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Summary: We investigate model Mt,α for abundance estimation in closed-population capture-recapture studies,

where animals are identified from natural marks such as DNA profiles or photographs of distinctive individual features.

Model Mt,α extends the classical model Mt to accommodate errors in identification, by specifying that each sample

identification is correct with probability α and false with probability 1 − α. Information about misidentification is

gained from a surplus of capture histories with only one entry, which arise from false identifications. We derive an exact

closed-form expression for the likelihood for model Mt,α and show that it can be computed efficiently, in contrast to

previous studies which have held the likelihood to be computationally intractable. Our fast computation enables us to

conduct a thorough investigation of the statistical properties of the maximum likelihood estimates. We find that the

indirect approach to error estimation places high demands on data richness, and good statistical properties in terms

of precision and bias require high capture probabilities or many capture occasions. When these requirements are not

met, abundance is estimated with very low precision and negative bias, and at the extreme better properties can be

obtained by the naive approach of ignoring misidentification error. We recommend that model Mt,α be used with

caution and other strategies for handling misidentification error be considered. We illustrate our study with genetic

and photographic surveys of the New Zealand population of southern right whale (Eubalaena australis).
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1. Introduction

Capture-recapture studies for estimating the size of animal populations increasingly rely upon

natural individual marks instead of physical tags that require the animal to be caught and

handled. Identification by natural marks is usually based on DNA samples or photographs.

Photographs may focus on skin or coat patterns, scars, callosity patterns, or fin shapes, and

are widely used for surveys of large cats and cetaceans (Karanth et al., 2006; Carroll et al.,

2011). Genetic sampling may take place by biopsy darts that glance off the thick skin of

a cetacean (Carroll et al., 2011) or by DNA extracted from hair snags or faeces (Wright

et al., 2009). Individuals are typically identified from DNA samples using a set of 5–20

microsatellite loci (Pompanon et al., 2005).

Identification using natural marks is inherently error-prone. Photographs are affected by

visibility and angle (Morrison et al., 2011). For genetic samples, allelic dropout and other

errors are common (Wright et al., 2009): for example, the single-locus genotype AB may be

misreported as AA, because allele B ‘dropped out’. The frequency of genetic errors depends

upon DNA quality, with errors more common in samples collected from hair or faeces than

from high-quality tissue samples obtained from biopsy darts (Pompanon et al., 2005).

The most likely identification error is failure to link two captures of the same animal,

so they are wrongly recorded as captures of two different animals. Even a small level of

error in identifying recaptures can lead to marked overestimation of abundance (Lukacs

and Burnham, 2005; Yoshizaki et al., 2011). For this reason, there has been considerable

recent interest in incorporating identification errors into capture-recapture models (Lukacs

and Burnham, 2005; Wright et al., 2009; Link et al., 2010; Yoshizaki et al., 2011). Much of

the recent work has focused on variants of model Mt,α for estimating the size of a closed

population.

Model Mt,α is based upon the classical model Mt (Otis et al., 1978) which specifies that
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each of N animals in a population has probability pt of being detected on capture occasion

t (t = 1, 2, . . . , T ). Maximum likelihood estimation is straightforward for the parameters

N and p1, . . . , pT . Model Mt,α extends this to incorporate identification error by specifying

that each sample is correctly identified with probability α. A misidentified sample is assumed

to create a ‘ghost’ capture history with precisely one sighting. Information to estimate the

parameter α comes from the surplus of capture histories with only one sighting.

Model Mt,α was first introduced in a slightly different formulation by Lukacs and Burnham

(2005), who provided a likelihood-based approach. Yoshizaki et al. (2011) pointed out errors

in their formulation, showing that misidentifications on first capture were not correctly

handled and there was no allowance for the dependence between multiple histories generated

by a single animal and its ‘ghosts’. These problems might be responsible for a breakdown in

confidence interval performance reported by Lukacs and Burnham (2005).

Link et al. (2010) and Yoshizaki et al. (2011) commented that the exact likelihood appeared

incomputable given the impossibility of summing over all ways of assigning capture histories

to animals, where each animal can be responsible for multiple ghost histories. Yoshizaki et al.

(2011) provided an approach based on least-squares, but did not include a variance estimator.

Link et al. (2010) showed that the observed data may be expressed as a transformation of

a multinomial random variable, and coined the name Mt,α for the model. They gave an

elegant formulation in which the true, unobservable, capture histories are expressed with

error code ‘2’: for example, for T = 4 capture occasions the capture history 0102 denotes an

animal captured on the second and fourth occasions but misidentified on the fourth. This

unobservable true history spawns two unlinked observations: 0100 and 0001.

Using a Bayesian approach, Link et al. (2010) treated counts of the unobservable true

histories as latent variables which could be sampled with an MCMC sampler rather than

enumerated. This formulation is particularly appealing in its generality. Subsequent authors
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have adapted the approach to solve other capture-recapture problems involving latent iden-

tity information (Bonner and Holmberg, 2013; Higgs et al., 2013; McClintock et al., 2013).

Wright et al. (2009) developed a different approach to genetic misidentification, specifically

for allelic dropout. Instead of estimating error rate indirectly through a surplus of single-entry

capture histories, they require all samples to be genotyped at least twice, gaining a direct

estimate of error rate by discrepancies between repeat attempts. This approach is suitable for

low-quality DNA in hair or faeces, where repeat genotyping is standard protocol (Taberlet

and Luikart, 1999). However, it might not be cost-effective to repeat all genotypes when

using high-quality DNA obtained from tissue. An analogous approach based on repetition

is not available for photographic surveys, although it might be possible to devise a scheme

with direct error information based upon photo-matchings made by multiple experts.

In this paper we focus on the issues facing researchers dealing with a small level of error

in genetic or photographic surveys. We formulate an exact closed-form likelihood for model

Mt,α, and show how to compute it efficiently. Computation time is typically reduced to a few

seconds on a customary laptop. This fast fitting time enables us to explore model Mt,α by

extensive simulation studies, which are not possible with the more time-consuming Bayesian

approach. We investigate the finite-sample performance of the maximum likelihood estimates,

and investigate cost-effective strategies for researchers dealing with misidentification. We

apply the model to genetic and photographic surveys of wintering southern right whales

(Eubalaena australis) in the subantarctic Auckland Islands, New Zealand.

2. Model Mt,α

We describe model Mt,α following Link et al. (2010). A closed population of N animals is

observed at times t = 1, 2, . . . , T . Associated with each time t is a capture probability pt. At

time t, there are three possible outcomes for each animal:

• Not captured: probability 1− pt. The outcome of non-capture is given code 0.
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• Captured and correctly identified: probability αpt. We call this a sound capture (code 1).

• Captured and misidentified: probability (1− α)pt. We call this a faulty capture (code 2).

An identification may be defined as ‘correct’ or ‘sound’ if an accurate genotype is obtained,

or if a photograph adequately captures the individual’s distinguishing features. In practice

it will not be known whether the identification is sound or not. The outcome at time t is

independent of outcomes at other times and for other animals.

The outcomes for times t = 1, . . . , T form the true, unobservable capture history for each

animal. We describe these as latent histories and define the set of possible latent histories

as {λ1, . . . , λJ}, where J = 3T . For example, if T = 5, the latent history λj = 10122

denotes an animal with sound captures at times 1 and 3, faulty captures at times 4 and

5, and non-capture at time 2. We define λjt to be the entry of history λj corresponding

to time t. The latent variable underlying the observed data is the vector of frequencies,

x = (x1, . . . , xJ), where xj is the number of the N animals whose true capture history is λj ,

and x is multinomial with index N .

The latent histories are not observed. Instead, model Mt,α makes the assumption that

each faulty capture generates a unique error, so it spawns an observed history with exactly

one entry. Thus, an animal with latent history λ = 10122 generates three observed histories:

10100, 00010 and 00001. This assumption, discussed by Lukacs and Burnham (2005), may be

questionable in some circumstances, but it provides a reasonable platform for us to investigate

the statistical properties of the indirect approach to identity-error detection.

We call any observed history with exactly one entry a unit history. A unit history whose

single entry derives from a faulty capture (a 2 in the latent history) is a ghost history.

An observed history with more than one entry is termed a duplicate history. Excluding the

unobservable zero history, there are K = 2T −1 possible observed histories, which we write as

as {ω1, . . . , ωK}. The observed data form the vector of frequencies, f = (f1, . . . , fK), where

fk is the number of times history ωk is observed. Note that the fk do not refer to numbers
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of animals, but to numbers of observed histories, because each animal may be responsible

for multiple histories. Link et al. (2010) showed that f is a linear transformation of the

multinomial random variable x: that is, f = ATx for a known matrix A.

Throughout, we will index latent histories by j = 1, . . . , J , observed histories by k =

1, . . . , K, and capture occasions by t = 1, . . . , T . The aim is to estimate N , given the data f .

The likelihood formulated by Link et al. (2010) sums over the multinomial probabilities of

all x consistent with the observed data f and parameter N :

L(N, p1, . . . , pT , α ; f ) =
∑

x∈X (f ,N)

N !

x1! . . . xJ !
πx1

1 . . . πxJ

J , (1)

where X (f , N) is the feasible set of all x vectors such that
∑J

j=1 xj = N and ATx = f , and

πj is the probability of latent history λj for j = 1, . . . , J :

πj =
T∏

t=1

p
I{λjt>0}
t (1− pt)

I{λjt=0} αI{λjt=1} (1− α)I{λjt=2} ,

where I{·} is the usual indicator. Link et al. (2010) and Yoshizaki et al. (2011) stated

that computation of the likelihood would be difficult, because enumerating the feasible set

X (f , N) would involve a high-dimensional search even for the smallest values of T .

2.1 New likelihood formulation for model Mt,α

The formulation (1) sums over all latent frequency vectors x that can create the observed

data. Here we show that the likelihood can be reformulated by summing over the number

of sound captures among the unit histories. This reformulation enables us to compute the

likelihood efficiently.

First we note that the only uncertain captures in the data reside in unit histories: the unit

histories are an unknown composition of animals with only one sound capture, and ghosts

resulting from faulty captures. For observed history ωk, let |ωk| =
∑T

t=1 ωkt be the number

of 1-entries in ωk: for example if ωk = 10100 then |ωk| = 2. Define the following quantities:

– n1, . . . , nT are the numbers of captures at times 1, . . . , T ; thus nt =
∑

k :ωkt=1 fk.
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– U is the number of unit histories in the observed data; U =
∑

k : |ωk|=1 fk.

– u1, . . . , uT are the numbers of the U unit histories whose single entry occurs at times

1, . . . , T respectively. We have
∑T

t=1 ut = U .

– D is the number of duplicate histories in the observed data: D =
∑

k : |ωk|>2 fk. All captures

in these histories are sound, by definition. However, animals contributing to these histories

may also contribute ghost histories.

– d1, . . . , dT are the numbers of captures within the D duplicate histories that occur at times

1, . . . , T ; so dt =
∑

k : |ωk|>2 fk ωkt.

– C is the total number of captures in the D duplicate histories: C =
∑T

t=1 dt, or alternatively

C =
∑T

t=1 nt − U . These C captures are all known to be sound, by assumption.

We calculate the probability of the data by partitioning over choices for the number of

sound captures among the ut uncertain captures at time t. Define the latent variable r =

(r1, . . . , rT ), such that rt is the number of the ut uncertain captures that are sound. For

any r, let r· =
∑T

t=1 rt be the total number of animals with exactly one sound capture,

noting that any of these animals may have additional faulty captures at other times. Let

R(f , N) be the feasible set of all r compatible with the data f and parameter N : then

R(f , N) = {r : r· 6 N −D and rt ∈ {0, . . . , ut} for t = 1, . . . , T}.

Direct combinatorial calculation gives the following likelihood, which is explained in detail

in Figure 1. For N > max{D, n1, . . . , nT}, and (α, p1, . . . , pT ) ∈ (0, 1)T+1,

L(N, p1, . . . , pT , α ; f ) =

{
αC

T∏

t=1

pnt

t (1− pt)
N−nt

}
×





∑

r∈R(f ,N)

N !α r· (1− α)U− r·
(∏

k : |ωk|>2 fk!
)
r1! . . . rT ! (N −D − r·)!

T∏

t=1

(
N − dt − rt

ut − rt

)
 . (2)

The limit of (2) as α ↑ 1 is the likelihood for model Mt. The first braced factor of (2) arises

because there are nt captures and N − nt non-captures at time t, regardless of the number

of faulty captures. Further, the C captures in the duplicate histories are known to be sound.
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The second braced factor of (2) sums over all r in the feasible set R(f , N). For a particular

choice of r, the N animals are partitioned into D with two or more sound captures; r· with

exactly one sound capture; and N − D − r· with no sound captures, these being a mix

of animals with no captures and animals with only faulty captures. This accounts for the

multinomial coefficient. The term α r· (1 − α)U− r· arises from r· sound and U − r· faulty

captures for this r. It remains to allot the ut−rt faulty captures among all available animals

at each time t. The number of animals available for faulty capture at time t is N−dt−rt (see

Figure 1), accounting for the
(
N−dt−rt
ut−rt

)
ways of partitioning these among faulty captures and

non-captures. Note that dt + ut = nt, so an alternative way of expressing the final product

of binomial coefficients in (2) is
∏T

t=1

(
N−nt+ut−rt

ut−rt

)
, which makes explicit the apportioning of

animals unaccounted for at time t between N − nt non-captures and ut − rt faulty captures.

[Figure 1 about here.]

Parameters are estimated by maximizing the log-likelihood gained from (2). It can readily

be shown that the MLEs satisfy p̂t = nt/N̂ for t = 1, . . . , T . This suggests that we might

be able to substitute pt = nt/N in (2) and optimize only over (N,α) instead of over

(N, p1, . . . , pT , α). Optimizing over (N,α) is considerably faster, and gives the same results

for (N̂ , α̂) and their standard errors in cases we have examined. However, it might occur

that the optimizer in the constrained parameter space gets trapped in a local extremum that

does not occur in the unconstrained space, so we optimize over (N, p1, . . . , pT , α) in all results

shown. The constrained optimization might however be useful for handling large problems.

We estimate variances by inverting the estimated Hessian at the maximum likelihood

estimates. We use log-Normal confidence intervals for N , and Normal confidence intervals

for all other parameters. Fewster and Jupp (2009) show that these are the appropriate

asymptotic distributions for multinomial models; we assume that the same distributions

apply to the transformed multinomial of this model. The 95% confidence interval for N is
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therefore (N̂/A, N̂ ×A), where A = exp
[
z

.025

√
log

{
1 + v̂ar(N̂)/N̂2

}]
, and where z

.025
is the

upper 0.025 point of the Normal(0, 1) distribution. For other parameters θ ∈ {α, p1, . . . , pT},

95% confidence intervals are (θ̂ − Bθ, θ̂ +Bθ) where Bθ = z
.025

√
v̂ar(θ̂).

Efficient computation of (2) is described in Web Appendix A. We maximize the likelihood

using ADMB (Fournier et al., 2012) or R (R Development Core Team, 2012). ADMB provides

fast, stable optimization using automatic differentiation, which is as accurate as symbolic

differentiation but does not require analytic likelihood derivatives (Fournier et al., 2012).

Computer code for the likelihood is broken down algorithmically into its simplest component

functions, which can each be differentiated symbolically, then these are combined into the

overall likelihood gradient using repeated application of the chain rule.

2.2 Application to simulated data in Link et al. (2010)

To verify our procedure and demonstrate computation speed, we apply our maximum likeli-

hood method to the data in Section 4 of Link et al. (2010), which they generated using T = 5,

N = 400, α = 0.9, and (p1, . . . , p5) = (0.3, 0.4, 0.5, 0.6, 0.7). We obtain N̂ = 397.93 with 95%

CI (365.9, 432.8), α̂ = 0.910 (0.878, 0.942), and p̂ = (0.302, 0.407, 0.500, 0.598, 0.706). The

results are identical if we optimize only over (N,α). These results correspond very closely

with those in Table 2 of Link et al. (2010), where the posterior mean for N is 399.4 with

central 95% posterior interval (370, 432), and for α is 0.910 (0.879, 0.940). Our estimates of

p are in every case within 0.002 of the posterior means given by Link et al. (2010).

The computation time for our analysis on a 1.73GHz laptop is 1.2 seconds using ADMB,

and 10.0 seconds using R. This fast computation enables us to explore statistical properties

of the model via simulation, which has not been done by previous authors.

3. Simulation study

We conducted extensive simulations to study the performance of maximum likelihood esti-

mates in model Mt,α. We investigate bias, precision, and CI coverage in three scenarios:
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A. Simulate data from model Mt,α, and fit model Mt,α;

B. Simulate data from model Mt,α, and fit model Mt;

C. Simulate data from model Mt (i.e. α = 1), and fit model Mt.

The purpose of scenario A is to investigate finite-sample properties of the maximum likeli-

hood estimates within the likely range of application of the model. Although we expect the

usual asymptotic MLE properties to apply as N → ∞, good performance is not guaranteed

for finite N . Scenario B represents the naive approach of ignoring potential errors and fitting

model Mt, and we are interested in a comparison between the naive approach and the

correctly specified scenario A. Scenario C represents the case where identification errors

can be corrected before the model is applied, for example by repeat genotyping. We are

interested in the cost of reaching a desired coefficient of variation (CV) or root-mean-square

error (RMSE) for N̂ under Scenario C compared with that under Scenario A.

We used 500 simulation replicates for every combination of inputs T and (N,α, p1, . . . , pT ).

We focused on T from 4 to 12, N ∈ {400, 1000}, α ∈ {0.90, 0.95, 0.97, 0.99}, and p1 =

p2 = . . . = pT with value varying from 0.05 to 0.50, although we also conducted numerous

simulations outside these ranges. When p1 = . . . = pT , they are estimated as T free

parameters. Simulations were created in R, and we used the R package R2admb (Bolker

and Skaug, 2012) to interface with ADMB for computing MLEs and standard errors.

We calculate percentage bias as (N̂mean −N)/N ×100, where N̂mean is the mean N̂ from the

500 simulations, and N is the known generating value. Percentage root-mean-square error is

rmse =

{√
1

500

∑500
s=1

(
N̂s −N

)2
}
/N×100, and it is approximately equal to the empirical CV

when N̂ is unbiased. Confidence interval coverage is the percentage of nominal 95% confidence

intervals to contain the true generating value of the parameter, using the expressions in

section 2.1. Convergence of the optimization in ADMB is confirmed by checking that the

maximum gradient component is sufficiently close to zero. Where boundary estimates were

obtained (α̂ = 1, N̂ = D, or N̂ = maxt{nt}), these were retained for all calculations.
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3.1 Results

Figure 2 shows the distribution of MLEs obtained from T = 8 capture occasions with

N = 400, with α = 0.97 representing a moderate error rate of 3%, and with very high

capture probabilities p1 = . . . = p8 = 0.4. With these parameters, we expect over 98%

of animals to be captured at least once, and an average of about 430 capture histories in

the data. Scenario A in Figure 2 shows that model Mt,α performs well, with no discernible

bias, low RMSE (approximately equal to the CVs), and approximately nominal confidence

interval coverage. Ignoring the 3% error rate and fitting model Mt, as in scenario B, leads to

a 10% bias in N̂ and CI coverage of zero. The failure to match a small number of samples

and subsequent surplus of unit histories creates negative bias in the capture probabilities, p̂t,

and leads to a positive bias in N̂ . This shows that ignoring just a small amount of error can

have detrimental consequences, as the overestimated abundance and very tight precision in

scenario B could lead to poor management decisions for an endangered population.

[Figure 2 about here.]

[Figure 3 about here.]

Figure 3 shows equivalent results when capture probability is reduced from 0.4 to 0.1,

and all other parameters remain the same. With these parameters, we expect about 57% of

animals to be captured at least once, and an average of 233 capture histories in the data.

For these parameters neither scenario A nor scenario B performs well, but arguably scenario

B is better, with 12% RMSE and 89% CI coverage for N̂ , compared with 23% RMSE and

90% CI coverage under scenario A. The reason for the poor performance of scenario A is

the large variance introduced by the parameter α. Estimation of α is extremely diffuse with

these settings, because the predominant unit histories in the data could arise either from

high {pt} and low α, or from low {pt} with any α. The diffuse distribution of α̂ is reflected

in the high average error, negative bias, and reduced CI coverage for N̂ . These parameter

settings are realistic for many situations, for example cetacean surveys, and the conclusion
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is notable that substantially better RMSE and equivalent CI coverage for N are obtained by

ignoring errors rather than by trying to correct for them.

Figure 4 shows the pattern of results for bias and RMSE in N̂ as capture probability

ranges from pt = 0.05 to pt = 0.50, constant for each of T = 8 capture occasions. As before,

α = 0.97, and N = 400 (top row) or 1000 (bottom row). For N = 400, the RMSE in

scenario A improves upon that in scenario B for approximately pt > 0.2; for N = 1000 this

is slightly better at approximately pt > 0.15. However, the RMSE (equivalently, the CV)

remains much higher for scenario A than for scenario C. If errors can be corrected before the

model is applied, as in scenario C, the RMSE and CV are reduced by a factor of 3 or more.

[Figure 4 about here.]

[Figure 5 about here.]

Inspection of numerous results shows that bias and precision in model Mt,α improve as

either T or pt increases. Because Mt,α gains information about α from the surplus of unit

capture histories compared with multiple-entry histories, we conjecture that the probability

of a multiple-entry history may be a key predictor for good performance of the model. In

particular, all histories with at least two entries are assumed to be sound, so they provide

direct information about α, and for high T or pt a unit history may be unlikely unless it is

an error. In Figure 5 we plot bias and RMSE against the probability that an animal included

in the sample is caught at least twice: that is, P (Y > 2 | Y > 1) where Y ∼ Binomial(T, pt).

We find that for given values of α and N , results for multiple different combinations of T

and pt lie close to a smooth curve. For α = 0.97 and N = 400, for MLE performance to be no

worse than 15% RMSE, 15% CV, and 5% bias, this conditional probability should be about

0.4 or above. For N = 1000, the equivalent threshold is about 0.33. These results may help

to plan surveys where it is possible to increase either capture probability or the number of

capture occasions to meet these thresholds.
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3.2 Cost of achieving a desired precision for genetic surveys

In view of the greatly decreased precision of model Mt,α (scenario A) compared with model

Mt (scenario C), it is natural to ask whether model Mt,α is a cost-effective approach to

error correction. In genetic surveys, especially those using high-quality tissue samples, repeat

genotyping offers a way of correcting most misidentification errors before the model is applied,

enabling researchers to use model Mt instead of Mt,α. To reach a target precision, model

Mt,α requires much higher capture probabilities than model Mt, and therefore requires a

larger number of samples to genotype. On the other hand, applying model Mt would involve

repeat-genotyping of uncertain samples in order to eliminate errors, and this will also inflate

genotyping costs.

Here, we investigate which of these approaches is more cost-effective to reach a target

RMSE. We take account only of genotyping costs, and disregard sampling costs. In some

cases, such as shipboard cetacean surveys, sampling costs may far exceed genotyping costs, so

the greater sample sizes needed for model Mt,α may be unachievable. In studies using hair or

faeces, by contrast, sampling may be relatively cheap and genotyping costs may dominate. To

avoid making assumptions about the relative costs of sampling and genotyping, we consider

only the numbers of samples that must be genotyped under the different strategies.

The following strategies are simplistic but nonetheless provide a useful comparison.

(1) Genotype all samples once. Regard all unit capture histories as suspicious, so repeat

the genotyping for all unit-history samples once. After the repeats, re-match all samples

using concensus genotypes and incomplete matching criteria as appropriate. Assume all

errors are eliminated, and apply model Mt.

(2) As (1), but with two repeats for all samples initially in unit histories. Apply Mt.

(3) Genotype all samples once only, and apply model Mt,α.

The results are shown in Figure 6, where the cost of strategies (1) to (3) is assumed

proportional to the number of genotypes required. The capture probabilities needed to reach a
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desired RMSE are estimated by interpolation from the traces on Figure 4, and are thenceforth

used to find the mean number of genotypes required under the different strategies. Figure 6

shows α = 0.97 with T = 8 and N = 400. The features of the graphic are very similar for

all combinations of T ∈ {4, 8} and N ∈ {400, 1000}, and also if RMSE is replaced by CV.

If errors can be corrected by genotyping effort equivalent to repeating all unmatched

genotypes once (strategy 1), Figure 6 shows it is always substantially cheaper to apply

model Mt than model Mt,α to reach a desired precision. If the effort required is equivalent

to repeating all unmatched genotypes twice (strategy 2), model Mt,α is better for higher

target RMSEs, but becomes worse as the target RMSE becomes more ambitious.

[Figure 6 about here.]

We note that even strategy 1 might overstate the amount of error-correcting needed to

apply model Mt when genetic samples are obtained from high-quality tissue, as the majority

of unmatched samples are sufficiently distinct from all other samples to be safely assumed to

be sole captures of an individual based on established methods. However, from our laboratory

experience, the few samples over which there are doubts may take two or three repeats, and

finalising this phase can be very time-consuming.

4. Application to southern right whales

We apply model Mt,α to genetic and photographic surveys of the endangered New Zealand

population of the southern right whale (Eubalaena australis). Southern right whales were

common in New Zealand waters prior to 19th-century whaling. After severe population

depletion, only an outpost of the original population remained in the subantarctic Auckland

Islands (50◦ 32′ S), and the NZ population is still largely restricted to this region (Carroll

et al., 2011). The population can be surveyed at the Auckland Islands during annual winter

calving congregations. However, the expense and difficulty of working in subantarctic waters
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during the austral winter means that survey opportunity is limited, despite the national

significance of the population.

4.1 1995-1998 genetic survey

Genetic samples were collected annually in the T = 4 austral winters of 1995–1998, using

small biopsy darts deployed from a crossbow. Samples were genotyped at 13 microsatellite

loci and sexed. We restrict our analysis to males, because for females there is evidence of a

cyclic pattern of capture in the calving grounds due to their 3-year calving intervals (Carroll

et al., 2013). Treating the male population as a closed population over the survey period is

an approximation, and open-population estimates can be found in Carroll et al. (2011; 2013).

We include this example because it illustrates the level and type of genetic error obtained

from biopsy samples, and the practicalities of applying model Mt,α.

The data consist of 132 genetic samples and 13 loci. This creates 1716 single-locus results,

of which 139 are missing (8%). Pairwise comparison of all samples comprises 8646 pairs in

total, of which the number of pairs with exact matches at 0-4 loci is 8621; at 5-6 loci is 5;

at 7-8 loci is 0; and at 9-13 loci is 20. These matching loci exclude any with missing data.

The results show a clear break between samples matching at 6 or fewer loci, and samples

matching at 9 or more loci.

Using the least variable 9 loci in the data, the probability that two individuals have the

same genotype by chance is PID = 6.0× 10−11 (Paetkau and Strobeck, 1994), or for closely

related individuals, PIDsib = 1.5 × 10−4 (Evett and Weir, 1998). For the most variable 6

loci, PID = 1.8× 10−9 and PIDsib = 1.3× 10−3, so a few 6-locus matches are reasonable by

chance in a population of a few hundred animals that includes siblings. These figures support

the use of the break between 6 and 9 matching loci as a matching criterion. We shall assume

that two samples belong to the same individual if they have at least 9 matching loci.

Using the 9-loci match rule, there are 60 non-matching loci among samples assumed to
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come from the same individual. Of these, 50 are due to missing data; 6 could be due to allelic

dropout; 3 have a single allele substitution; and in the remaining case the non-matching loci

have no alleles in common. Thus, every type of non-match appears in the data.

Applying model Mt,α with the 9-loci match rule gives a boundary estimate: N̂ = 306 with

95% confidence interval (212, 443); α̂ = 1.000 with standard error 0.004; and (p̂1, . . . , p̂4) =

(0.09, 0.07, 0.10, 0.17) with standard errors (0.02, 0.02, 0.03, 0.04). Identical results are ob-

tained by applying model Mt.

For every other match rule we examined, we also obtained boundary estimates: either

α̂ ≃ 1, or N̂ = maxt{nt}. If we apply the strict rule that samples must share 13 matched loci

to be attributed to the same animal, there is only one recapture in the data-set, and both

models Mt,α and Mt give implausible results: N̂ = maxt{nt} = 51 and α̂ = 0.09 from model

Mt,α, and N̂ = 6148 with 95% CI (1226, 31 386) from model Mt. In every case, optimizing

over (N,α) instead of (N,α, p1, . . . , p4) gives the same results for Mt,α.

We conclude that model Mt,α does not provide a helpful mechanism for correcting genetic

errors in our example. The common-sense 9-loci matching criterion probably eliminates all

errors, and model Mt,α gives the same results as model Mt. Under the exact-match 13-loci

criterion, the data have 130 unit histories out of 131 observed in total, whereas the probable

truth under the 9-loci criterion is 95 unit histories out of 113 total. The model does not

succeed in correcting the balance, but instead drives α̂ as low as possible to give N̂ = 51.

We suggest that these conclusions are likely to apply to the majority of genetic studies with

high-quality tissue samples, and scrutiny of the data and matching criteria before applying

the model is likely to be a more effective strategy than applying model Mt,α.

4.2 1998 photographic survey

In 1998 the field season was 54 days long, enabling a within-season estimate of abundance.

Analysis of photo-identification data from this survey is provided in Web Appendix B.
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5. Discussion

Model Mt,α is an elegant formulation for modeling misidentification in capture-recapture

studies. The latent-multinomial formulation of Link et al. (2010) also creates a framework

for dealing with other latent-identity problems. However, we have found that the indirect

method of detecting errors, relying on a surplus of histories with only one entry, places heavy

demands on the data. The model can be used with confidence when there are high capture

probabilities or many capture occasions, and from Figure 5 we suggest that the probability

of a multiple-entry history is of particular importance for predicting MLE performance.

We have focused here on maximum likelihood estimation. The weak identifiability of α is a

general problem for model Mt,α, but it may be addressed to some extent by using a different

mode of inference. A Bayesian approach using informative priors for α may be a good choice,

and computation speed could be considerably improved by our likelihood reformulation (2).

Informative priors for α can be based on experience from replicate genotyping or from

multiple experts matching photo catalogues. We also ran some simulations using a least-

squares approach similar to that in Yoshizaki et al. (2011), and found some improvement

in RMSE over the MLEs for small samples in which information was sufficient to draw

the MLEs away from the boundaries but insufficient to provide strong identifiability of α.

Variance for the least-squares approach can be estimated by bootstrap resampling.

We had difficulty in applying model Mt,α to real data. In our genetic example, incomplete

matching of genetic samples was almost ubiquitous and the identification process was not

well described by the simplistic model of Mt,α, which assumes every identification is either

right or wrong. Applying a strict complete-match criterion led to an implausible boundary

estimate, whereas a common-sense matching criterion eliminated errors to the point that

there was no need for model Mt,α. In our photo survey, on the other hand, N was estimated

with 95% confidence interval (49, 419) which is not adequate for management purposes. Our
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difficulty reflects that of other authors: none of the methodological treatments to date have

provided a fully satisfactory analysis of real data. Overall, we suggest researchers should

be cautious in applying model Mt,α, and should first test its properties by simulation and

consider whether the model for identification error is suitable for their situation.

In cases with high error rate, we expect a model similar to that of Wright et al. (2009)

might have better performance thanMt,α, because information on error rate is gained directly

from discrepancies between repeated attempts to genotype the same sample, resolving issues

of weak identifiability of α. Wright et al.’s (2009) model is specific to genetic surveys, and

does not extend obviously to photographic surveys. A similar formulation based on multiple

judgments from independent experts might have potential in the photographic case.

Our formulation of the exact likelihood for Mt,α enables very fast computation of MLEs,

especially when using ADMB. Computation speed depends upon the combinatorial problem

in Figure 1 and does become slow at times, for example taking 13 minutes with α = 0.6,

T = 12, pt = 0.1, and N = 1000, although this reduces to 2 minutes if optimizing only over

(N,α). Link et al. (2010) indicate that their Bayesian approach takes over 30 minutes for

T = 5, contrasting with our 1.2 seconds to obtain MLEs for the same data. A reformulation

of the Bayesian approach using our likelihood computation would enable practitioners to

exploit the joint advantages of computation speed and informative priors for α.

A disadvantage of our formulation is that it is very specific to model Mt,α. We treat the

capture occasions individually, partitioning captures into sound and faulty captures. This

would not be possible for models that examine each animal’s complete capture history,

such as the behavioral-response model Mb, or model Mh which incorporates individual

heterogeneity (Otis et al., 1978). Unlike the latent-history approach of Link et al. (2010),

our formulation cannot be extended to these cases. However, in view of the high variance

inherent in model Mt,α, it might be unwise to combine error estimation with models Mb or
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Mh, which themselves suffer from high variance, and confounding of α with other parameters

seems likely. More of a problem is the inability to generalise our approach to open-population

models, in which whole capture histories must be considered because an animal may be born

or die part-way through the study. Despite this lack of generality, our device in equation

(2) of switching the sum from latent frequency vectors x to a different latent variable might

be applicable in other situations. Our conclusions about the low precision associated with

indirect error estimation are also likely to hold more generally.

6. Supplementary Materials

Code for fitting Mt,α in R and ADMB, and the Web Appendices referenced in Sections 2.1

and 4.2 are available with this paper at the Biometrics website on Wiley Online Library.
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d1
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r 1
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r 3

Sound capture (code 1) Available for faulty capture Selected for faulty capture (code 2)

Figure 1. Diagram showing N = 20 latent capture histories at T = 3 times, for a particular
choice of r = (r1, r2, r3). Each latent history is a vertical slice through the diagram, shaded
according to its capture code at times t = 1, 2, 3, and there is one latent history for each of
the N animals in the population. The N histories are partitioned into: D with two or more
sound captures; r· = r1+r2+r3 with exactly one sound capture, of which rt have their sound
capture at time t; and the remaining N −D− r· with no sound captures. Firstly we fix the
pattern of sound captures denoted by dark shading: these are pre-determined by the observed
duplicate histories and the choice of r. Secondly we assign animals to these ‘sound’ histories.
For each group of identical sound histories, we list the animals allocated to the group in
numerical order across the columns. One such ordered assignment is marked on the diagram,
showing for example that the two copies of sound history 101 are allocated to animals 1 and
2. In total, there are N ! /

{(∏
k : |ωk|>2 fk!

) (∏T
t=1 rt!

)
(N −D − r·)!

}
possible assignments.

Thirdly we assign faulty captures to animals. For each row t, there are N − (dt+ rt) animals
available for faulty capture (pale shading), of which ut−rt must be selected (hatched shading).
Choices for faulty capture can be made independently in each of the T rows. The diagram
shows one assignment of faulty captures to animals; there are

∏T
t=1

(
N−dt−rt
ut−rt

)
assignments

available. The completed diagram shows one way of allocating latent histories to animals
consistent with the observed data. For a given r, the selections in the second and third steps
generate all possible allocations exactly once, and each allocation has the same probability{
αC ∏T

t=1 pnt
t (1− pt)

N−nt

}
α r·(1− α)U− r· .
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Figure 2. Distributions of parameter estimates from 500 simulations with T = 8, N = 400,
α = 0.97, and p1 = . . . = p8 = 0.4, under scenarios A and B. Scenario A: model Mt,α used for
both simulation and estimation. Scenario B: model Mt,α used for simulation; model Mt used
for estimation. Bold horizontal lines on the boxes show the mean of the estimates; numbers
above and below show percentage bias, root-mean-square error (RMSE), and confidence
interval coverage for nominal 95% confidence intervals. Thin horizontal lines across each
plot show the true values of the parameters. Boxes are drawn between the upper and lower
quartiles of estimates; whiskers extend to the last estimate within 1.5 times the interquartile
range from the quartiles; and estimates beyond the whiskers are marked as outlying points.
The mode of the distribution of N̂ , estimated by R function density, is 400.6 for Scenario
A and 441.5 for Scenario B.
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Figure 3. Distributions of parameter estimates under scenarios A and B when capture
probability p is reduced to p1 = . . . = p8 = 0.1. All other details are identical to Figure 2.
The estimated mode of the distribution of N̂ is 406.6 for Scenario A, and 415.0 for Scenario
B.
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Figure 4. Percentage bias and root-mean-square error (RMSE) in estimates of N̂ when
T = 8, α = 0.97, and N = 400 (top row) or N = 1000 (bottom row), as capture probability
ranges from p = 0.05 to p = 0.50. Scenario A (solid black lines): model Mt,α used for both
simulation and estimation. Scenario B (dashed black lines): model Mt,α used for simulation;
model Mt used for estimation. Scenario C (grey lines): model Mt used for both simulation
and estimation. Plotted points show results obtained and lines interpolate between them.
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Figure 5. Percentage bias and root-mean-square error (RMSE) in estimates of N̂ under
scenario A when α = 0.97, shown against the probability that a sampled animal is caught
at least twice. Black points show results for N = 400, grey points for N = 1000, and smooth
curves are fitted to results for each N . Results for a single value of N fall broadly on a
smooth curve for a spectrum of values of T between 4 and 12, and capture probabilities pt
between 0.05 and 0.50.
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Figure 6. Cost of reaching specified thresholds of root-mean-square error (RMSE) under
different strategies, when T = 8, N = 400, α = 0.97, and capture probability can be
selected. The bar heights show the number of samples that must be genotyped, including
repeats, under each of the strategies.


