 6.961968 6.333210 7.590726 0

Note: If you use page="nointeraction" on an interaction model, the results give overall

within-group effects while ignoring the interaction effect, and are hard to interpret.

13

Interaction or not?

Do these plots represent an interaction between Age and Sex, or not?
A third level has been added to the Age variable: level ‘I’ for Infant.

Plot of 'y'
by levels of 'Age' and 'Sex'

Age

y

−
5

0
5

10
15

●
●
●

●

●●●

●

●

●

●
●
●

●●
●
●●

●

●

●
●
●

●

●●

●●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

A C I

●

M
F

interactionPlots(y~Age * Sex)

No: there is no interaction here. The coloured lines are parallel to
each other, even though they are not parallel from one level of Age
to another.

Check with ANOVA:

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

Age 2 1726.74 863.37 1212.8885 <2e-16 ***

Sex 1 540.48 540.48 759.2812 <2e-16 ***

Age:Sex 2 0.79 0.39 0.5544 0.576

Residuals 114 81.15 0.71

As expected, there is no significant interaction from the ANOVA analysis. We
should now refit the main-effects only model for our final analysis:
lm(y ∼ Age + Sex).

Summary of two-way ANOVA models

1. A two-way ANOVA has a numeric response variable, y, and two categorical
predictors: x1 and x2.

14

2. First use interactionPlots(y ~ x1 * x2) for a visual impression of whether
there is an interaction between the two predictors. An interaction is signalled
by non-parallel lines among the different colours on the plot.

3. Fit the model lm(y ~ x1 * x2). Do the usual three assumption checks.

4. Check for an interaction term using anova(fit).

5. If the interaction is significant, use summary2way(fit, page="interaction")

to explore pairwise comparisons. The model formula is:

yijk = µ+ αi + βj + γij + εijk,

where: µ is the grand mean;
αi is the effect for factor x1;
βj is the effect for factor x2;
γij is the interaction effect for the combination of factors x1 and x2;

and εijk ∼ iid Normal(0, σ2) as usual.

6. If the interaction is not significant, revert to the simpler model with main-
effects only: lm(y ~ x1 + x2). Check for significance of the main effects using
anova(fit). If they are both significant, use
summary2way(fit, page="nointeraction") to explore pairwise comparisons.

7. If one of the main effects (say, x2) is still not significant, revert to the single-
effect model, lm(y ~ x1). This is now a one-way ANOVA model and can be
analysed as shown in Chapter 11.

8. Use summary(fit) ONLY to read off R2 once the final model is decided.

Means and effects notation

Means and effects notation is a compact notation for describing a model formula.
It is particularly useful for models involving factors with multiple combinations.

1. First count the number of categorical variables (factors). If there are v factors,
you will need v+ 1 different subscripts. For example: 1-way ANOVA: v = 1
so we need v + 1 = 2 subscripts: use i and j.
2-way ANOVA: v = 2 so we need v + 1 = 3 subscripts: use i, j, k.

2. The response is easy: it will use all subscripts. E.g. yij or yijk. The final
subscript enables all individuals to be unique.

3. Start off with a grand mean, µ.

4. For main effects, use a different Greek letter for each factor. The levels
within a factor are taken care of by the subscripts, i, j etc.

15

• αi means ‘use a different top-up intercept for every group in factor 1.’ For
example, if factor 1 is Sex, then αi denotes a top-up intercept for level i
of the Sex variable. Here, i could be Male or Female: so α1 is a top-up
intercept for Males, and α2 is a top-up intercept for Females. In general, αi

is a top-up intercept for whichever group i is relevant to observation yijk.

• Likewise, βj signals a different top-up intercept for each group in factor 2.
Remember to keep the subscripts separate for the different factors: factor 1
gets subscripts i, factor 2 gets subscripts j. For example, if factor 2 is Age,
then levels j could be either Child or Adult: so β1 is a top-up intercept for
Children, β2 is a top-up intercept for Adults, and βj is a top-up intercept
for whichever group j is relevant to observation yijk.

5. If there are interaction terms, these will involve two or more variables, so
they have two or more subscripts. Use another Greek letter to describe the
interaction, but keep the subscripts attached to the original variables.

For example, an interaction between Sex and Age would be described by γij.
This means a different top-up intercept for every combination of Sex
and Age.

This term deals with the extra parameters needed to deal with non-parallel
lines in the interaction-plots.

6. The error term will use all subscripts, just like the response. E.g. εij or εijk.

Note: the notation is a way of understanding the terms in the model. We still
fit the model exactly as before. For example, although there are 4 combinations
for γij in the example above, we still only fit 1 extra parameter, because we
have already fitted the other 3 parameters in the main effects.

Question: How would you write the ANCOVA model of Chapter 8 in means and
effects notation?

Answer: There is a different intercept and a different slope for each level of a
single factor variable. We only have one factor, so we need 2 subscripts, i and
j, where the second subscript is unique to each subject. The numeric predictor
is called x. For the jth subject in group i, we can write the group-specific
top-up intercept as αi, and the group-specific slope as βi. Writing xij for the
observation of x for this subject:

yij = µ+ αi + βi xij + εij.

16

Stats 20x Handout 5: Non-Normal Models

Rethinking the scatter model

We have seen numerous examples of models with the general formulation

Yi = α + βxi + εi where εi ∼ iid N(0, σ2).

We can read this as:

• the mean of Yi is α + βxi, and the variance is σ2.

We could view this model a slightly different way from usual. Instead of viewing
Yi as ‘mean plus Normal scatter’, we could describe it as ‘Normal scatter about
a mean’. That is, we could rewrite our model for Yi as follows:

Yi ∼ N(α + βxi , σ
2).

The notation Yi ∼ N(α + βxi , σ
2) simply means that Yi has a Normal

(bell-curve) distribution, with mean α + βxi, and variance σ2.

This is exactly the same as saying that Yi is generated via a mean term α+βxi,
with add-on Normal scatter εi that has mean 0 and variance σ2. In other words:

α + βxi +N(0, σ2) ≡ N(α + βxi , σ
2).

In itself, this seems a fairly obvious and uninteresting statement. However, it
opens up a whole new way of thinking about modelling. If we can formulate
models using statements like Yi ∼ N(α + βxi , σ

2), then why do we need to
stick to the Normal distribution?

We could propose models where Yi is Binomial, or Poisson, or Gamma, or
Exponential . . . in fact there is a whole world of distributions with different
properties, suitable for different situations. Here are some examples.

Binomial distribution

The Binomial distribution counts the number of successes in n independent
trials: e.g. the number of heads out of 10 tosses of a coin. Because it is a discrete
(‘counting’) distribution, it can only take values 0, 1, 2, . . . , n. This creates a
very different scatter pattern from Normal scatter, which is always symmetric
on both sides of the mean. For example, if Yi ∼ Binomial(10, p = 0.9), then it
has mean 10 × 0.9 = 9. In that case, the only allowed scatter above the mean
would be the value 10, whereas below the mean we could have scatter 8, 7, 6,
and so on.

1

●

0
5

10
15

0 1 2 3 x

y

●●●

●●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●

●●

●●

●●●●●●

●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●

●●

Scatter of Y~Bin(10, βx) about the meanHere is a picture of a response Y
with a Binomial(10, p) distribution,
where the p parameter denotes the
probability of ‘success’ in each of the
10 trials.

We have a numeric predictor variable,
x, and the p parameter depends
upon x via p = βx, where β is our
parameter to be estimated.

You can see that the Binomial
response Y when there are 10 trials
has a hard upper limit at Y = 10.

You can see why we might want to use this distribution for modelling. For
example, we might be interested in children’s scores on a reading test (marked
out of 10) as they progress through Year 1, 2, and 3 of school. Each point on
the scatterplot corresponds to one child in year x, and that child’s mark out of
10 on the reading test.

The Binomial scatter model is very different from our previous models with
constant Normal scatter. Firstly, the scatter is not constant about the fitted
line. Secondly, Y values are restricted to integers 0, . . . , 10; and thirdly, there
are hard limits at 0 and 10. The hard limits are particularly problematic: as
we can already see from this plot, any estimate of β that sends the fitted
line below 0 or above 10 will give an impossible distribution for Y .

●

0
5

10
15

0 1 2 3 x

y

●●●
●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●

●

●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●

●●●●

●●●●
●●●●●●●●●●●●●●●

●●●

●●

●●

●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●

●

●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●

●

●●

●

●●●●●●●●●●

●

●
●

●

●●
●●

●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●

●●●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●

●●●●●●●●●●

●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●

●●

●●
●

●

●
●

●

●

●●

Scatter of Y~N(βx, σ2) about the meanBy comparison, the Normal model
allows any values for Y — positive
or negative, and not just integers —
and it has no lower or upper limits.
Here is the Normal scatter model for
comparison. Note how it goes below
0 and above 10 in this instance.
Also notice the constant scatter.

There are two problems to solve if
we want to use the Binomial model.
Firstly, we can no longer use least-
squares for estimating parameters.
Remember from Handout 1 that least squares is only appropriate for the
constant-scatter model. However, we also mentioned there that least-squares is
just a special case of a much more general estimation method called maximum

2

likelihood estimation. So this problem is easily solved: as long as we know
the equation for probabilities in the Binomial distribution, we can calculate the
likelihood and maximize it to generate parameter estimates α̂ and β̂. See Stats
210 for details. This is all dealt with by R behind the scenes.

The second problem is the problem of hard limits that we saw overleaf, where
the Binomial fitted line has to be confined between 0 and 10 if the response Y
has a Binomial(10, p) distribution. This problem will have an effect on how we
formulate the model. We will need to transform the fitted line using a function
that maps the whole real line onto the restricted range. We will say much more
about this soon, but here is a quick idea. Let’s say we have a linear expression,
like

` = α + βx .

The parameters α and β can take any values in the real numbers, so ` can also
be any real number, positive or negative.

Now consider: f(`) =
exp(`)

exp(`) + 1
=

exp(α + βx)

exp(α + βx) + 1
.

We know that exp(`) is always positive, regardless of whether ` is positive or
negative. And if we take any positive number and divide it by itself plus one,
we will always get a fraction.

` = −∞ ⇒ exp(`) = e−∞ ' 0 : so
exp(`)

exp(`) + 1
' 0

0 + 1
= 0.

` = +∞ ⇒ exp(`) = e+∞ ' ∞ : so
exp(`)

exp(`) + 1
' ∞
∞+ 1

= 1.

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

l

f(
l)

The plot shows the shape of the function f(`) =
exp(`)

exp(`) + 1
. Notice how

the horizontal range is unrestricted between −∞ and ∞, but the
vertical range is restricted between 0 and 1, like a probability.

This will be very useful when we want to transform an unrestricted linear
predictor (` = α+βx) into a range with both a lower limit and an upper limit.

3

Poisson distribution

The Poisson distribution is another counting distribution. It is named after
the French mathematician Siméon-Denis Poisson (1781-1840). Formally, the
Poisson distribution counts the number of events in a fixed time or space, when
events happen at a constant average rate: for example, the number of road
accidents in a year, or the number of customers arriving at a supermarket in an
hour. However, it is also used as a general-purpose counting distribution, e.g.
for the number of kiwi found in a site before and after predator control, or the
number of goods bought per day before and after a marketing campaign.

The Poisson distribution has the property that variance increases with the
mean. That is, the uncertainty in an observation increases as its mean gets
higher. This is a very familiar phenomenon in everyday life. For instance,
imagine you are interested in how long a university assignment will take you.
If you estimate it will take 5 hours, you might expect to be an hour wrong
either way. On the other hand, if you estimate it will take 100 hours, you might
expect to be 10 hours wrong either way. You already have an inbuilt sense that
variance commonly increases with expected value.

●

0
5

10
15

0 1 2 3 x

y

●●●

●●

●●

●●●

●●●

●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●●●

●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●●

●●●

●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●●

●●●

●●●

●●●

●●●

●●●●●

●●●

●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●●

Scatter of Y~Poisson(βx) about the mean
Here is the scatter model from the
Poisson distribution, plotted on the
same scale as the previous two plots.
The increase in variance with mean
is very noticeable. We also notice
that the distribution only takes
integer values, like the Binomial
distribution.

Like the Binomial distribution,
the Poisson distribution also has a
parameter with a restricted range.
We said that the Poisson distribution
counts the number of events per unit time, where the number of events per unit
time has a constant average. This ‘constant average’ is given the symbol µ and
is the sole parameter of the Poisson distribution. The rate µ represents the
average number of events per unit time. So it is clear that the mean
of the Poisson(µ) distribution is µ. It can be shown that the variance of the
distribution is equal to µ as well.

When Y ∼ Poisson(µ), then E(Y) = Var(Y) = µ.

4

• If road accidents occur at a constant average rate of 400 per year, then the
number of accidents in a particular year can be modelled as Y ∼ Poisson(µ =
400). Then the mean and variance of Y are E(Y) = Var(Y) = 400.

• If earthquakes over a certain magnitude occur at a constant average rate of 5
per week, then the number of earthquakes in a particular week can be modelled
as Y ∼ Poisson(5), and the mean and variance of Y are both 5.

Here are some Poisson distributions with different parameters µ:

µ = 1 µ = 3.5 µ = 100

The formula for Poisson probabilities is:

P(Y = y) =
µy

y!
e−µ for y = 0, 1, 2, . . .

This formula is derived as a solution to a partial differential equation, so it is
far from obvious. All we need to know for Stats 20x is the following.

• The Poisson distribution is a discrete (counting) distribution taking values
0, 1, 2, . . . with no upper limit.

• The mean of the distribution is a parameter µ, and it must be positive: µ > 0.
Note that µ will eventually be our ‘fitted value’ for observation Y :
the location of the best-fit line.

• The variance of the Poisson distribution increases with the mean. Scatter
increases as the fitted value becomes larger.

In fact, strictly speaking, the variance is exactly equal to the mean. However,
later we will relax this and consider ‘Poisson-like distributions’, or quasi-Poisson
distributions, for which the variance is a constant multiple of the mean, rather
than being exactly equal.

5

Because our parameter µ has a restricted range, µ > 0, we have the same
problem mentioned earlier in connection with the Binomial distribution. In the
Binomial case, we had a probability parameter p with two limits: 0 < p < 1.
For the Poisson case, we only have one limit to contend with: µ > 0. We might
still need to use a transformation to ensure that µ > 0, but the selection of
suitable transformations is different. By far the most common transformation
for Poisson data is the exponential / log transformation.

Again, imagine we have a linear expression, `, which can be any real number,
positive or negative:

` = α + βx .

Now consider the exponential transformation, in other words the inverse-log:

µ = f(`) = exp(`) = exp(α + βx) .

Then µ = exp(`) is always positive, for ` either positive or negative.

` = −∞ ⇒ µ = exp(`) = e−∞ ' 0

` = +∞ ⇒ µ = exp(`) = e+∞ ' ∞ .

−2 −1 0 1 2
0

2

4

6

l

f(
l)

The plot shows the shape of the function µ = f(`) = exp(`) . The horizontal
range is unrestricted between −∞ and ∞, but the vertical range is restricted
between 0 and ∞.

Thus, if we start with a linear predictor, ` = α+βx, and we transform it by
the exponential operator to get µ = exp(`) = exp(α+βx), then our parameters
α and β can take any real values but our mean µ is always positive.

Looking at this the other way around: if we start with a Poisson variable
Y with mean µ, and model log(µ) = ` = α+ βx, then we can estimate
any values of α and β without damaging our constraint that µ > 0.

This is the foundation of a major class of models called generalized linear
models (GLMs):
• The log-transformation g(µ) = ` is called the link function.
• The distribution of the response, Y , e.g. Poisson, is called the error model.

6

Generalized Linear Models (GLMs)

Generalized linear models (GLMs) are a very widely-used modelling class. They
are useful because they take an important step away from the simple linear
model that we have seen up to now. That is:

• Generalized linear models allow non-Normal error distributions.

We still use the linear predictor, ` = α+βx, as the primary way of modelling
the relationship between X and Y . However, as we have seen, when we move
away from Normal errors we run into problems with parameters that have
restricted ranges. For this reason we need to introduce a link function:

• A link function is a function g(µ), that maps a parameter with a restricted
range into the whole real line.

Thus there are three components to a generalized linear model:

1. The error model: e.g. Yi ∼ Poisson(µi).

2. The link function: e.g. g(µi) = log(µi).

3. The linear predictor: e.g. log(µi) = α + βxi.

Notes:

1. To qualify as a GLM, only certain error models are allowed, including Normal,
Binomial, Poisson, Gamma, and some other distributions. These distributions
belong to the so-called Exponential family of distributions. They have
likelihoods of a particularly convenient mathematical form, enabling a very
efficient computation for maximum likelihood estimation. In short, we get
answers quickly.

Historically, this computational efficiency made the difference between prac-
ticality and impossibility. The ongoing popularity of GLMs today is partly
because they were the only practical option in the early days of statistical mod-
elling, and partly because they do offer a wide range of useful modelling options
without the options being overwhelmingly diverse. And, they remain very fast.

2. The link function does not need to be a transformation. We might choose
to model g(µi) = µi: for example, if we are sure that the fitted line will be far
away from 0 and there is no risk of running into problems with negative means.
The choice g(µi) = µi is called the identity link. The choice g(µi) = log(µi)
is called the log link.

3. Much of this course so far has been concerned with doing interesting things to
the linear predictor, such as adding quadratic terms, factors, interactions, and
so on. All these same operations can still be done with GLMs.

7

GLM examples

Example 1: Poisson GLM with log link.

The model structure is:

Yi ∼ Poisson(µi) where log(µi) = α + βxi .

Fit with: glm(y ~ x, family = poisson(link="log"), data = mydat)

Or, because the log-link is the default for the Poisson family:

glm(y ~ x, family = poisson, data = mydat)

We back-transform from the linear predictor to the fitted values using

µ̂i = exp
(
α̂ + β̂xi

)
.

Crucial point: we are NOT transforming Y !

We are transforming the mean of Y . Our model statement is fully explicit
about the probability distribution of Y : Y ∼ Poisson.

The GLM framework enables us to model the mean using the familiar linear
predictor, coupled with the link function to keep everything within range, while
not interfering with the probability distribution of Y . Thus, we can choose a
probability distribution of Y that is appropriate for the circumstances — such
as Poisson — and we don’t have to worry about how the properties of this
distribution might be messed up by a log-transformation.

Expressing the same idea in two different notations:

Yi ∼ Poisson(µi) Yi ∼ Poisson

log(µi) = α + βxi log {E(Y |x) } = α + βx

µi = exp (α + βxi) E(Y |x) = exp (α + βx)

Note that we do NOT include any extra scatter term, ε.

The scatter model is encompassed in the statement that Yi ∼ Poisson(µi). It
is no longer a simple case of add-on scatter in the way that the Normal scatter
model can be viewed. So it would be incorrect to add an εi term on to the
end of the model statement.

Alternative models: We can use any alternative model formulation for the
linear predictor, exactly as we have been doing in Chapters 1-12. For example,
log(µi) = β0 + β1xi + β2x

2
i , or log {E(Yijk)} = µ+ αi + βj + γij, and so on.

8

Example 2: Binomial GLM with logit link.

The simplest model structure is:

Yi ∼ Binomial(1, pi) where log

(
pi

1− pi

)
= α + βxi .

This model is suitable for binary data where Yi is 0 or 1 depending on whether
a single ‘trial’ was a failure or success. For example, the ‘trial’ might correspond
to a patient given a particular drug treatment; then Yi = 1 if the patient
recovered, and Yi = 0 if the patient failed to recover.

Note that for the Binomial(n, p) distribution, the mean is µ = n× p. So for the
Binomial(1, p) distribution, the mean is µ = p. Therefore our linear predictor
is

g(µi) = log

(
µi

1− µi

)
= log

(
pi

1− pi

)
= α + βxi .

This has the same format as before, where g(µi) = `i is a linear predictor.

Fit with: glm(y ~ x, family = binomial(link="logit"), data = mydat)

Or, because the logit-link is the default for the Binomial family:
glm(y ~ x, family = binomial, data = mydat)

We back-transform from the linear predictor to the fitted values using

µ̂i =
exp

(
α̂ + β̂xi

)
1 + exp

(
α̂ + β̂xi

) .
Crucial point: we are NOT transforming Y .

We are transforming the mean of Y . Our model statement is fully explicit
about the probability distribution of Y : Y ∼ Binomial.

Expressing the same idea in two different notations:

Yi ∼ Binomial(1, pi) Yi ∼ Binomial

log

(
pi

1− pi

)
= α + βxi log

(
E(Y |x)

1− E(Y |x)

)
= α + βx

pi =
exp (α + βxi)

1 + exp (α + βxi)
E(Y |x) =

exp (α + βx)

1 + exp (α + βx)

9

Connection with log-transformation of Y : the LogNormal distribution

In Chapter 6, we already saw an example where we modelled Yi with a distri-
bution other than Normal, and used a log-transformation. There, we modelled
log(Y) ∼ Normal.

We can now see that we could describe this model a slightly different way.
Instead of saying log(Y) ∼ Normal, we could define a new distribution called
the ‘logNormal distribution’, which has the property that its log is Normal —
or, seen a different way, it is the exponential of a Normal distribution. Then
we could write Y ∼ logNormal, and log {E(Y |x)} = α + βx.

This looks a lot like what we have just done for the Poisson GLM. Indeed, it is
essentially the same idea, but with a different scatter model. The only reason
why we call this a log-transformation of Y instead of a GLM is because
the logNormal distribution does not happen to fall into the Exponential Family
of distributions that defines the GLM class (see page 7). Since this rests on
technical details beyond the scope of this course, you can be assured for now
that we are not doing anything very different in these two cases.

Most statisticians would prefer to use a GLM rather than a transformation of Y ,
because Y describes the physical phenomenon of interest and therefore we
want to be clear exactly what our assumptions are about Y . It is rather unintu-
itive and confusing to try to figure out what might be reasonable probabilistic
assumptions about the LOG of Y , instead of Y itself. While we cannot use the
logNormal distribution in a GLM itself, there is a very similar distribution that
does fall into the GLM family: called the Gamma distribution.

Both the Gamma distribution and the logNormal distribution have the property
of being right-skewed: they have long right tails. That is, they allow scatter
above the mean to be of higher magnitude than scatter below the mean.

Thus, for the future (beyond Stats 20x), bear in mind that it is more ‘aesthetic’
to use a GLM with Gamma errors and a log link, rather than log-transforming
Y as we did in Chapter 6. Both methods will give very similar answers. The
Gamma GLM approach has the advantage that we can draw inference directly
on the mean of Y , rather than on its median as we are forced to do in the
log-transformation framework of Chapter 6.
Generate some data that genuinely fit the logNormal model:

mydat <- data.frame(x=runif(100, 0, 3))

mydat$y <- exp(-2 + 0.4*mydat$x + rnorm(100, 0, 0.3))

Fit model using the log-transformation method of Chapter 6:

lm(log(y)~x, mydat)

Fit again using GLM method with Gamma family: you should get very similar estimates.

glm(y~x, family=Gamma(link="log"), mydat)

10

Stats 20x Handout 6: Poisson GLMs

Generalised Linear Models with the Poisson distribution

We have seen that a Poisson GLM has three components:

1. The error model or response distribution: Yi ∼ Poisson(µi).

2. The link function: g(µi) = log(µi).

3. The linear predictor: e.g. log(µi) = α + βxi.

Here, Y is a discrete, numeric variable (a count of something). We will use a
numeric predictor X for convenience, but it could alternatively be a categorical
variable, or there could be several predictors as in previous models that we have
seen.

The log link function ensures that we always obtain a Poisson mean µ that is
greater than 0. The log link is not the only function that ensures µ > 0, via
its exponential back-transformation, but it is by far the most common choice for
Poisson models. This is because it is often reasonable to assume that predictors
have a multiplicative effect on the response: µi = exp(α + βxi) = eα eβxi.

The glm function in R offers three link functions for Poisson models:

• link="log", the default link, favoured for both its practical usefulness and its
particularly nice theoretical properties.

• link="identity", meaning no transformation at all. This is fine if the data
Y are composed entirely of large counts so we can be sure that the estimated
means will be well away from zero, but might generate errors otherwise.

• link="sqrt", which uses the back-transformation µ = (α + βx)2 to ensure
positivity. This link is rarely used for modelling.

In this handout, we look at the practicalities of fitting a Poisson GLM, focusing
on differences from the Normal models we have seen up to now. We will only
use log link functions for Poisson data from now on.

Generating Poisson GLM data

Generate data according to a Poisson GLM with log-link and alpha=(-1), beta=0.2:

mydat <- data.frame(x=runif(100, 0, 20))

mydat$linpred <- (-1) + 0.2*mydat$x

mydat$mu <- exp(mydat$linpred)

mydat$y <- rpois(100, mydat$mu)

Plot the data and overplot the true mean, mu = exp(-1 + 0.2*x):

plot(y~x, mydat)

lines((0:20), exp(-1+0.2*(0:20)), col="red")

1

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

● ● ●

●

●

●

●

●●

●

0 5 10 15 20

0
5

10
15

20

x
y

Note that we have generated the
dataset so that it exactly fits the
Poisson model with log-link and
linear predictor `i = −1 + 0.2xi.

The plot of y against x is shown
here. Note the characteristics:
Y takes integer values only;
scatter increases as the fitted
values increase;
the mean line has a curved shape.

Fitting the model

The model-fitting command is very easy: just use glm instead of lm, and add the
argument family=poisson(link="log"). In fact, just typing family=poisson

is enough, but you might find it helpful to use family=poisson(link="log")

because it includes an explicit reminder that we are working on the log-transformed
scale.

myfit <- glm(y ~ x, family = poisson(link="log"), data = mydat)

Or just: myfit <- glm(y ~ x, family = poisson, data = mydat)

Now look at the summary(myfit) output. Much of it looks familiar, but there
are some differences. There are several mentions of deviance: see below.

Call:

glm(formula = y ~ x, family = poisson(link = "log"), data = mydat)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3908 -0.9024 -0.0726 0.5496 1.9013

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.31856 0.19059 -6.918 4.57e-12 ***

x 0.21986 0.01203 18.270 < 2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 573.274 on 99 degrees of freedom

Residual deviance: 79.106 on 98 degrees of freedom

AIC: 338.56

2

Model checks 1: The residual plot

We are familiar with the three model-checking commands: plot(myfit, which=1),
normcheck(myfit), and cooks20x(myfit). Unfortunately, all of these checks
are specific to the Normal error model, and must be either modified or discarded
for GLMs.

We can still use the first command plot(myfit, which=1), and interpret the
output much the same way as we have done previously. However, the plot itself
is a little different and needs some explanation. We do not have analogues of
the other two commands for non-Normal models.

For GLMs, the only one of these 3 model-checks we use is plot(myfit,
which=1). The plot is a little different from what we are used to.

What is a residual?

For Normal models, estimation is conducted by the least-squares criterion,
which we have said is a special case of maximum likelihood estimation:

α̂ and β̂ minimize
n∑
i=1

(yi − µ̂i)2 : the sum of the squared residuals.

In fact, what we are doing here via least-squares is minimizing the negative
of the log-likelihood. The log of the likelihood will always be a sum of terms:
one term for each observation. Maximizing the likelihood is always the same
as maximizing the log-likelihood (because log(L) is an increasing function of
L), which in turn is the same as minimizing the negative of the log-likelihood.
These details are not important. What is important is that the ‘thing we want
to minimize’ to estimate α and β is composed of a sum of terms, where each
term corresponds to one observation, and the larger the term is for an
observation, the worse is the fit for that observation.

In other words, for Normal models, we estimate α and β by minimizing
n∑
i=1

(yi − µ̂i)2 =
n∑
i=1

(residuali)
2

and if observation i has a large term, in other words if (yi − µ̂i)2 = (residuali)
2

is large, then the fit for observation i is not very good.

For non-Normal models, the minus-log-likelihood that we minimize is still a
sum of terms, one for each observation. And it is still true that the larger the
term, the worse the fit for observation i. All that has changed is that
the terms no longer have the form (yi − µ̂i)2. So why don’t we define residuals
for this model such that they do match the term in the log-likelihood?

3

Up to a couple of details, that is exactly what we do. We define ‘residuals’ for a
Poisson GLM such that they play the same role in the Poisson log-likelihood as
the term (yi− µ̂i) plays in the Normal log-likelihood. These residuals are called
deviance residuals, and they play the same role as the familiar residuals
in a Normal model. We can think of the deviance residuals as measuring the
deviation between each observation and the fitted model. A large deviance
residual implies a poor fit or large scatter for that observation.

For the record, the formula for deviance residuals in a Poisson GLM is below,
but you are unlikely to see or use this formula in practical modelling.

(deviance residual)i = sign(yi − µ̂i)

√
2

(
yi log

yi
µ̂i
− (yi − µ̂i)

)
.

The other difference in the plot obtained from plot(myfit, which=1) is that
the horizontal axis displays the fitted linear predictor, α̂ + β̂xi: not the
fitted value, µ̂i = exp(α̂ + β̂xi).

This stands to reason, because the exponential back-transformation would greatly
distort the plot if we plotted the fitted values themselves.

Beyond this, we are looking for the same features as usual in the residual plot
for a GLM: ideally the residual plot should be a patternless band of scatter
of roughly constant width, centred on zero.

−1 0 1 2 3

−
2

−
1

0
1

2

Predicted values

R
es

id
ua

ls

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

glm(y ~ x)

Residuals vs Fitted

90

93

53

Here is the residual plot from
plot(myfit, which=1).
The horizontal axis shows the
fitted linear predictor,
α̂ + β̂xi.
The vertical axis shows the
deviance residuals, as above.

This plot is satisfactory.
The striking lines of residuals are
nothing to worry about. They arise
from multiple observations of y = 0
for various x values (bottom left of plot);
multiple observations of y = 1 (next left);
and so on.

You can reproduce this plot by: plot(predict(myfit), residuals(myfit)).
The command predict gives the linear predictor by default, not the fitted values.

4

Model checks 2: Residual deviance

Because we have a Poisson GLM, the familiar normcheck diagnostic is no longer
appropriate. Instead, we need some sort of test that the Poisson model is
satisfactory. Such a test is often called a goodness-of-fit test.

This test brings us back to the idea of deviance again. Recall the bottom part
of the output from summary(myfit) above:

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 573.274 on 99 degrees of freedom

Residual deviance: 79.106 on 98 degrees of freedom

AIC: 338.56

The first line, ‘Dispersion parameter for poisson family taken to be 1’, is a
comment about the Poisson assumption that variance equals the mean.
The ‘dispersion parameter’ is the ratio of variance to mean, and it should equal
1 if the data are genuinely Poisson. However, we often relax this assumption
and consider a ‘Poisson-like’ distribution for which the variance is proportional
to the mean, but not necessarily equal to it. Such a model is called a quasi-
Poisson model and we will describe it below.

The test for whether we need to use a quasi-Poisson model instead of a Poisson
model uses the penultimate line:

Residual deviance: 79.106 on 98 degrees of freedom.

Theory tells us that the residual deviance can be usefully approximated by a
Chi-squared distribution, in which case the two numbers printed here should be
close to each other. If the first number greatly exceeds the second, our data are
said to be overdispersed, and we should use the quasi-Poisson model instead.
We test whether the dispersion is too high for a Poisson model using a p-value
from the Chi-squared distribution:

> 1 - pchisq(79.106, 98)

[1] 0.9191137

In this case, the p-value is large, so we have no concern about the Pois-
son model.

If this p-value is small, e.g. less than 0.05, it indicates that the assumption of
variance being equal to the mean does not hold for this dataset, and we should
refit the model using the quasi-Poisson distribution, which allows
the variance to be larger than the mean.

5

Describing the fitted model: confidence intervals for the parameters

Confidence intervals for the estimated parameters α and β can be found using
the R function confint, as usual. Here is the output for the GLM fit on our
simulated data, which had true values α = (−1) and β = 0.2.

> myfit

Call: glm(formula = y ~ x, family = poisson(link = "log"), data = mydat)

Coefficients:

(Intercept) x

-1.3186 0.2199

> confint(myfit)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -1.7042735 -0.9566556

x 0.1968015 0.2440037

Both of the confidence intervals contain the respective true values in this ex-
ample. To describe what the fitted model means in intuitive terms, we need
to back-transform from the log scale to the response scale using
exp(CI).

This is the same as we did in Chapter 6 for log-transformed Y , except that
we can now draw conclusions about the mean of Y , rather than the median.
(Not having to use this median-fudge is a good reason for using GLMs instead
of log-transformation.) We need to remember that when we back-transform
through exponentiation, we should report results as percentage growth or
percentage change.

Here, our 95% confidence interval for β is 0.197 to 0.244.

Back-transforming to the response scale: exp(0.197) = 1.22 and exp(0.244) =
1.28.

Thus every unit increase in x is associated with an increase in the MEAN of
Y to between 122% and 128% of its current value. Expressed as a percentage
change, the mean of Y increases BY between 22% and 28% of its current value.

So our wording might be: We estimate that the mean of Y increases by
between 22% and 28% for every every unit increase in x.

If we need to use multiple units of x, e.g. kx, then multiply the confidence
interval by k before exponentiating: e.g. for k = 5,
100*(exp(5*confint(myfit)[2,]) - 1) gives percentage change of
168% to 239%.
We estimate that the mean of Y increases by between 168% and 239% for every
FIVE units increase in x.

6

Fitted values for specified values of x, and their confidence intervals

We need to be careful using the function predict for GLMs, because by de-
fault, it returns the fitted LINEAR PREDICTOR (i.e. fitted values
on the log scale), rather than the fitted values µ̂ on the response
scale.

To extract fitted values, we have three choices:

• fitted(myfit) will deliver fitted values µ̂i ONLY for the xi values in the orig-
inal data set. It has no other functionality.

• predict(myfit, type="response", newdata=my.newdat) is the core R way
of generating fitted values on the response scale (i.e. back-transformed to
the scale of Y). You can also enter new data and generate predictions of Y
for new x values. Unfortunately, the predict() function no longer has the
argument interval="conf" or interval="prediction" for GLMs.

• The s20x library has a convenient function predictCount, which does the
same as predict(myfit, type="response", newdata=my.newdat), and de-
livers confidence intervals. This is the best option, but it only works for Poisson
or quasiPoisson GLMs.

> predictCount(myfit, newdata=data.frame(x=c(1,10,20)))

Predicted Conf.lower Conf.upper

1 0.333 0.235 0.473

2 2.411 2.062 2.819

3 21.728 18.829 25.074

ANOVA analyses

The command anova(fit) is suitable for GLMs in the same scenarios as it is
used for ordinary linear models: for example, when we have a single categorical
predictor with more than two levels, or when we have two or more categorical
predictors or a mix of categorical and numeric variables and their interactions.

There is one key difference. As the name suggests, ANOVA is about analysis
of variance. However, you’ll notice that we have replaced many of our ideas
about ‘variance’ for simple linear models with the notion of ‘deviance’ for GLMs.
Therefore, ANOVA is now interpreted as an analysis of deviance rather than
an analysis of variance.

The statistical theory for deviance is less well-developed than that for ANOVA
in Normal models. However, it has been shown that the Chi-squared distri-
bution provides a good reference distribution for whether or not a variable
contributes sufficient ‘reduction in deviance’ to be retained in the model.

7

For practical purposes, all you need to remember is:

• When conducting ANOVA with a GLM model, we need to specify
anova(fit, test=“Chisq”).

Try it out by creating a one-way ANOVA style analysis, but with log-link and
Poisson errors. Instead of anova(fit), we use anova(fit, test="Chisq"),
and read results off an Analysis of Deviance table instead of an Analysis
of Variance table.

●

A B C

0
2

4
6

8

group

y

mydat <- data.frame(group=c(rep("A", 10), rep("B", 10), rep("C", 10)))

Create three intercepts on the log-scale, with small but noticeable differences:

mydat$lin.pred <- c(rep(0.5, 10), rep(0.8, 10), rep(1, 10))

Create the mean on the response scale for each group:

mydat$mu <- exp(mydat$lin.pred)

Generate response, mydat$y, using Y~Poisson(mu):

mydat$y <- rpois(30, mydat$mu)

Plot:

plot(y~group, mydat)

Fit the model:

myfit <- glm(y~group, family=poisson, mydat)

ANOVA using test="Chisq":

anova(myfit, test="Chisq")

Analysis of Deviance Table

Model: poisson, link: log

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 29 68.513

group 2 13.906 27 54.607 0.0009558 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The conclusion is that the group factor is significant, so the variable group is
contributing sufficient reduction in deviance to be retained in the model.

Quasi-Poisson models

We said earlier that we need to check Poisson GLM fits for the suitability of
the Poisson model, in particular the requirement that variance = mean. If
this assumption appears untenable, we should use a quasi-Poisson model.

The quasi-Poisson fit relaxes the precise assumption that variance = mean, and
replaces it with a looser assumption that variance is a constant multiple
of the mean, where this multiple (called the dispersion parameter) will be
estimated along with the other model coefficients.

8

When we enter the realm of quasi-GLMs, we are sacrificing the strong statistical
theoretical foundation of proper GLMs in the interests of pragmatism. The
quasi-Poisson fit is a bit of a fudge, and does not have the strong theoretical
support that other models have. However, so-called overdispersed count data
are very common in practice, so the quasi-Poisson GLM is very commonly used.

There are only three things you need to know about quasi-Poisson GLMs:

• Fit the quasi-Poisson model using family = quasipoisson instead of
family = poisson. Everything else about the model formula stays the same.

• When you use summary(fit), the quasipoisson family will typically give larger
standard errors; similarly, using confint or predictCount will typically give
wider confidence intervals than the standard Poisson fit.

• When using quasi-Poisson models (or any quasi-GLM), there is no longer the
same theoretical justification for using anova(fit, test="Chisq"). Instead,
for any quasi-GLM fit, change to anova(fit, test="F").

Let’s look at an example. We will generate genuinely Poisson data, as we did
before, but pick a data-set that just happens to show a bit of overdispersion.
Then we will look at the difference due to using the quasi-Poisson model.
Generate data according to a Poisson GLM with log-link and alpha=(-1), beta=0.2:

mydat <- data.frame(x=runif(100, 0, 20))

mydat$linpred <- (-1) + 0.2*mydat$x

mydat$mu <- exp(mydat$linpred)

mydat$y <- rpois(100, mydat$mu)

Fit standard Poisson GLM:

fit1 <- glm(y~x, family=poisson, mydat)

summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0653 0.1723 -6.184 6.24e-10 ***

x 0.2054 0.0114 18.019 < 2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 531.48 on 99 degrees of freedom

Residual deviance: 119.39 on 98 degrees of freedom

Just by chance, this data-set has quite a large residual deviance (119.39) relative
to the residual df (98). (Remember that 5% of genuine Poisson data-sets will
give a residual deviance in the top 5%, and will be falsely declared as significant
overdispersion.)

9

Check out the p-value for overdispersion from this data-set:

1 - pchisq(119.39, 98)

[1] 0.06999373

The p-value is not quite significant, so we do not have to use a quasi-Poisson
fit in this case. Let’s plough on and use the quasi-Poisson fit anyway, to see
what changes:

fitQ <- glm(y~x, family=quasipoisson, mydat)

summary(fitQ)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.0653 0.1829 -5.825 7.26e-08 ***

x 0.2054 0.0121 16.972 < 2e-16 ***

(Dispersion parameter for quasipoisson family taken to be 1.127065)

Null deviance: 531.48 on 99 degrees of freedom

Residual deviance: 119.39 on 98 degrees of freedom

All that has happened is that the standard errors for the quasi-Poisson
fit are larger, and the dispersion parameter is now specified to be
greater than 1.

We just have to remember to use anova(fit, test="F") where appropriate.

Summary of modelling with Poisson GLMs

1. Fit using myfit <- glm(y ~ x, family=poisson(link="log"), data=mydat).

2. Use plot(myfit, which=1) to check the residuals. These are now deviance
residuals. The plot is interpreted as usual.

3. Use summary(myfit) to read off the residual deviance (R) and the residual df
(D). Check that the Poisson model is appropriate using 1 - pchisq(R, D). If
this is non-significant, continue with the Poisson fit. If it is significant, refit the
model using glm(y ~ x, family=quasipoisson(link="log"), data=mydat).

4. Extract confidence intervals for parameters using confint(myfit). Back-transform
using exponentiation, and quote results as percentage growth or percentage
change for the mean of Y (not the median).

5. Extract confidence intervals for fitted values using predictCount(myfit, newdata),
or predict(myfit, type="response", newdata). (Do not exponentiate these!)

6. Use the anova command in the same situations as usual. For regular Pois-
son GLMs, use anova(myfit, test="Chisq"). For quasi-Poisson GLMs, use
anova(myfit, test="F").

10

Stats 20x Handout 7: Binomial GLMs

The Binomial distribution

The Binomial distribution is another discrete (counting) distribution. The
Binomial(n, p) distribution counts the number of successes in n indepen-
dent trials, where all trials have the same probability of success p.

The Binomial distribution therefore has both a lower limit and an upper limit.
If Y ∼ Binomial(n, p), then Y can only take values 0, 1, 2, . . . , n.

The mean of the Binomial(n, p) distribution is µ = np. Here are the shapes of
some Binomial(n, p) distributions:

n = 10, p = 0.5 n = 10, p = 0.9 n = 100, p = 0.9

A special case that is particularly useful for modelling is the case where n = 1.

This corresponds to binary data: if Y ∼ Binomial(1, p), then Y can only
take values 0 and 1.

The probability that Y = 1 is p, and the probability that Y = 0 is 1− p.
The mean of Y is µ = np = p.

0 1

p=0.9

0.0

0.2

0.4

0.6

0.8

1.0

0 1

p=0.6

0.0

0.2

0.4

0.6

0.8

1.0

0 1

p=0.3

0.0

0.2

0.4

0.6

0.8

1.0

0 1

p=0.1

0.0

0.2

0.4

0.6

0.8

1.0

For example, in a medical study, we might have Yi = 1 if patient i has diabetes,
and Yi = 0 if they do not. The probability of a patient having diabetes can
be modelled in terms of various risk factors. Our interest is in determin-
ing predictor variables X1, X2, . . . that govern the risk p of having
diabetes.

1

Logit link function

Because the Binomial parameter p (or equivalently, µ), is restricted between 0
and 1, for GLMs we need a link function that maps the interval [0, 1] to the
whole real line. We have already discussed a suitable function in Handout 5:

pi =
exp (α + βxi)

1 + exp (α + βxi)
⇐⇒ log

(
pi

1− pi

)
= α + βxi

Logistic function Logit function

The name of the link function is the transformation from p to the linear

predictor: logit link: g(µ) = g(p) = log
(

p
1−p

)
= `.

The inverse of this function is called the logistic function, and is the back-
transformation from the linear predictor back to the Binomial probability p. It
is easily shown that the inverse-logit function has the logistic form,
p = exp(`)/ {1 + exp(`)}.

What do binary data look like when pi =
exp (α + βxi)

1 + exp (α + βxi)
?

Each Yi is 0 or 1. When pi is close to 0, most Yi will be 0.
When pi is close to 1, most Yi will be 1.
For intermediate pi, Yi will be a mix of 0s and 1s, in the proportions
1− pi to pi.

The graph of p as a function of a numeric variable x is below, using α = −8
and β = 0.8. You can see that, as x ranges from 0 to 20 in this case, the binary
outcomes Yi change from being mostly 0 to mostly 1. In the mid-range of x,
there is a mixture of 0 and 1 outcomes.

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

x

P
(Y

=
1

)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●

● ● ●

●

● ●

Different logistic shapes are generated by different values of α and β. Various
shapes are shown overleaf.

2

Various α with β = 2 α = 0 with various β > 0 α = 0 with various β < 0

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

x

p
(x

)

α = 2
α = 0
α = − 2

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

x
p

(x
)

β = 1
β = 2
β = 5

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

x

p
(x

)

β = − 1
β = − 2
β = − 5

Odds and Log-Odds

The logit function g(p) = log

(
p

1− p

)
can be interpreted as log-odds.

What does this mean?

• The probability that an event of interest happens is p.
(Here, our event of interest is Y = 1.)

• The probability that the event does not happen is 1− p. (Here, Y = 0.)

• The event is

(
p

1− p

)
times more likely to happen than not to happen.

• The ratio

(
p

1− p

)
is called the ODDS of the event.

• So log

(
p

1− p

)
is the log-odds.

You have probably heard people describing chance events in terms of odds: for
example saying things like, ‘the team is odds-on to win’, or ‘the team is 10-
to-1 on to win’. Language like ‘10-to-1 on to win’ corresponds to an odds of
10/1 = 10.

In general, the higher the odds, the more likely the event is to happen.

Let’s get some practice at thinking in terms of odds:

• Odds of 1: as likely to occur as not to occur (p = 0.5).

• Odds of 10: 10-to-1, or 10 times more likely to occur than not to
occur. p = 10/11.

• Odds of 0.2: 0.2-to-1, so p = 0.2/1.2 = 0.167. Five times more likely
NOT to occur than to occur.

• Lengthening the odds: making it more likely that the event will occur.

3

Back-transformation to the response scale

As we saw overleaf, when we use the logit link function, we are modelling the
log-odds that Y = 1.

When we back-transform the linear predictor ` = α + βx, we can either:

1. Use
exp(`)

1 + exp(`)
= p to make statements about the probability p that Y = 1; or

2. Use exp(`) =
p

1− p
to make statements about the odds that Y = 1.

For other models, we have used back-transformation to make intuitive state-
ments about what the fitted model means. For example, for a Poisson GLM
with log link, we make comments like, ‘The mean of Y increases by 100×(eβ−1)
percent for every unit increase in x.’

These expressions are gained from the following calculation: if we start with
xold = x, and increase it to xnew = x+ 1, then the percentage change in EY is:

% change =
(EY for xnew)− (EY for xold)

(EY for xold)
× 100 .

For a log-link function, this fraction simplifies nicely, and we end up with a
percentage change of 100×(eβ−1) for each unit increase in x, or 100×(e10β−1)
for each 10-unit increase in x, and so forth. In other words, for a model with
log-link, the percentage change for a unit-increase in x is the same regardless
of which x we start at.

Unfortunately, when we use the logistic back-transformation p =
exp(`)

1 + exp(`)
,

the expression for percentage change does not simplify to something that is the
same for all x. For this reason we have to resort to describing the percentage
change in odds when we summarize the model, instead of the percentage
change in the fitted value p. Thus we use the back-transformation in point 2

above: exp(`) =
p

1− p
= (odds that Y = 1).

Percentage change in odds:

We will do the most general case, where we consider a change in x by k units.

The linear predictors are:

`new = α + βxnew = α + β(x+ k),

`old = α + βxold = α + βx .

4

Then:

% change in odds =
(odds for xnew)− (odds for xold)

(odds for xold)
× 100

=
exp(`new)− exp(`old)

exp(`old)
× 100

=
exp(α + βx+ βk)− exp(α + βx)

exp(α + βx)
× 100

=
exp(α) exp(βx) exp(βk)− exp(α) exp(βx)

exp(α) exp(βx)
× 100

= {exp(βk)− 1} × 100 ,

exactly the same as our usual expression for percentage change with a log-link
function. The only thing we have to remember differently is that now we
report percentage change in the ODDS of Y = 1, not in the MEAN
of Y .

In practice, we will use a confidence interval for β to express this, rather
than the point estimate. If our confidence interval is β̂low to β̂high, then suitable
wording for the Executive Summary is:

• We estimate that the odds of <event Y=1 in plain language> will increase by

between 100×
{

exp
(
β̂low

)
− 1
}
% and 100×

{
exp

(
β̂high

)
− 1
}
% for every unit

increase in x.

• We estimate that the odds of <event Y=1> will increase by between 100 ×{
exp

(
kβ̂low

)
− 1
}
% and 100×

{
exp

(
kβ̂high

)
− 1
}
% for every k units increase

in x.

• For example: We estimate that the odds of a patient getting diabetes
increase by between 10% and 20% for every 10kg increase in the
patient’s body fat.

What does it mean for odds to increase by 10%?

• If the odds were 10 at the previous weight, (i.e. 10-to-1 in favour of getting
diabetes), they are now 1.1×10 = 11 i.e. 11-to-1 in favour of getting
diabetes.

• If the odds were 5 at the previous weight, they are now 1.1× 5 = 5.5.

• If the odds were 1 at the previous weight, they are 1.1 at the new weight.

• If the odds were 0.2 at the previous weight, they are 0.22 at the new weight.

5

Binomial GLM for binary data: Logistic Regression

For binary data, Y ∼ Binomial(1, p). Also, E(Y) = µ = p, so µ and p are
interchangeable. The GLM has three components:

1. The error model or response distribution: Yi ∼ Binomial(1, pi), or
equivalently, Yi ∼ Binomial(1, µi).

2. The link function: g(µi) = log

(
µi

1− µi

)
= log

(
pi

1− pi

)
.

3. The linear predictor: log

(
pi

1− pi

)
= α + βxi, or another function of

predictors as desired.

Fitting the model

Either:
myfit <- glm(y ~ x, family = binomial(link="logit"), data = mydat)

Or just: myfit <- glm(y ~ x, family = binomial, data = mydat)

To describe the model in Methods & Assumptions: ‘Our model is
log(oddsi) = β0 + β1xi, where oddsi is the odds of a success for subject i.’

Describing the fitted model: confidence intervals for the parameters

Use the R function confint, as usual.

Back-transform the CI for β using exp(confint(fit)[2,]), and interpret in
terms of a percentage change in odds as described in the previous section.
See the example below.

Example with simulated binary data

●

●●

●

● ●●●●●●●● ●

●●●●

●●

●●●

●

●

●

●●

●

●●●●●

●

●●●

●

●● ●

●●●

● ●

●

●●

●

●

●

●●●●●●●

●

●●

●

● ●

●

● ● ● ●●●

●

●●●●●●●●●●●●●● ●●●●●●●●● ●● ●

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Generate data for a Binomial GLM with

logit-link and alpha=(-1), beta=0.2:

mydat <- data.frame(x=sort(runif(100, 0, 20)))

mydat$linpred <- (-1) + 0.2*mydat$x

Logistic function for P(Y=1):

mydat$p <- with(mydat,

exp(linpred) / (1+exp(linpred)))

Generate response Y: 100 random Binomial

numbers with n=1 and p depending on x:

mydat$y <- with(mydat, rbinom(100, 1, p))

Plot data y, with the true function p overlaid:

plot(y~x, mydat)

lines(p~x, mydat, col=2, lwd=2)

6

Fit the model:

myfit <- glm(y~x, family=binomial(link="logit"), data=mydat)

Find confidence intervals:

confint(myfit)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -1.9225462 -0.1143848

x 0.1300101 0.3499907

Back-transform for percentage change in odds:

100*(exp(confint(myfit)[2,]) - 1)

2.5 % 97.5 %

13.88399 41.90544

Both of the CIs contain the respective true values, α = −1 and β = 0.2.
Our Executive Summary conclusion is: We estimate that every 1-unit
increase in x increases the odds of Y = 1 by between 14% and 42%.

Fitted values for specified values of x, and their confidence intervals

As with Poisson GLMs, the function predict returns the fitted linear predictor
by default: that is, the fitted values on the logit scale, rather than the fitted
values p on the response scale. Unfortunately, for Binomial GLMs there is
no convenient function in the s20x library corresponding to predictCount for
Poisson GLMs. To extract fitted values, we only have two choices:

• fitted(myfit) will deliver fitted values pi ONLY for the xi values in the orig-
inal data set. It has no other functionality.

• predict(myfit, type="response", newdata=my.newdat) is the core R way
of generating fitted values on the response scale (i.e. the back-transformed
probabilities, pi). You can also enter new data and generate fitted probabilities
for new x values.

Unfortunately, there is no built-in way of generating confidence intervals for
fitted values, so we have to do it ourselves.

• First generate the CI on the logit scale using estimate ± 1.96 × standard
error.

• Then back-transform the CI to the response scale using exp(`)/(1 + exp(`)).
See the example code below.

7

Create a new data-frame for which we want fitted values:

my.newdat <- data.frame(x=c(0, 10, 20))

Use predict ON THE LOGIT SCALE to extract fitted linear predictor AND std error:

pred.logit <- predict(myfit, newdata=my.newdat, se.fit=T)

pred.logit has components "fit" and "se.fit". Use these to calculate CIs

on the LOGIT scale. Combine the results into the pred.logit dataframe:

pred.logit <- data.frame(within(pred.logit, {

ci.low <- fit - 1.96 * se.fit

ci.hi <- fit + 1.96 * se.fit

})[c("fit", "ci.low", "ci.hi")])

Look at the resulting fitted values and CIs on the LOGIT scale:

pred.logit

fit ci.low ci.hi

1 -0.9888959 -1.8851852 -0.09260657

2 1.3101992 0.7137902 1.90660823

3 3.6092943 2.1027942 5.11579437

Back-transform all columns at once for fitted probabilities:

pred.p <- exp(pred.logit)/(1+exp(pred.logit))

Attach the x-values to the beginning:

pred.p <- cbind(my.newdat, pred.p)

Look at the outcome (with rounded values). These are now FITTED PROBABILITIES:

print(pred.p, digits=3)

x fit ci.low ci.hi

1 0 0.271 0.132 0.477

2 10 0.788 0.671 0.871

3 20 0.974 0.891 0.994

ANOVA analyses

As for Poisson GLMs, we can use the anova(myfit) command in the usual
situations for a Binomial GLM. We only need to remember one thing:

• When conducting ANOVA with a GLM model, we need to specify
anova(fit, test="Chisq").

No Quasi-fit for Binary data

When the data are binary, there is no legitimate test of the residual deviance
to decide if we should use a quasi-GLM in the same way as we did for the
Poisson models. This is because the Chisquared test for residual deviance
(1 - pchisq(dev, df) for Poisson models) relies upon asymptotic results that
do not apply when we only have n = 1 trial for each observation.

Therefore we will not use quasi-Binomial fits for binary data. The Chisquared
test is legitimate for grouped data (see next section) and quasi-Binomial fits
are included there.

8

Grouped Data — three ways to fit logistic regressions

If the predictors are categorical, or numeric with many repeated observations
at each value, we can reformat the data as grouped data.
For example, a binary-format data frame like the one on the left could be
aggregated to give the one on the right:

x y x s n

10 0 10 1 4

10 1 12 2 3

10 0

10 0

12 1

12 1

12 0

This looks like the traditional notion of a Binomial distribution, where:
n is the number of trials at each x-value,
and s is the number of successful trials.

There are three ways to proceed with grouped data. Follow the code below.

Generate data with 25 observations for each

combination of Sex (M/F) and Age (Adult/Child):

mydat <- data.frame(Sex=c(rep("F", 50), rep("M", 50)),

Age=rep(c(rep("A", 25), rep("C", 25)), 2))

For the linear predictor use the model Sex + Age:

mydat$p <- exp(-2+as.numeric(mydat$Age=="C")*1+as.numeric(mydat$Sex=="M")*3)/

(1+exp(-2+as.numeric(mydat$Age=="C")*1+as.numeric(mydat$Sex=="M")*3))

Response y in binary format:

mydat$y <- rbinom(100, 1, mydat$p)

METHOD 1: FIT WITH BINARY (UNGROUPED) DATA AS BEFORE:

fit.bin <- glm(y ~ Sex + Age, family=binomial, data=mydat)

Coefficients:

(Intercept) SexM AgeC

-3.366 3.472 2.249

REFORMAT THE DATA INTO GROUPED DATA FOR METHODS 2 AND 3:

Now aggregate the data into grouped format:

gpdat <- aggregate(y ~ Sex * Age, data=mydat, sum)

gpdat$trials <- aggregate(y ~ Sex * Age, data=mydat, length)$y

gpdat$fail <- with(gpdat, trials - y)

names(gpdat)[names(gpdat)=="y"] <- "success"

gpdat

Sex Age success trials fail

F A 1 25 24

M A 13 25 12

F C 6 25 19

M C 23 25 2

9

METHOD 2: FIT TO GROUPED DATA USING SUCCESS-FAIL RESPONSE.

The response is entered in two columns using cbind(success, fail):

fit.gp <- glm(cbind(success, fail) ~ Sex+Age, family=binomial, data=gpdat)

Coefficients:

(Intercept) SexM AgeC

-3.366 3.472 2.249

METHOD 3: FIT TO GROUPED DATA USING PROPORTIONS AND WEIGHTS:

The response is proportion of successes, and "weights" gives number of trials:

gpdat$proportion <- with(gpdat, success/trials)

fit.prop <- glm(proportion ~ Sex+Age, family=binomial, data=gpdat, weights=trials)

(Intercept) SexM AgeC

-3.366 3.472 2.249

We get exactly the same fit regardless of which of the three methods we use.

Quasibinomial fit for grouped data only

Unlike binary data, we can test for overdispersion with grouped data, using
1-pchisq(resid.deviance, resid.df). If this is significant, refit the model
using family=quasibinomial.
Any ANOVA tests should then use anova(fit, test="F").

Summary of modelling with Binomial GLMs: Logistic Regression

1. Fit with logit link using EITHER:
Binary data: glm(y ~ formula, family=binomial, data=mydat);
Grouped data: glm(cbind(success, fail) ~ formula,family=binomial,data)

OR: glm(proportion ~ formula, family=binomial, data, weights=trials).

2. Use plot(fit, which=1) to check the residuals. These are now deviance
residuals. The plot is interpreted as usual.

3. For grouped data only: use summary(fit) to read off the residual deviance
(R) and the residual df (D). Check that the Binomial model is appropriate using
1 - pchisq(R, D). If this is non-significant, continue with the Binomial fit. If
it is significant, refit the model using glm(y ~ formula, family=quasibinomial).

4. Extract confidence intervals for parameters using confint(fit). Back-transform
using exponentiation, and quote results as percentage growth or percentage
change for the odds of Y = 1 (not the mean or median of Y).

5. To obtain fitted probabilities, use predict(fit, type="response", newdata).
Create DIY confidence intervals for fitted probabilities as described on page 8.

6. Use the anova command as usual: anova(fit, test="Chisq") for regular
binomial models; anova(fit, test="F") for quasibinomial models.

7. To describe the model in M&A, use ‘logistic regression’ or ‘binomial GLM’. If
quasibinomial, describe it as overdispersed. Formula: log(oddsi) = α + βxi.

10

Stats 20x Handout 8: Tables of Counts
What is a table of counts?

Tables of counts should already be familiar from Stats 10x. Here are some
examples familiar from Stats 10x, or soon-to-be familiar in Stats 330.

Question: does snoring affect tendency to have nightmares?

Nightmares
Common Rare Total

Snorer? Yes 11 82 93

No 12 74 86

Total 23 156 179

Question: does education affect level of religious practice?

Religious practice
Fundamentalist Moderate Liberal Total

None 178 138 108 424

Qualification: High School 570 648 442 1660

Graduate 138 252 252 642

Total 886 1038 802 2726

Question: has the childhood weight profile changed over time in NZ?

Weight
Normal Overweight Obese Total

Year: 1989 754 96 21 871

2000 626 187 81 894

Total 1380 283 102 1765

In each case, our question is the same: Are the rows multiples of each
other?

Clearly, the rows aren’t identical, because they have different totals and because
of random scatter. Our question is whether we can believe that the table of
counts was drawn from a population in which the column probabilities
are identical for each row.

This is the same as asking whether there is an association between the rows
and the columns. That is, we are asking whether the profile across columns
is the same for each row.

1

In the framework we have been developing in Stats 20x, you’ll notice that
the rows correspond to the levels of one categorical predictor variable,
and the columns correspond to the levels of one categorical response
variable.

This differs from what we have seen before in Stats 20x: up to now we have only
seen numeric response variables, Y . Even if the numeric response was a
discrete count, as for Poisson and Binomial GLMs, it was still formulated as a
single numeric variable. The closest we have come to formulating the response
as categorical was when we fitted the Binomial GLM using grouped data and
the cbind(success, fail) formulation: e.g. from the end of Handout 7,

glm(cbind(success, fail) ~ Sex + Age, family=binomial, data=gpdat)

This handout covers the material from Chapters 16 to 19. We will see that
there are several different ways of approaching the table of counts analysis,
all of which give the same or very similar answers. The primary
difference in the methods is their level of flexibility. Some methods are only
suitable if the response has two levels; others can deal with multiple levels in the
response, but only one categorical predictor; whereas the most flexible method
(the Poisson GLM) can deal with any number of predictor variables and any
number of response categories, but is also the least intuitive.

Visualizing data from tables of counts

First we show a useful function for visualizing this sort of data. The s20x

library function rowdistr lays out row or column proportions in the same
configuration as they appear in the table. The name rowdistr indicates that
we can compare the ‘distribution’ of the response, according to row.

Enter the data by hand, as a 2x2 matrix, entering one row at a time:

nightmare.tab <- matrix(c(11, 82, 12, 74), byrow=T, nrow=2)

Give the matrix some names for convenience:

dimnames(nightmare.tab)<-list(c("Snore.Y", "Snore.N"), c("Common", "Rare"))

Have a look at the matrix:

nightmare.tab

Common Rare

Snore.Y 11 82

Snore.N 12 74

Plot:

rowdistr(nightmare.tab)

Row Proportions

Common Rare Totals n

Snore.Y 0.12 0.88 1 93

Snore.N 0.14 0.86 1 86

2

pr
op

or
tio

n

0.0
0.2
0.4
0.6
0.8
1.0

Common Rare

Snore.Y (n = 93)

pr
op

or
tio

n

0.0
0.2
0.4
0.6
0.8
1.0

Common Rare

Snore.N (n = 86)

fac2 distribution for each

level of fac1 (row proportions)

It doesn’t look as if there is much to see here: snoring doesn’t seem to have an
impact on nightmare frequency. We will need to do a formal test to be sure.
We can also ask for comparisons between groups, using:

rowdistr(nightmare.tab, comp="between")

Row Proportions

Common Rare Totals n

Snore.Y 0.12 0.88 1 93

Snore.N 0.14 0.86 1 86

95% CIs for diffs between proportions with fac2 = Common

(rowname-colname)

Snore.N

Snore.Y (-0.12,0.077)

95% CIs for diffs between proportions with fac2 = Rare

(rowname-colname)

Snore.N

Snore.Y (-0.077,0.12) LSD−display intervals

P
ro

po
rt

io
n

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0Common Rare

S
no

re
.Y

S
no

re
.N

S
no

re
.Y

S
no

re
.N

fac1

Row Proportions

3

The rowdistr command also supplies a confidence interval: here it is (−0.120, 0.077).
This is obtained using familiar Stats 10x methods for comparing proportions
from two independent samples. Let p1 be the proportion of snorers who

commonly have nightmares. From the table data, p̂1 =
11

93
= 0.12.

Let p2 be the proportion of non-snorers who commonly have nightmares.

Then p̂2 =
12

86
= 0.14.

In Stats 10x, we saw how to test for the difference between proportions,
p1 − p2, from two independent samples:

se(p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2
,

and the approximate 95% confidence interval is:

Estimate ± 1.96× (standard error)

= p̂1 − p̂2 ± 1.96 se(p̂1 − p̂2)

= (0.12− 0.14) ± 1.96

√
0.12(1− 0.12)

93
+

0.14(1− 0.14)

86
= (−0.120, 0.077) .

This is the same as the confidence interval shown overleaf by rowdistr. Here
is the calculation in R:

p1hat <- 11/93

p2hat <- 12/86

n1 <- 93

n2 <- 86

se.p1.minus.p2 <- sqrt(p1hat*(1-p1hat)/n1 + p2hat*(1-p2hat)/n2)

p1hat-p2hat + 1.96 * se.p1.minus.p2 * c(-1, 1)

[1] -0.11959764 0.07708701

We see that the 95% confidence interval for p1 − p2 contains the value 0.
This corresponds to a test of the hypothesis H0 : p1 − p2 = 0, or equivalently,
H0 : p1 = p2. Because our CI contains 0, there is no evidence of a difference
between p1 and p2. That is, there is no evidence that the probability of
common nightmares differs for snorers and non-snorers.

We can use rowdistr to plot the row profiles and the column profiles for any
m × n table. However, the method above of testing for the equality of two
proportions suffers from a familiar problem: it is restricted to PAIRWISE
tests. For more than a 2×2 table, we would need to inspect all pairs, AND
control for multiple testing.

4

The LSD (least significant difference) intervals plotted by rowdistr do control
for multiple testing, so if we have a table larger than 2× 2 they will differ from
the simple calculation above. However, it would be preferable to find a global
test for tables of counts. This is similar to the rationale for ANOVA models
in Chapters 11 and 12, when we had a continuous numeric response Y , and
one or more categorical predictors. There, we used the global test anova first,
and only after that did we investigate pairwise differences using multipleComp

or summary2way. We also saw that one-way and two-way ANOVA models are
simply special cases of simple linear models: lm(y~group) or lm(y~x1*x2).

Here, we will take similar steps for tables of counts. The familiar Chi-square
test fulfils our requirement for a global test, but is only available for a single
categorical predictor. We will then see how more complicated models can be
built using either Binomial or Poisson GLMs.

We will go through the various methods below. There are five methods in total:

• All methods are applicable to 2× 2 tables of counts.

• Methods 1 and 2 are only applicable to 2× 2 tables. These constitute the test
above for comparing proportions from two independent samples, and
a new method to test for a significant odds ratio.

• Method 3, the Chi-square test, is applicable for an m× n table, but it only
looks at the relationship between two categorical variables: in other words, one
predictor variable (rows) and one response variable (columns).

• Method 4, the Binomial GLM, can deal with many predictors, but can only
deal with a response with two levels. That is, the response variable (columns)
needs to be in a binary format such as Yes and No, or Success and Failure.

• Method 5, the Poisson GLM, can deal with as many predictors and as many
response levels as desired. However, it is a little less obvious than the other
methods, so the flexibility comes at a small price.

We will start with the following table to illustrate the various methods. The
numbers are made up to give a convenient illustration, but they are based on
reports of a real survey looking at whether young men and women (aged 18-25)
aspire to have children. We have two sexes (F/M) and one response question of
interest: do you wish to have children some day? Our question is the standard
tables-of-counts question: does the response (columns) differ by row?

Y N

F 70 30

M 160 40

5

Method 1: Comparing proportions from two independent samples (Ch 16)

This method is a revision of the Stats 10x method for comparing proportions
from two independent samples. The picture above is from the Stats 10x course-
book. The method was shown on page 4 and is repeated here for completeness.

The data,

Y N

F

M

[
70 30
160 40

]
are reduced to:

1. The estimated probability of ‘Yes’ for each row: p̂1 = 70/100 and p̂2 = 160/200;

2. The two sample sizes, n1 = 100 and n2 = 200.

The standard error of the difference is:

se(p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2
,

and the approximate 95% confidence interval is:

estimate± 1.96× (standard error) = p̂1 − p̂2 ± 1.96× se(p̂1 − p̂2) .

We conclude that there is evidence that the two samples have different propor-
tions for P(Yes) if the 95% confidence interval does not contain 0.

Question tested: Is there a difference between P(Yes) for males and females?
This is the same as asking: does the response (columns) differ by row?
Or: is there an association between the row variable and the column
variable?

Scope: Only suitable for one pairwise comparison, in other words for a 2×2 table.

For larger tables, we would have to inspect multiple pairwise comparisons, and
deal with multiple testing issues.

6

Method 2: easy confidence interval calculation for the odds ratio (Ch 18)

Given the data,

Y N

F
M

[
70 30
160 40

]
,

we can easily estimate the odds of a Yes response for females and males:

Odds of Yes for Females =
P(Yes)

1− P(Yes)

⇒ Estimated Odds of Yes for Females =
70/100

30/100
=

70

30
(= 2.33) .

Likewise,

Estimated Odds of Yes for Males =
160

40
(= 4.0) .

Recall that the odds of an event is a number from 0 to ∞, such that the
larger the number, the more likely the event is.

In our data, the odds of response ‘Yes’ is lower for Females than for Males. This
means that females have a lower Yes probability than males do. (Yes, really:
young men seem to be more eager to have families than young women.) But
is the discrepancy sufficient for us to say it’s statistically significant, or could
it just happen by chance if there is no difference between the opinions of men
and women? We need a measure of the discrepancy, and its standard
error, so we can create a confidence interval.

Odds ratio and Log odds-ratio

The odds ratio is the ratio of the two odds above:

Odds Ratio =
odds of Yes for Females

odds of Yes for Males
=

70/30

160/40
=

70× 40

160× 30
(= 0.583) .

Be careful with the terminology: each of the individual odds is a ratio of Yes to
No, but is simply called the odds. The odds ratio is the ratio of two odds:
i.e. the ratio of Yes to No for Females, divided by the ratio of Yes
to No for Males.

a

c

b

d
Divide

It will always have this same format:

• if our table is

[
a b
c d

]
, then the odds ratio is:

a× d
b× c

.

7

Null hypothesis: Under H0, there is no difference in P(Yes) between Females and
Males. This corresponds to equal odds of Yes for Females and Males.

Thus, our null hypothesis is that the odds ratio is 1: H0 : OR = 1.

Log odds-ratio: Because it is easier to deal with the statistical distribution of a
sum rather than a product, we take logs and look at the log odds ratio:

log(OR) = log

(
a× d
b× c

)
.

Under our null hypothesis, the odds ratio is 1, so the log of the odds ratio is
log(OR) = log(1) = 0.

Our test has become: H0 : log(OR) = 0.

Remember this is still testing the same null hypothesis: does the response
(columns) differ by row?

Standard error for the log odds-ratio: It turns out that the log odds-ratio
has an approximate standard error with a very easy formula.

If our table is

[
a b
c d

]
, then:

• The log odds ratio is log

(
a× d
b× c

)
;

• The approximate standard error of the log odds ratio is:

se (log OR) =

√
1

a
+

1

b
+

1

c
+

1

d
;

• An approximate 95% confidence interval for the log odds ratio is:

estimate± 1.96 (standard error) = log

(
a× d
b× c

)
± 1.96×

√
1

a
+

1

b
+

1

c
+

1

d
.

• To test H0 : log(OR) = 0, calculate the 95% confidence interval and
see if it contains 0.

If the 95% CI contains 0, then there is no evidence that the odds of a
Yes response differ between rows.

Put another way, if the 95% CI contains 0, then there is no evidence of an
association between the row variable and the column variable.

8

Notes: 1. You are expected to know this formula and procedure for testing H0

using the log odds-ratio. It is included in the course because it is easy to use.

2. The formula for the standard error is obtained by a method called the delta
method: see Stats 730.

3. We can use the same ideas to derive a p-value for the test against H0, using

2P
(
Z >

|log OR|
se(log OR)

)
where Z ∼ N(0, 1): i.e., 2*(1-pnorm(abs(logOR/se))).

Back-transformation: To back-transform the CI for the log odds-ratio back to
the identity scale, simply exponentiate:

‘We estimate the odds of Yes for females is between exp(lower CI for log OR)
and exp(upper CI for log OR) times that of males.
This is/is not significantly different from 1.’

Example 1: With the data

Y N
F
M

[
70 30
160 40

]
:

The log odds-ratio is: log

(
70× 40

160× 30

)
= log 0.583 = −0.539.

The standard error for the log OR is:

se (log OR) =

√
1

70
+

1

30
+

1

160
+

1

40
= 0.281.

Approximate 95% confidence interval for the log OR:

estimate±1.96 (standard error) = −0.539±1.96×0.281 = (−1.09, 0.01) .

This confidence interval contains 0 (just) so we have no evidence
at the 5% level of a difference between the odds of Yes for males
and females. The p-value is 2*(1-pnorm(0.539/0.281)) = 0.055.

Back-transformation: the approximate 95% CI for the OR is:

(exp(−1.09), exp(0.01)) = (0.34 , 1.01).

This CI contains 1, duplicating our conclusion that there is no ev-
idence for an association between the row and column factors.

We estimate that the odds of wanting children for females is be-
tween 0.34 and 1.01 times the odds of wanting children for males.

9

Example 2: Snorers and nightmares (Exercise). The table is

[
11 82
12 74

]
.

The 95% CI for the log OR is: (−1.07, 0.69): no evidence of a difference.

The p-value is 0.67. If you calculate the p-value from Method 1 analogously, it
is also 0.67.

The estimated odds of common nightmares for snorers is between 0.34 and 1.99
times that for non-snorers.

Summary of odds-ratio method (Method 2):

Method: Test for whether the 95% CI for the log odds ratio contains 0. Calculate

this CI by hand. The log odds-ratio is log

(
a× d
b× c

)
, and the standard error is

approximately
√

1
a + 1

b + 1
c + 1

d . The 95% CI is estimate ± 1.96 (std error).

The p-value is gained from a 2-sided Z-test using test statistic (estimate / se).

Question tested: Do males and females differ with respect to the odds of Yes?
Equivalently: does the response (columns) differ by row?
Or: is there an association between the row variable and the column variable?

Scope: Only suitable for a 2× 2 table.

Method 3: Pearson Chi-square test (Chapter 17)

The Chi-square test is another method that is familiar from Stats 10x. It is the
easiest way of testing for association of rows and columns in an m× n table.

Note that an m×n table means we have TWO categorical variables: one
with m levels in the rows (the ‘predictor’), and one with n levels in
the columns (the ‘response’).

Let’s use the childhood weight distribution from Stats 10x to illustrate:

Weight
Normal Overweight Obese Total

Year: 1989 754 96 21 871

2000 626 187 81 894

Total 1380 283 102 1765

10

The Chi-square test is a global test that tests for any association between rows
and columns. Under H0, the rows differ only by their row totals: all rows are
multiples of each other, due only to the different row totals.

Some easy algebra shows that if all rows are multiples of each other, then all
columns are multiples of each other as well. This means that it doesn’t matter
which variable we put in the rows and which in the columns: the Chi-square
test will return the same answer regardless.

The Chi-square test is based on the theoretical result that, as cell-entries in
the table become sufficiently large, the distribution of the following test statis-
tic is approximately Chi-squared under H0, with degrees of freedom equal to
(#rows− 1)× (#columns− 1):

test statistic =
∑

cells i, j

(
observedij − expectedij

)2
expectedij

=
∑
i,j

(Oij − Eij)
2

Eij
.

Here, Oij is the entry observed in cell (i, j) of the table, and Eij is the entry
that would be expected under H0, if all rows really were multiples of each
other. The entries Eij are gained by allocating the row totals among columns
according to the column proportions in the whole table. For example, in the
table overleaf, the expected entry for cell (i, j) = (2, 1) under H0 would be:
894× 1380/1765 = 699.0. Thus the Chi-square test is based on the deviations
from these expected frequencies over the whole table. Here, the degrees of
freedom for the test are (2− 1)× (3− 1) = 2.

The Chi-square test is very easy to run in R, and all the calculations are done
for us. You do not need to know the formulas above or apply them by hand.
For the childhood weight example:

Enter the data by hand, as a 2x3 matrix, entering one row at a time:

children.tab <- matrix(c(754, 96, 21, 626, 187, 81), byrow=T, nrow=2)

Give the matrix some names for convenience:

dimnames(children.tab)<-list(c("Yr1989", "Yr2000"), c("Normal", "OW", "Obese"))

Have a look at the matrix:

children.tab

Normal OW Obese

Yr1989 754 96 21

Yr2000 626 187 81

Conduct the Chi-square test:

chisq.test(children.tab)

Pearson’s Chi-squared test

data: children.tab

X-squared = 76.141, df = 2, p-value < 2.2e-16

11

The conclusion is that we have extremely strong evidence that the child-
hood weight profile differs across rows.

There is extremely strong evidence of a different profile of childhood weight in
2000 compared with 1989.

For our snorers and nightmare-sufferers:

nightmare.tab <- matrix(c(11, 82, 12, 74), byrow=T, nrow=2)

chisq.test(nightmare.tab)

Pearson’s Chi-squared test with Yates’ continuity correction

data: nightmare.tab

X-squared = 0.040421, df = 1, p-value = 0.8407

The conclusion is the same as the previous two methods: no evidence against H0.

The p-value is a little different: 0.84 instead of 0.67. The Chi-square test is
designed quite differently from the tests in Methods 1 and 2, so the p-values
are sometimes a little different. However, these discrepancies tend to vanish as
the numbers in the table get larger.

Notes: 1. The Chi-square test relies on reasonably large entries in every cell of
the table. As a rule of thumb, all cell entries should be ≥ 5.

2. If this assumption is violated, an alternative called the Fisher Exact Test
can be used: the R command is fisher.test. The two tests will give very
similar answers if the Chi-square assumptions are met.

Summary of Chi-square test method (Method 3):

Method: Enter the data as a matrix or a data-frame containing only the relevant
numeric columns. Use the R command chisq.test(table). The Chi-square
test is a global test for association of two variables.

Question tested: Are the rows multiples of each other?
Equivalently: are the columns multiples of each other?
Or: does the response (columns) differ by row?
Or: is there an association between the row variable and the column variable?

These are the same questions asked in Methods 1 and 2, but this time potentially
applied to a larger table.

Scope: Suitable for any m× n table.
Note that this means we are testing association between just TWO categor-
ical variables: a row variable with m levels, and a column variable
with n levels.

12

Method 4: Binomial GLM (Chapter 15)

Look again at our 2× 2 tables:

Y N Common Rare

F
M

[
70 30
160 40

]
Snore
Not

[
11 82
12 74

]
We could formulate either of these as a Binomial GLM on grouped data,
just as we did at the end of Chapter 15.

The two columns correspond to the outcomes ‘success’ and ‘fail’. The response
is a numeric variable Y recording the numbers of success and fail for
each level of the predictor factor. The ‘predictor’ is the row factor.

Our question of interest is: does the column probability differ according to the
row factor?

This is exactly the same as asking, do we need the predictor variable in
the model?

If the column probabilities are the same for all levels of the predictor variable
in the rows, then we do not need the predictor variable in the model. We would
expect a Binomial GLM of cbind(success, fail) ~ row.factor to give a
non-significant coefficient for the row factor. By contrast, if there is an
association between rows and columns, we would expect a significant coefficient.

Thus, to test for an association between the rows and columns, we just look
at the significance of the row factor in the summary output for a
Binomial GLM of cbind(column1, column2) ∼ row.factor.

It turns out that applying the Binomial GLM on 2 × 2 tables gives almost
identical p-values to Methods 1 and 2, and similar results to the Chi-square
test in Method 3. Here it is with the snorers and nightmare example:

Reformat the data into a data frame with columns for Snore, #Success

responses (Common nightmares), and #Fail responses (Rare nightmares):

nightmare.df <- data.frame(Snore=c("Y", "N"), Common=c(11, 12), Rare=c(82, 74))

Look at the data frame:

nightmare.df

Snore Common Rare

1 Y 11 82

2 N 12 74

Fit the GLM:

bin.glm <- glm(cbind(Common, Rare)~Snore, family=binomial, data=nightmare.df)

13

Look at the summary output:

summary(bin.glm)

Call: glm(formula = cbind(Common, Rare) ~ Snore, family = binomial,

data = nightmare.df)

Deviance Residuals:

[1] 0 0

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.8192 0.3112 -5.846 5.05e-09 ***

SnoreY -0.1897 0.4472 -0.424 0.671

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.8012e-01 on 1 degrees of freedom

Residual deviance: 1.0658e-14 on 0 degrees of freedom

AIC: 12.312

The item to look for is the p-value for snoreYes: 0.671.
This says there is no need to include the Snore variable in the
model. That is, we have no evidence of an association between
Snoring and Nightmares.

The p-value is the same as we received from Methods 1 and 2. We can expect
these three methods to give almost identical results every time.

Note that, for a 2× 2 table, the Binomial GLM is saturated. It has fitted two
parameters: p1 for P(Common | Snorer), and p2 for P(Common |Not Snorer);
and it only has two data points: the proportion of Common among the Snorers,
and the same among the Non-Snorers. There are therefore no degrees of freedom
left and the residual deviance is 0.

However, if we have more than one predictor variable, we can fit various non-
saturated models. Because we are looking at grouped data, if all counts are
reasonably large we should then do the test for using a quasi-binomial model:

1 - pchisq(resid.dev, resid.df)

If this is significant, then refit the model using family=quasibinomial.
All else would proceed the same way, except that if you use the anova command
it should specify test="F" instead of test="Chisq", as described in Handout 7.

The advantage of the Binomial GLM method is that it can be used for multiple
predictors. By contrast with Method 3 (Chi-square test) which is only suitable
for one categorical predictor and one categorical response variable, the Bino-
mial GLM can have any number of categorical or numeric predictors.

14

However, it can only have a response variable with two categories: ‘success’
and ‘fail’. Thus, in the two-predictor case, while the Chi-square test can
handle an m× n table, the Binomial GLM can only handle a m× 2 table.

Summary of Binomial GLM method (Method 4):

Method: Enter the data as a data-frame with one column specifying the levels of
the row factor, and two columns for the two levels of the response.

Use glm(cbind(respY, respN) ~ row.factor, family=binomial). If using
the anova command on the fitted GLM, use anova(fit, test="Chisq").

If counts are large and 1 - pchisq(resid.dev, resid.df) is significant, refit
with family=quasibinomial, and use anova(fit, test="F") where needed.

To address the question of row and column association, read off the p-value
corresponding to the row factor in summary(fit).

Question tested: Does the response (columns) differ by row?
Or: is there an association between the row variable and the column variable?

This is the same question asked in Methods 1, 2, and 3.

Scope: Suitable for any m×2 table, in which case it gives a test of the association
between one m-level categorical predictor and one binary response variable.

Also suitable for any number of predictor variables, including factors and
numeric variables and their interactions, but only for a binary (two-column)
response variable. Note that models with more than one predictor variable can
no longer be easily portrayed as a table of counts.

Method 5: Poisson GLM (Chapter 19)

The Poisson GLM method is the most general, but is also a little less obvious
than the other methods. It is suitable for any m × n table (i.e. one m-level
categorical predictor and one n-level categorical response), and more generally
for any number of predictors in any combination of numeric and categorical
variables. It has a broader scope than the Binomial approach because we no
longer require that the response variable is binary: it can have any
number of levels, n.

Due to a theoretical link between the Poisson distribution and the Binomial
distribution, the Poisson method will give almost identical results to all the
previous methods, including the Chi-square test up to minor discrepancies.
However, the Poisson GLM is also available for more complicated data struc-
tures where none of the other methods is suitable.

15

To apply the Poisson method, we first need to reformat the data. Here is the
nightmare data in both Binomial and Poisson format:

nightmare.bin.df: nightmare.pois.df:

Snore Common Rare Snore Nightmare Count

Y 11 82 Y Common 11

N 12 74 Y Rare 82

N Common 12

N Rare 74

You can see that the two response columns in the Binomial data-frame have
been ‘unwrapped’ to create one column for the levels of the Nightmare
factor, and one column for the numeric response, Count.

The dataframe is therefore formatted such that Snore and Nightmare are
both predictors, and the response is Count.

We need to reformat our analysis question accordingly.

• For the Binomial GLM, we asked whether the Nightmare response of (Common,
Rare) is affected by the different levels of Snore. This is equivalent to asking
whether we need a different parameter for (Nightmare = Common) for the two
different levels of Snore.

• For the Poisson GLM, we only have one response column, Count, and two
predictors: Snore and Nightmare. The question of whether we need a differ-
ent parameter for (Nightmare=Rare) for each level of Snore translates to the
question, is there an interaction between the predictors Snore and
Nightmare?

In other words, we will fit the model Count ~ Snore * Nightmare, and look
for evidence of an interaction term.

◦ If there is no interaction between Snore and Nightmare, then the model
Count ~ Snore + Nightmare will suffice. This means that the model is:

Counti ∼ Poisson(µi) where µi = exp (β0 + β1 Snoreri + β2 Rarei) ,

where Snoreri is 1 for Snorers and 0 for non-Snorers, and Rarei is 1 for Rare
and 0 for Common nightmares. Translating to the Binomial framework:

P(Rare | Snorer) =
E (number both Rare and Snorer)

E (number Snorer)

=
exp (β0 + β1 + β2)

exp (β0 + β1 + β2) + exp (β0 + β1)

=
exp (β2)

exp (β2) + 1
.

16

We get exactly the same expression for P(Rare |Non-Snorer):

P(Rare |Non-Snorer) =
exp (β0 + β2)

exp (β0 + β2) + exp (β0)
=

exp (β2)

exp (β2) + 1
.

So if there is no interaction between Snorer and Nightmare in the Poisson
model, then P(Rare | Snorer) = P(Rare |Non-Snorer) = exp(β2)/ {exp(β2) + 1}.

This model is equivalent to a Binomial model in which the probability of
rare nightmares is a logistic function of β2, and Snorer has no influence.

◦ Conversely, if there is an interaction between Snore and Nightmare, the
model is Count ~ Snore + Nightmare + Snore:Nightmare, with

Counti ∼ Poisson(µi)

where µi = exp (β0 + β1 Snoreri + β2 Rarei + β3 Rarei × Snoreri) .

Translating to the Binomial framework:

P(Rare | Snorer) =
E (number both Rare and Snorer)

E (number Snorer)

=
exp (β0 + β1 + β2 + β3)

exp (β0 + β1 + β2 + β3) + exp (β0 + β1)

=
exp (β2 + β3)

exp (β2 + β3) + 1
.

The effect of Snorer does not vanish, because it is still there in the ‘snore-
specific’ parameter β3. The expression for P(Rare |Non-Snorer) is not the
same:

P(Rare |Non-Snorer) =
exp (β0 + β2)

exp (β0 + β2) + exp (β0)
=

exp (β2)

exp (β2) + 1
.

This means that an interaction between Snorer and Nightmare in the Poisson
model is equivalent to a Binomial model in which the response probabilities
for rare nightmares do differ for the different levels of the predictor factor,
Snorer.

Link with the odds ratio for 2 × 2 tables

The odds ratio for Rare nightmares for Snorers versus Non-snorers is the ratio
of Rare to Common for Snorers, divided by that for Non-snorers.

nightmare.bin.df:

Snore Common Rare

Y 11 82

N 12 74 OR = (82/11) / (74/12) = 1.209

17

In mathematical notation:

OR =
E (number Rare and Snorer) /E (number Common and Snorer)

E (number Rare and Non-Snorer) /E (number Common and Non-Snorer)

=
exp (β0 + β1 + β2 + β3) / exp (β0 + β1)

exp (β0 + β2) / exp (β0)

=
exp (β2 + β3)

exp (β2)

= exp(β3) .

Thus, the interaction parameter, β3, also gives the log odds ratio.

Summary of Poisson GLM method (Method 5):

You do not need to know or understand the mathematical details above. You
only need to know the summary details below.

Method:
• To test for association of two factors using a Poisson GLM, unwrap the data-

frame such that each factor has one column describing its different levels, and
there is another column called Count that will be treated as the response.

• Fit the model glm(Count ~ factor1 * factor2, family=poisson). If all
counts are reasonably large, apply the usual test 1 - pchisq(resid.dev, resid.df)

for overdispersion. If this gives a significant result, refit the model using
glm(Count ~ factor1 * factor2, family=quasipoisson).

• For a 2× 2 table, use summary(fit) and look at the row for the interaction
coefficient. If this is significant, we have evidence of an association between
factor1 and factor2.

Furthermore, the estimated interaction parameter gives the log odds ratio.
However, you might still favour the manual calculation of log odds ratio to be
sure of which way round it is being calculated: e.g. odds of Rare for Snorers
divided by odds of Rare for Non-snorers.

• For largerm×n tables, use anova(fit, test="Chisq") or anova(fit, test="F"),
depending on whether the GLM used family=poisson or family=quasipoisson
respectively. Again, look for the p-value on the interaction row. If it is sig-
nificant, we have evidence of an association between the two variables.

Question tested: Is there an association between the row variable and the column
variable? This is the same question asked in Methods 1, 2, 3, and 4.

18

Scope: Suitable for any m×n table, in which case it gives a test of the association
between one m-level categorical predictor and one n-level response variable.
The table must be reformatted into the correct dataframe format first.

Also suitable for any number of predictor variables, including factors
and numeric variables and their interactions, with an n-level response variable.
Note that models with more than one predictor variable can no longer be easily
portrayed as a table of counts, and the test for association is conceptually more
complicated if there are several predictors.

Example 1: Nightmare data (2× 2 table).

Data in Binomial format:

nightmare.df <- data.frame(Snore=c("Y", "N"), Common=c(11, 12), Rare=c(82, 74))

Data in Poisson format:

nightmare.pois.df <- data.frame(Snore=c("Y", "Y", "N", "N"),

Nightmare=c("Common", "Rare", "Common", "Rare"), Count=c(11, 82, 12, 74))

Fit the Poisson GLM:

pois.fit <- glm(Count ~ Snore * Nightmare, family=poisson, data=nightmare.pois.df)

summary(pois.fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.48491 0.28868 8.608 < 2e-16 ***

SnoreY -0.08701 0.41742 -0.208 0.835

NightmareRare 1.81916 0.31120 5.846 5.05e-09 ***

SnoreY:NightmareRare 0.18967 0.44716 0.424 0.671

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.1130e+02 on 3 degrees of freedom

Residual deviance: 6.6613e-16 on 0 degrees of freedom

AIC: 28.978

The interaction p-value is 0.67, exactly as for Methods 1, 2, and 4.
We conclude, once again, that there is no evidence of an association between
Snoring and Nightmare frequency.

The interaction parameter is β̂3 = 0.18967. This is the same as the log odds-
ratio for Rare nightmares for Snorers versus Non-snorers:

Snore Common Rare

Y 11 82

N 12 74 log(OR) = log { (82/11) / (74/12) } = log(1.2088) = 0.18967

19

Example 2: Childhood weight data (2 × 3 table). The Poisson GLM gives the
same results as Method 3 (Chi-square test): strong evidence of an association.

--

Data in Chisq-test format:

children.tab <- matrix(c(754, 96, 21, 626, 187, 81), byrow=T, nrow=2)

dimnames(children.tab)<-list(c("Yr1989", "Yr2000"), c("Normal", "OW", "Obese"))

children.tab

Normal OW Obese

Yr1989 754 96 21

Yr2000 626 187 81

chisq.test(children.tab)

X-squared = 76.141, df = 2, p-value < 2.2e-16

--

Data in Poisson format:

children.pois.df <- data.frame(Year=c(rep("Yr1989", 3), rep("Yr2000", 3)),

Weight=rep(c("Normal", "OW", "Obese"), 2), Count=c(754, 96, 21, 626, 187, 81))

children.pois.df

Year Weight Count

1 Yr1989 Normal 754

2 Yr1989 OW 96

3 Yr1989 Obese 21

4 Yr2000 Normal 626

5 Yr2000 OW 187

6 Yr2000 Obese 81

pois.fit <- glm(Count ~ Year * Weight, family=poisson, data=children.pois.df)

Use ANOVA because we have more than a 2x2 table: returns same conclusion.

anova(pois.fit, test="Chisq")

Analysis of Deviance Table

Model: poisson, link: log

Response: Count

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 5 1660.68

Year 1 0.30 4 1660.38 0.5841

Weight 2 1581.33 2 79.06 <2e-16 ***

Year:Weight 2 79.06 0 0.00 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

20

Examples from many simulations

chisq

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●●●

●

●●

●

●
●
●

●

●

●
●

●

●●

●

●●

●
●●

●●●●
●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●

●
●

●
●

●

●

●●●

●

●

●●●●●

●

●●
●
●

●

●●●
●

●●●●

●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●
●

●●●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●
●

●

●

●

●●●

●

●
●
●

●●

●

●●●

●

●

●●●●●
●●

●

●●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●
●●
●

●●

●

●

●
●

●

●●

●

●
●●●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●
●

●
●

●●

●
●

●

●●

●

●
●●●●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●●●
●

●

●

●
●●

●

●

●

●

●

●●

●

●●

●
●

●

●
●●
●●●●

●

●●●●

●

●●

●

●●
●

●

●

●●●
●●●●●●

●

●

●

●●

●

●●●

●

●

●

●
●

●●

●

●●

●

●
●

●

●●

●

●

●
●

●●
●●

●

●

●

●●●

●

●●●●

●
●

●

●

●●

●

●
●

●

●●

●

●

●

●●●●

●

●

●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●
●

●

●

●

●

●●
●

●

●

●●
●

●

●●
●

●

●
●

●

●

●

●
●●
●

●●●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●●●●●
●●

●

●

●

●

●

●

●●

●

●

●

●●●
●●

●
●

●

●●

●

●●
●
●

●

●

●

●

●●
●●●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●
●

●
●

●●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●
●●●●
●

●
●●

●●

●

●
●●●●

●

●

●

●

●

●●

●

●●●●

●
●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●
●

●●●●●●●
●●
●

●●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●●●●●

●

●
●●

●
●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●●●

●

●●●●●

●

●●
●

●

●●

●

●●

●
●

●

●

●

●●●

●

●●●●

●

●
●

●●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●●●●●
●

●
●●

●

●●●●●●●●●

●

●
●●●●

●
●

●

●

●

●●

●

●

●●●

●

●

●●

●

●
●●●●●●●●

●

●

●●

●
●

●

●

●
●

●

●●●●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.00
pois.glm

P−values from Method 3 and Method 5We can use simulation to investigate
the difference between Methods 3 and
5 (Chi-square test and Poisson GLM)
on a simulated 2× 3 table.
Here is a pairs plot of p-values
from the two methods for 1000
simulated tables.

The tables were simulated with row
totals of 100 and 200, and column
column probability vectors of
p1 = (0.4, 0.5, 0.1) and
p2 = (0.3, 0.5, 0.2) for the two rows.
This constitutes a small but real
difference between the two rows.

You can see the two methods give almost identical p-values.

An example simulated table in the Chi-square test format is:
Yes No Maybe

F 44 41 15

M 56 103 41

For 2× 2 tables, all five methods are applicable. Below are the p-value results
for each of the five methods compared against the Poisson GLM method, for a
2× 2 table simulated with row totals of 50 and 100, and column 1 probabilities
of p1 = 0.4 and p2 = 0.3. All five methods are almost identical, except for some
small differences from Method 3 (Chi-square test). Example table: Yes No

F 21 29

M 27 73

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Two Propns vs Poisson

Poisson GLM p−value

M
et

ho
d

1
p−

va
lu

e

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Odds Ratio vs Poisson

Poisson GLM p−value

M
et

ho
d

2
p−

va
lu

e

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●
●

● ●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chisq vs Poisson

Poisson GLM p−value

M
et

ho
d

3
p−

va
lu

e

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Binomial GLM vs Poisson

Poisson GLM p−value

M
et

ho
d

4
p−

va
lu

e

Two Proportions

x

F
re

qu
en

cy

0.0 0.4 0.8

0
50

15
0

25
0

35
0

Odds Ratio

x

F
re

qu
en

cy

0.0 0.4 0.8

0
50

15
0

25
0

35
0

Chi−square test

x

F
re

qu
en

cy

0.0 0.4 0.8

0
50

10
0

15
0

20
0

25
0

Binomial GLM

x

F
re

qu
en

cy

0.0 0.4 0.8

0
50

15
0

25
0

35
0

Poisson GLM

x

F
re

qu
en

cy

0.0 0.4 0.8

0
50

15
0

25
0

35
0

21

Stats 20x Handout 9: Time Series
Time-series data are simply data collected at regularly-spaced time intervals.
We are interested in how some phenomenon changes over time. For example,
we might be recording air pollution, which changes throughout the seasons and
might also have long-term trends over time. Similarly, and of great topical
interest, is the amount of polar ice: again, this changes seasonally, but our
particular interest is whether there are also long-term trends which could spell
disaster as sea levels rise. Time series are also very common in business and
commerce, for example to study stock-market fluctuations or demand for some
commodity like petrol.

As usual, there is a numeric response variable, Y , and predictor variables that
could be numeric, categorical, or both. The distinctive characteristics of time-
series data are:

• One of the predictor variables is time (numeric). So we often call the response Yt.

• There might also be an additional predictor for season (categorical).

• Data are typically collected at equally-spaced time-points and presented in order
from the first observation to the last.

Our study of time series has four parts. You need to be able to do the following:

1. Know the four components of time series: trend, cycle, seasonal, random.
In Stats 20x we generally combine trend and cycle into a single notion of trend-
cycle, so you only need to have a vague idea of what cycles are about.

2. Interpret STL decomposition plots. These are plots for time-series data
that do a quick decomposition of the time series into trend-cycle, seasonal, and
random components. They are exploratory plots, so they are more like a raw
data plot than a fitted model plot, although R does do some computation behind
the scenes in order to produce them. Think of the familiar trendScatter or
pairs20x plots: the STL plot is a similar idea.

(We call this sort of plot a non-parametric model. What we end up with is a
useful picture, but we don’t have a parametric model which we can interpret in
the Executive Summary using notions like ‘one unit along means β̂1 units up’.)

3. Interpret Holt-Winters forecasting output. The word forecasting is time-
series jargon for ‘predicting ahead’. The Holt-Winters method uses a technique
called exponential smoothing to generate forward predictions. Again, this is a
non-parametric technique rather than a fitted model.

4. Fit an autoregressive linear model. These models are very similar to our
familiar linear models using lm(), but they have one new component: the most
recent observation yt−1 is used as a predictor for the value of yt.

1

9.1 Components of time series: trend, cycle, seasonal, random

1. Trend describes long-term changes in the mean of the series. It is a smooth,
slowly-changing component. It might be appropriate to model the trend using
a straight line, either on the identity scale or the log scale.

2. Cycle describes irregular but somewhat long-lived departures from the trend.
This component does not repeat: it is irregular in both shape and occurrence.
It describes changes of longer duration than seasonal changes, but short relative
to the long-term trend. For example, the earth is currently experiencing global
warming (trend), but there may still be periods of several years of cooling
relative to the long-term trend — for example, these could be caused by polar
ice breaking down and drifting north or south. In this case we would say that
the trend is warming, but some cooling cycles are evident.

If we are only using non-parametric descriptions of trend, for example using
STL decompositions and Holt-Winters filtering, we can combine cycle and trend
together using a single trend-cycle term. For this reason, we do not consider
cycle very much in Stats 20x, except occasionally to point out possible cycles
on the STL plots.

3. The seasonal component is a regular repeating pattern which occurs within
every time period. For example, polar ice will always be at a maximum in
winter, and a minimum in summer, over-and-above any long-term trends.

4. The random component is the familiar random scatter ε that is invariably
associated with any observation. It is random and unpredictable, and it might
be suitable to describe it as ε ∼ N(0, σ2). However, one issue that often arises
in time series data is that successive εt terms might not be independent.
You will need to be able to recognise the signs of non-independent εt on STL
plots. If errors are not independent, we will no longer be able to assume that
εt ∼ iidN(0, σ2) when we fit parametric models to time series using lm. Thus
you will also need to be able to deal with the problem of non-independent
errors by using autoregressive models, as described in Section 9.4.

Creating a time series object in R

Because time series have regularly-spaced observations and repeating seasonal
effects, we need to use a special command to tell R that our data has these
characteristics. We use ts(data, start, frequency) to tell R the start-point
and repeat frequency of the seasonal component. For example, for the US beer
production data in the coursebook, the following command specifies repeating
monthly units with 12 observations per year, starting in July 1970:
beer.df <- read.table("beer.txt", header=T)

beer.ts <- ts(beer.df$beer, start=c(1970, 7), frequency=12)

2

We can now plot the ts object, and R will understand correctly that it should
be plotted with lines to join up adjacent observations:
plot(beer.ts, main="US Beer Production, July 1970 to June 1978")

abline(v=1971:1978, lty=2) ## Draw dashed vertical lines to delimit the years

US Beer Production, July 1970 to June 1978

Time

be
er

.ts

1972 1974 1976 1978

10
12

14
16

9.2 STL decomposition plots

STL stands for Seasonal Trend Loess. The word ‘Loess’ describes the type
of non-parametric smoother that we have previously used in trendScatter and
pairs20x. The rest of the acronym indicates that the plot breaks down the
time series into:

1. A long-term Trend-cycle component, which is a smooth non-parametric
picture of how the mean changes over time.

2. A repeating Seasonal component, which repeats with the frequency that
you specified when creating the time-series object.

3. The Random component, which is what remains after the previous two
components are accounted for.

All you need to be able to do with STL output is describe the key features
of the plot.

beer.ts <- ts(beer.df$beer, start=c(1970, 7), frequency=12) ## Create ts object

beer.stl <- stl(beer.ts, s.window="periodic") ## Create the STL breakdown

plot(beer.stl, main="STL Decomposition") ## Look at the plot (shown overleaf)

beer.stl ## Look at the numeric output

Components

seasonal trend remainder

Jul 1970 1.9860322 11.25002 -0.144054305

Aug 1970 1.2263050 11.23684 -0.485144696

Sep 1970 -0.1007978 11.22366 0.486140560

Oct 1970 -0.7082518 11.20719 0.313064732

3

STL Decomposition

10
12

14
16

da
ta

−
2

−
1

0
1

2

se
as

on
al

11
12

13
14

15

tr
en

d

−
2.

0
−

1.
0

0.
0

1.
0

1972 1974 1976 1978

re
m

ai
nd

er

time

Our comments on this plot could be:

1. There is a generally increasing trend in beer production over time.
There is a hint of non-linearity, suggesting that the trend may be
curving upwards over time.

2. There is a strong seasonal component, which is of high magnitude
relative to the overall spread of the data.

3. There is some bunching of the residuals, especially near the end of
the data. This suggests there could be some autocorrelation (non-
independence) in the residuals.

4

Here is the US production index from January 1947 to December 1993.

usprod.ts <- ts(usprod.df$ip, frequency=12, start=c(1947, 1))

Time

us
pr

od
.ts

1950 1960 1970 1980 1990

20
60

10
0

plot(stl(usprod.ts, s.window="periodic"))

20
40

60
80

10
0

da
ta

−
0.

10
0.

00
0.

10

se
as

on
al

20
40

60
80

10
0

tr
en

d

−
2

−
1

0
1

2

1950 1960 1970 1980 1990

re
m

ai
nd

er

time

There is a largely increasing trend, with occasional brief downturns.
There is no clear seasonal effect — the magnitude of the seasonal
effect on the plot is very small in the context of the data as a whole.
There is clear bunching of residuals, so we suspect autocorrelation.

5

9.3 Holt-Winters forecasting

We have seen in previous chapters how we can use a parametric model to
describe the data and predict the response for new values of the predictors. We
can do the same with time series, by fitting a linear model as in the next section.
However, we might also wish to use non-parametric methods for describing
the time series and predicting forwards. Non-parametric methods rely primarily
on the patterns observed in the data, instead of parametric assumptions such
as a straight-line trend. The STL decomposition is one non-parametric method
for describing the data, but it cannot be used for predicting into the future. The
Holt-Winters filter is an alternative method, which describes the data using an
alternative non-parametric approach called exponential smoothing, and also
has a different formulation for the trend that does enable it to predict forwards
into the future. Since the STL method is excellent for plotting time series, we
tend to use the Holt-Winters method primarily for forecasting.

The aim of forecasting is to predict forwards in time, beyond the end of
the data. We must always be cautious when predicting outside of the range of
our data. Be aware that all forecasting is based on the strong assumption that
the observed patterns will continue in like form.

Exponential smoothing

The idea of exponential smoothing is to create a smooth line that traces the time
series data. In its simplest form, the smoothed value for time t is a weighted
average of the smoothed value for time t − 1, and the current data value at
time t. Thus:

St = αYt + (1− α)St−1,

where α is a weight between 0 and 1. To start the series, we put S1 = Y1.

• Small values of α put a larger weight on St−1 and generate a smoother
series;

• Large values of α put a larger weight on the data Yt, which includes its
random scatter, so they generate a less smooth series.

If we recursively substitute values for St−1, St−2, and so on, we find that:

St = αYt + α(1− α)Yt−1 + α(1− α)2Yt−2 + . . .+ α(1− α)t−2Y2 + (1− α)t−1Y1.

The method is called exponential smoothing because each smoothed value
uses all the previous Y values, but with exponentially decreasing weights.

6

This simple version of exponential smoothing is suitable for fitting a single trend
line to the series. If we use it to predict into the future, all predictions after
the end of the series will be given the same value, equal to the final value of
the smooth term, ST .

The Holt-Winters filter uses a more advanced version of exponential smoothing
that includes both a trend and a seasonal effect. Each of these is obtained by
its own version of exponential smoothing: the process is described as double
exponential smoothing and triple exponential smoothing to add the
trend term and the seasonal term respectively. For future predictions, the series
is assumed to continue into the future with slope and seasonal effects given by
the final values of the trend and seasonal terms.

You do not need to know how this method works, but for interest, here is the
formula for double exponential smoothing (trend term only):

St = αYt + (1− α)(St−1 +Bt−1)

Bt = β(St − St−1) + (1− β)Bt−1.

The smoothed slope, Bt, is a weighted average of the most recent smoothed
slope, Bt−1, and a new slope estimate, St−St−1. Seasonal effects can be added
similarly, but the formula is more complicated. See the Wikipedia page for
‘Exponential Smoothing’ if you want to find out more.

Applying the Holt-Winters filter in R

Fitting and plotting the Holt-Winters predictions is very easy in R. First you
need to convert your data-frame into a time series as before:
beer.df <- read.table("beer.txt", header=T)

beer.ts <- ts(beer.df$beer, start=c(1970, 7), frequency=12)

Fit the Holt-Winters model directly from the time series object:
beer.hw <- HoltWinters(beer.ts)

Holt-Winters exponential smoothing with trend and additive seasonal component.

Smoothing parameters:

alpha: 0.1176382

beta : 0.05545409

gamma: 0.4410278

Coefficients:

a 14.41166884

b 0.05795753

s1 2.73211059

s2 1.90273318

... ...

s12 2.41794480

7

To switch off the seasonal component: HoltWinters(beer.ts, gamma=FALSE).

If you want to switch off both the trend and the seasonal component, use
HoltWinters(beer.ts, beta=FALSE, gamma=FALSE).

You can then plot the Holt-Winters model with one very easy command:
plot(beer.hw)

However, we usually want to make predictions first before plotting:

beer.pred <- predict(beer.hw, n.ahead=8, prediction.interval=T)

beer.pred

fit upr lwr

Jul 1978 17.20174 18.57471 15.82876

Aug 1978 16.43032 17.81384 15.04680

Sep 1978 14.75422 16.14933 13.35912

Oct 1978 14.04175 15.44952 12.63399

Nov 1978 12.45080 13.87233 11.02927

Dec 1978 12.75023 14.18666 11.31381

Jan 1979 13.59643 15.04889 12.14397

Feb 1979 13.01205 14.48172 11.54239

plot(beer.hw, beer.pred, lty.predicted=2, lty.interval=2)

Holt−Winters filtering

Time

O
bs

er
ve

d
/ F

itt
ed

1972 1974 1976 1978

10
12

14
16

18

Interpretation is very easy. Just remember to interpret the lwr and upr columns
as PREDICTION INTERVALS, not confidence intervals.

We predict the amount of beer produced in January 1979 would have been
between 12.1 and 15.0 million barrels. This prediction spans almost half
the range of the data, so it is only moderately useful.

8

9.4 Autocorrelated regression model

The word ‘autocorrelation’ means self-correlation. It describes a variable that
depends upon itself. This means that the observation at time t, Yt, depends
upon some of the previous observations, Yt−1, Yt−2,

Autocorrelation is a common phenomenon in time series. For example, suppose
we are looking at kiwi population numbers over time: Yt is the number of kiwi
at time t. If this year is a very successful breeding year, then we would observe
a Yt value that is higher than expected: scatter above the mean. However,
although this year’s high number started as random scatter, its effects will
persist for future years: more kiwi this year very probably mean more kiwi next
year, because this year’s large numbers will survive and carry over. Thus, the
number of kiwi next year depends in part upon this year’s random outcome, as
well as next year’s own random scatter. We therefore have non-independent
errors: our assumption of εt ∼ iid Normal(0, σ2) no longer holds.

The simplest form of autocorrelation is where Yt depends upon the single
previous value, Yt−1. This is called first-order autocorrelation.

Let’s consider how to simulate data with autocorrelation.

Time, t, is 1 to 100 (measured in days):

t <- 1:100

Generate response Y with independent errors: Y_t = alpha + beta*t + epsilon_t:

y.ind <- 3 + 0.1*t + rnorm(100, 0, 1)

Fit the ordinary linear model:

lm.ind <- lm(y.ind ~ t)

Now generate a new response, Y, with autocorrelation.

Start by defining a vector of length 100 filled with 0s:

y <- numeric(100)

The first element, y[1], follows the simple linear model above:

y[1] <- 3 + 0.1*1 + rnorm(1, 0, 1)

For all subsequent days, the observation depends on what was observed

the previous day, AS WELL AS the original 3 + 0.1*t + epsilon formula:

for(day in 2:100) y[day] <- 3 + 0.1*day + 0.6*y[day-1] + rnorm(1, 0, 1)

Fit the ordinary linear model again.

This is no longer accurate due to non-independent errors:

lm.oops <- lm(y ~ t)

We can now observe how the autocorrelated response Yt looks different from
the independent-error response, Yind,t.

9

0 20 40 60 80 100

2
6

10
14

Independent data

t

y

0 20 40 60 80 100

5
15

25
35

Autocorrelated data

t

y

0 20 40 60 80 100

−
2

0
1

2

Residuals vs Time

Time, t

R
es

id
ua

ls

0 20 40 60 80 100

−
4

−
2

0
2

Residuals vs Time

Time, t

R
es

id
ua

ls

0 5 10 15 20

−
0.

2
0.

4
0.

8

Lag

A
C

F

ACF of Residuals

0 5 10 15 20

−
0.

2
0.

4
0.

8

Lag

A
C

F

ACF of Residuals

Several features are obvious:

• The autocorrelated response, Yt, looks smoother than the independent-error
response on the left. (Positive autocorrelation creates a smoothing effect.)

• This same smoothness difference is noticeable in the residuals of each model,
when the residuals are plotted against time.

• The ACF of the independent-errors residuals on the left is patternless. The
ACF of the autocorrelated residuals on the right has an oscillating pattern.

10

Fitting a model with autocorrelation

Look back to how we simulated autocorrelated data. The model can be written
like this:

Yt = α + βt+ γYt−1 + εt, where εt ∼ iid Normal(0, σ2) .

The errors εt really are iid. The autocorrelation arises from the introduction of
Yt−1 as a predictor.

We can easily fit this autoregressive model in R. We can then estimate the
new autocorrelation parameter, γ, as well as the usual parameters α and β.

Here is the trick. Suppose for a moment that our response y has only 10
entries. We could write these as:

y: y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

The R syntax y[-1], has the effect of omitting the first entry of y:

y[-1]: y2 y3 y4 y5 y6 y7 y8 y9 y10

Likewise, y[-10] omits the 10th entry of y:

y[-10]: y1 y2 y3 y4 y5 y6 y7 y8 y9

So if we use the R syntax lm(y[-1] ~ y[-10]), we would obtain the following
model:

y2 = α + βy1 + ε2

y3 = α + βy2 + ε3
...

...

y10 = α + βy9 + ε10.

This is nearly what we want, but not quite, because we also want the time
trend, t. We can include this as usual, but we have to remember to use t[−1]
in the model, not just t:

lm(y[-1] ~ t[-1] + y[-10]):

y2 = α + βt2 + γy1 + ε2
y3 = α + βt3 + γy2 + ε3

...
...

y10 = α + βt10 + γy9 + ε10.

In general, if there are n observations in the response, we fit an autoregression
model by putting [-1] after every predictor and adding a final term y[-n].
For example, if the predictors are t and x and the response is y, we would use:
lm(y[-1] ~ t[-1] + x[-1] + y[-n]).

11

Observe what happens with the data we simulated earlier. On the left-hand side
is output from the new autoregression model: lm(y[-1] ~ t[-1] + y[-100]).
On the right is output from the naive (incorrect) model we fitted earlier:
lm(y ~ t). We see that, with the correct autoregression model on the left,
the residuals now look random and independent, and the ACF is
patternless. The incorrect model on the right is the same as before.

lm(y[−1] ∼ t[−1] + y[−100]) lm(y ∼ t)

0 20 40 60 80 100

5
15

25
35

Autocorrelated data

t

y

0 20 40 60 80 100
5

15
25

35

Autocorrelated data

t

y

0 20 40 60 80 100

−
2

0
1

2

Autocorrelation model

Time, t

R
es

id
ua

ls

0 20 40 60 80 100

−
4

−
2

0
2

Simple linear model

Time, t

R
es

id
ua

ls

0 5 10 15

−
0.

2
0.

4
0.

8

Lag

A
C

F

ACF of Residuals

0 5 10 15 20

−
0.

2
0.

4
0.

8

Lag

A
C

F

ACF of Residuals

12

The output from summary(lm(y[-1]~t[-1]+y[-100])) shows that all three
coefficients are correctly estimated. The true values we used for the simulation
on page 9 are α = 3, β = 0.1, γ = 0.6.

Call: lm(formula = y[-1] ~ t[-1] + y[-100])

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.84978 0.51107 5.576 2.26e-07 ***

t[-1] 0.09666 0.01945 4.970 2.92e-06 ***

y[-100] 0.62266 0.07299 8.531 2.12e-13 *** <- Significant autocorrelation

• The estimated autocorrelation parameter is 0.62.

• The autocorrelation is significant (p-value < 0.05). We should retain
the autocorrelation term in the model.

If the autocorrelation row shows a non-significant result in the summary output,
we should drop the autocorrelation term and refit the simpler model,
lm(y ∼ t).

The ACF plot: AutoCorrelation Function

0 5 10 15 20

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF of residuals for naive model: lm(y ~ t), when γ = 0.6

• The bar at lag 0 shows a perfect association between the residual vector
(r1, r2, r3, . . . , r100) and itself: bar height = 1.

• The bar at lag 1 measures the association between (r2, r3, . . . , r100) and (r1, r2, . . . , r99):
strong positive association (bar height ' 0.6).

• The bar at lag 2 measures the association between (r3, r4, . . . , r100) and (r1, r2, . . . , r98):
a moderate positive association (' 0.4) still carries over at lag 2.

• The dashed lines show the thresholds for significant autocorrelations.

13

Here is an ACF chart showing negative autocorrelation, gained by repeating
the simulation on page 9 with γ = −0.6.

0 5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

ACF of residuals for naive model: lm(y ~ t), when γ = −0.6

Modelling seasonality

We can include season as a factor in an autoregressive model. This will enable
a different intercept to be fitted for every different season. Be careful to
convert season number to a factor, e.g. if seasons are numbered as
(1, 2, 3, 4), otherwise R will treat it as a numeric variable.

Here is an example for simulating and fitting a seasonal model.

0 10 20 30 40

2
4

6
8

10

t

y

Generate Y with autocorrelation for t=1, 2, ..., 40:

t <- 1:40

y <- numeric(40)

y[1] <- 3 + 0.1*1 + rnorm(1,0,1)

for(q in 2:40) y[q] <- 3 + 0.1*q

+ 0.1*y[q-1] + rnorm(1,0,1)

Insert seasonality: R will

automatically repeat the

quarterly additions:

y <- y + c(1, -2, -1, 2)

Define numeric vector "season":

season <- rep(1:4, 40)

Fit the autoregressive model using a FACTOR for season:

lm.fit <- lm(y[-1] ~ t[-1] + as.factor(season)[-1] + y[-40])

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.48127 0.91139 3.820 0.00056 ***

t[-1] 0.12162 0.02557 4.757 3.77e-05 ***

as.factor(season)[-1]2 -2.88467 0.45084 -6.398 3.00e-07 ***

as.factor(season)[-1]3 -1.43509 0.81817 -1.754 0.08871 .

as.factor(season)[-1]4 1.39848 0.63249 2.211 0.03407 *

y[-40] 0.05546 0.17251 0.322 0.74985

14

