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Web Appendix A: Likelihood computation

The method of computation described below is based on reformulating sums as matrix

products, and organising the computation so that it only involves a sequence of vectors

multiplied by matrices. This is efficient in minimizing the size of objects that need to be

created, but involves some redundant computation of quantities that cancel from one product

to the next. Although further work might uncover more efficient computation methods, the

procedure below gives fast computation within the likely sphere of application of the model.

Let ℓ be the log-likelihood gained from equation (2) in the main text, ignoring terms

involving the data only. Write r· = r1 + . . .+ rT for any selection of (r1, . . . , rT ). We have:

ℓ = C log(α) +
T∑

t=1

{nt log(pt) + (N − nt) log(1− pt)}+ log(N !) + log(S), (A.1)

where

S =

u1∑

r1=0

. . .

uT∑

rT=0

I{r· 6 N −D}
α r·(1− α)U− r·

(N −D − r·)!
T∏

t=1

1

rt!

(
N − nt + ut − rt

ut − rt

)
. (A.2)

Define index variables vt = r1+ . . .+ rt, and yt = u1+ . . .+ut, for t = 1, . . . , T , and define

constants v0 = y0 = 0. Note that vT = r· and yT = U . Also define
(
k

l

)
= 0 if k < 0, l < 0,

or k < l to enforce the conditions that r· 6 N −D and vt−1 6 vt 6 vt−1 + ut for all t. We

reindex the sums in (A.2) using {vt} and {yt}, to give after some algebra:
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S =
1

(N −D)!

yT∑

vT=0

. . .

y1∑

v1=0

αvT (1−α)U−vT

T∏

t=1

(
N − nt + ut − (vt − vt−1)

ut − (vt − vt−1)

)(
N −D − vt−1

vt − vt−1

)
(A.3)

Define the 1 × (y1 + 1) row vector B1 with entry v1 given by B1(v1) =
(
N−n1+u1−v1

u1−v1

)(
N−D

v1

)

for v1 = 0, . . . , y1. For t = 2, . . . , T , define the (yt−1 + 1) × (yt + 1) matrix Bt with entries

(vt−1, vt) for vt−1 = 0, . . . , yt−1 and vt = 0, . . . , yt given by

Bt(vt−1, vt) =

(
N − nt + ut − (vt − vt−1)

ut − (vt − vt−1)

)(
N −D − vt−1

vt − vt−1

)
.

For time T , further define the (yT−1 + 1) × (yT + 1) matrix B∗

T , with entries (vT−1, vT ) for

vT−1 = 0, . . . , yT−1 and vT = 0, . . . , yT given by

B∗

T (vT−1, vT ) = αvT (1− α)U−vT BT (vT−1, vT ) .

Then (A.3) reduces to:

S =
1

(N −D)!

yT∑

vT=0

(
B1B2 . . . BT−1B

∗

T

)
vT

. (A.4)

Because B1 is a vector, every product of the form (B1 . . . Bt)×Bt+1 is the product of a vector

with a matrix. We evaluate the product in (A.4) sequentially so that all computations are

of this form.

Matrix entries are computed as logarithms to avoid numerical problems. Finding the

logarithm of the scalar product of two vectors b and c, which are each stored as their

logarithms, is a computation of the form log (
∑

i bici) = log {
∑

i exp (log bi) exp (log ci)}.

These computations are performed as m + log {
∑

i exp (log bi + log ci −m)}, where m =

maxi (log bi + log ci), otherwise large exponentials can cause numerical errors.

Inserting (A.4) into (A.1) completes the computation.
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Web Appendix B: photographic survey of New Zealand southern right whales

We use photo-identification data from 54 survey days in 1998, described in Fewster and

Patenaude (2009) and Carroll et al. (2011). Capture occasions correspond to days when

weather conditions were suitable for sampling. There were T = 9 successful capture occasions

in the 18 days between 18th July and 4th August 1998, and this period corresponds to a

central part of the season during which numbers appeared reasonably stable. Regular counts

were conducted in addition to capture-recapture sampling, aimed at counting all adults

present; these can be interpreted as minimum numbers present. The counts for 18th July,

26th July, and 4th August were respectively 112, 117, and 109. The high level of agreement

between these counts supports the assumption of a closed population, but complete closure

cannot be guaranteed over the period.

The error rate for matching photographs of the same animal has previously been estimated

by counting discrepancies between different experts reviewing the same photo catalogue. On

this basis the error rate was found to be less than 3% (Fewster and Patenaude, 2009),

corresponding to a value of α of 0.97 or above. The true α for this study could be either

higher or lower than this value: the estimate of 0.97 is based on between-year photographs

which may be harder to match than within-year photographs; but on the other hand the

agreement of different experts does not guarantee correctness as all experts may be misled

by the same features of a photograph.

The data consist of 93 capture histories, with 64 unit histories, and respectively 24, 3,

and 2 histories with 2, 3, and 4 entries. Applying model Mt,α yields N̂ = 144 with 95%

confidence interval (49, 419); α̂ = 0.94 with standard error 0.24; and estimates of capture

probability p̂1, . . . , p̂9 from 0.05 to 0.18 with mean 0.10. Standard errors of p̂t ranged from

0.03 to 0.11 with mean 0.06. The estimated CV of N̂ is 58.9%. The results are identical if

we optimize only over (N,α).
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Applying model Mt, we gain N̂ = 166 with 95% confidence interval (131, 211); and

estimates of p1, . . . , p9 from 0.04 to 0.16 with mean 0.086. Standard errors of p̂t ranged

from 0.02 to 0.03 with mean 0.02. The estimated CV of N̂ is 12.2%.

According to our simulation study, for capture probabilities in this range with T = 9

we should expect maximum likelihood estimates for N̂ to have low precision, reduced CI

coverage, and some negative bias. We conducted further simulations assuming that the true

values of (N,α, p1, . . . , p9) are given by their estimates for these data. These show that the

MLEs for N̂ exhibit −11% bias, 87% CI coverage, 31% RMSE, and 29% empirical CV with

model Mt,α. The estimated CV from the real data lies within the distribution of estimated

CVs from the simulated results, at the 85th percentile. For comparison, we also fitted model

Mt to the same simulated data, to mimic Scenario B in Section 3 of the main text. Under

model Mt, ignoring errors in photo-matching, the MLEs for N̂ have 15% bias, 86% CI

coverage, 21% RMSE and 14% empirical CV.

Although the Mt,α estimates are plausible based on our prior knowledge of the population

and photo-matching errors, they suffer from extremely high variance. The confidence interval

of (49, 419) for N does not provide a useful conclusion for management purposes. Despite

model Mt,α being the correct model for the simulations, the high variance introduced by the

parameter α means that it yields a substantially higher average error in N̂ than that obtained

by ignoring photo-matching errors and fitting model Mt (RMSE 31% for Mt,α versus 21%

for Mt), and there is no significant improvement in confidence interval coverage (86.7% for

Mt,α versus 86.2% for Mt out of 500 simulations).

We note that the poor results from model Mt,α using maximum likelihood estimates for

these data do not necessarily apply to other modes of inference. In particular, a Bayesian

approach using informative priors for α may resolve the problems caused by weak iden-

tifiability of α. Informative priors may be based on discrepancies counted when multiple
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experts review the same photo catalogue. Additionally, other estimation methods such as

least-squares may perform better than maximum likelihood estimation for small samples

arising from situations like this. Variance can be estimated by bootstrap methods. For

future statistical development, other alternatives are to direct efforts towards developing

photo-matching software (e.g. BigFish: Pirzl, Murdoch, and Lawton, 2006), or to devise a

model in the same vein as the genetic model of Wright et al. (2009) that can incorporate

direct information on matching discrepancies from independent experts.
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